1
|
López-Valiñas Á, Valle M, Pérez M, Darji A, Chiapponi C, Ganges L, Segalés J, Núñez JI. Genetic diversification patterns in swine influenza A virus (H1N2) in vaccinated and nonvaccinated animals. Front Cell Infect Microbiol 2023; 13:1258321. [PMID: 37780850 PMCID: PMC10540852 DOI: 10.3389/fcimb.2023.1258321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/25/2023] [Indexed: 10/03/2023] Open
Abstract
Influenza A viruses (IAVs) are characterized by having a segmented genome, low proofreading polymerases, and a wide host range. Consequently, IAVs are constantly evolving in nature causing a threat to animal and human health. In 2009 a new human pandemic IAV strain arose in Mexico because of a reassortment between two strains previously circulating in pigs; Eurasian "avian-like" (EA) swine H1N1 and "human-like" H1N2, highlighting the importance of swine as adaptation host of avian to human IAVs. Nowadays, although of limited use, a trivalent vaccine, which include in its formulation H1N1, H3N2, and, H1N2 swine IAV (SIAV) subtypes, is one of the most applied strategies to reduce SIAV circulation in farms. Protection provided by vaccines is not complete, allowing virus circulation, potentially favoring viral evolution. The evolutionary dynamics of SIAV quasispecies were studied in samples collected at different times from 8 vaccinated and 8 nonvaccinated pigs, challenged with H1N2 SIAV. In total, 32 SIAV genomes were sequenced by next-generation sequencing, and subsequent variant-calling genomic analysis was carried out. Herein, a total of 364 de novo single nucleotide variants (SNV) were found along all genetic segments in both experimental groups. The nonsynonymous substitutions proportion found was greater in vaccinated animals suggesting that H1N2 SIAV was under positive selection in this scenario. The impact of each substitution with an allele frequency greater than 5% was hypothesized according to previous literature, particularly in the surface glycoproteins hemagglutinin and neuraminidase. The H1N2 SIAV quasispecies evolution capacity was evidenced, observing different evolutionary trends in vaccinated and nonvaccinated animals.
Collapse
Affiliation(s)
- Álvaro López-Valiñas
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Bellaterra, Barcelona, Spain
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Barcelona, Spain
| | - Marta Valle
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Bellaterra, Barcelona, Spain
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Barcelona, Spain
| | - Marta Pérez
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Bellaterra, Barcelona, Spain
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Barcelona, Spain
| | - Ayub Darji
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Bellaterra, Barcelona, Spain
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Barcelona, Spain
| | - Chiara Chiapponi
- WOAH Reference Laboratory for Swine Influenza, Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia-Romagna, Brescia, Italy
| | - Llilianne Ganges
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Bellaterra, Barcelona, Spain
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Barcelona, Spain
- WOAH Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Barcelona, Spain
| | - Joaquim. Segalés
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Barcelona, Spain
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - José I. Núñez
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Bellaterra, Barcelona, Spain
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Barcelona, Spain
| |
Collapse
|
2
|
López-Valiñas Á, Valle M, Wang M, Darji A, Cantero G, Chiapponi C, Segalés J, Ganges L, Núñez JI. Vaccination against swine influenza in pigs causes different drift evolutionary patterns upon swine influenza virus experimental infection and reduces the likelihood of genomic reassortments. Front Cell Infect Microbiol 2023; 13:1111143. [PMID: 36992684 PMCID: PMC10040791 DOI: 10.3389/fcimb.2023.1111143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/14/2023] [Indexed: 03/16/2023] Open
Abstract
Influenza A viruses (IAVs) can infect a wide variety of bird and mammal species. Their genome is characterized by 8 RNA single stranded segments. The low proofreading activity of their polymerases and the genomic reassortment between different IAVs subtypes allow them to continuously evolve, constituting a constant threat to human and animal health. In 2009, a pandemic of an IAV highlighted the importance of the swine host in IAVs adaptation between humans and birds. The swine population and the incidence of swine IAV is constantly growing. In previous studies, despite vaccination, swine IAV growth and evolution were proven in vaccinated and challenged animals. However, how vaccination can drive the evolutionary dynamics of swine IAV after coinfection with two subtypes is poorly studied. In the present study, vaccinated and nonvaccinated pigs were challenged by direct contact with H1N1 and H3N2 independent swine IAVs seeder pigs. Nasal swab samples were daily recovered and broncho-alveolar lavage fluid (BALF) was also collected at necropsy day from each pig for swine IAV detection and whole genome sequencing. In total, 39 swine IAV whole genome sequences were obtained by next generation sequencing from samples collected from both experimental groups. Subsequently, genomic, and evolutionary analyses were carried out to detect both, genomic reassortments and single nucleotide variants (SNV). Regarding the segments found per sample, the simultaneous presence of segments from both subtypes was much lower in vaccinated animals, indicating that the vaccine reduced the likelihood of genomic reassortment events. In relation to swine IAV intra-host diversity, a total of 239 and 74 SNV were detected within H1N1 and H3N2 subtypes, respectively. Different proportions of synonymous and nonsynonymous substitutions were found, indicating that vaccine may be influencing the main mechanism that shape swine IAV evolution, detecting natural, neutral, and purifying selection in the different analyzed scenarios. SNV were detected along the whole swine IAV genome with important nonsynonymous substitutions on polymerases, surface glycoproteins and nonstructural proteins, which may have an impact on virus replication, immune system escaping and virulence of virus, respectively. The present study further emphasized the vast evolutionary capacity of swine IAV, under natural infection and vaccination pressure scenarios.
Collapse
Affiliation(s)
- Álvaro López-Valiñas
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Barcelona, Spain
- *Correspondence: José I. Núñez, ; Álvaro López-Valiñas,
| | - Marta Valle
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Barcelona, Spain
| | - Miaomiao Wang
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Barcelona, Spain
| | - Ayub Darji
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Barcelona, Spain
| | - Guillermo Cantero
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Barcelona, Spain
| | - Chiara Chiapponi
- WOAH Reference Laboratory for Swine Influenza, Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia-Romagna, Brescia, Italy
| | - Joaquim Segalés
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Barcelona, Spain
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Llilianne Ganges
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Barcelona, Spain
- WOAH Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Barcelona, Spain
| | - José I. Núñez
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Barcelona, Spain
- *Correspondence: José I. Núñez, ; Álvaro López-Valiñas,
| |
Collapse
|
3
|
Keay S, Poljak Z, Klapwyk M, O’Connor A, Friendship RM, O’Sullivan TL, Sargeant JM. Influenza A virus vaccine research conducted in swine from 1990 to May 2018: A scoping review. PLoS One 2020; 15:e0236062. [PMID: 32673368 PMCID: PMC7365442 DOI: 10.1371/journal.pone.0236062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/27/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Influenza A viruses of swine (IAV-S) are a global zoonotic and economic concern. Primary control is through vaccination yet a formal evidence map summarizing vaccine research conducted in pigs is not available. OBJECTIVE Ten characteristics of English language primary IAV-S vaccine research, conducted at the level of the pig or higher, were charted to identify research gaps, topics for systematic review, and coverage across different publication types. DESIGN Six online databases and grey literature were searched, without geographic, population, or study type restrictions, and abstracts screened independently and in duplicate for relevant research published between 1990 and May 2018. Full text data was charted by a single reviewer. RESULTS Over 11,000 unique citations were screened, identifying 376 for charting, including 175 proceedings from 60 conferences, and 170 journal articles from 51 journals. Reported outcomes were heterogeneous with measures of immunity (86%, n = 323) and virus detection (65%, n = 246) reported far more than production metrics (9%, n = 32). Study of transmissibility under conditions of natural exposure (n = 7), use of mathematical modelling (n = 11), and autogenous vaccine research reported in journals (n = 7), was limited. CONCLUSIONS Most research used challenge trials (n = 219) and may have poor field relevance or suitability for systematic review if the purpose is to inform clinical decisions. Literature on vaccinated breeding herds (n = 89) and weaned pigs (n = 136) is potentially sufficient for systematic review. Research under field conditions is limited, disproportionately reported in conference proceedings versus journal articles, and may be insufficient to support systematic review.
Collapse
Affiliation(s)
- Sheila Keay
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Zvonimir Poljak
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Mackenzie Klapwyk
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Annette O’Connor
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Robert M. Friendship
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Terri L. O’Sullivan
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Jan M. Sargeant
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
- Centre for Public Health and Zoonoses, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
4
|
Nirmala J, Perez A, Culhane MR, Allerson MW, Sreevatsan S, Torremorell M. Genetic variability of influenza A virus in pigs at weaning in Midwestern United States swine farms. Transbound Emerg Dis 2020; 68:62-75. [PMID: 32187882 DOI: 10.1111/tbed.13529] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 02/04/2020] [Accepted: 02/13/2020] [Indexed: 01/15/2023]
Abstract
Suckling piglets play an important role at maintaining influenza A virus (IAV) infections in breeding herds and disseminating them to other farms at weaning. However, the role they play at weaning to support and promote genetic variability of IAV is not fully understood. The objective here was to evaluate the genetic diversity of IAV in pigs at weaning in farms located in the Midwestern USA. Nasal swabs (n = 9,090) collected from piglets in breed-to-wean farms (n = 52) over a six-month period across seasons were evaluated for the presence of IAV. Nasal swabs (n = 391) from 23 IAV-positive farms were whole-genome sequenced. Multiple lineages of HA (n = 7) and NA (n = 3) were identified in 96% (22/23) and 61% (237/391) of the investigated farms and individual piglets, respectively. Co-circulation of multiple types of functional HA and NA was identified in most (83%) farms. Whole IAV genomes were completed for 126 individual piglet samples and 25 distinct and 23 mixed genotypes were identified, highlighting significant genetic variability of IAV in piglets. Co-circulation of IAV in the farms and co-infection of individual piglets at weaning was observed at multiple time points over the investigation period and appears to be common in the investigated farms. Statistically significant genetic variability was estimated within and between farms by AMOVA, and varying levels of diversity between farms were detected using the Shannon-Weiner Index. Results reported here demonstrate previously unreported levels of molecular complexity and genetic variability among IAV at the farm and piglet levels at weaning. Movement of such piglets infected at weaning may result in emergence of new strains and maintenance of endemic IAV infection in the US swine herds. Results presented here highlight the need for developing and implementing novel, effective strategies to prevent or control the introduction and transmission of IAV within and between farms in the country.
Collapse
Affiliation(s)
| | - Andres Perez
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Marie R Culhane
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Matthew W Allerson
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Srinand Sreevatsan
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | | |
Collapse
|
5
|
Abstract
The evolution of viral pathogens is shaped by strong selective forces that are exerted during jumps to new hosts, confrontations with host immune responses and antiviral drugs, and numerous other processes. However, while undeniably strong and frequent, adaptive evolution is largely confined to small parts of information-packed viral genomes, and the majority of observed variation is effectively neutral. The predictions and implications of the neutral theory have proven immensely useful in this context, with applications spanning understanding within-host population structure, tracing the origins and spread of viral pathogens, predicting evolutionary dynamics, and modeling the emergence of drug resistance. We highlight the multiple ways in which the neutral theory has had an impact, which has been accelerated in the age of high-throughput, high-resolution genomics.
Collapse
Affiliation(s)
- Simon D W Frost
- Department of Veterinary Medicine, University of Cambridge, Cambridge,
United Kingdom
- The Alan Turing Institute, London, United Kingdom
| | - Brittany Rife Magalis
- Institute for Genomics and Evolutionary Medicine, Temple University,
Philadelphia, PA
| | | |
Collapse
|
6
|
Diaz A, Marthaler D, Corzo C, Muñoz-Zanzi C, Sreevatsan S, Culhane M, Torremorell M. Multiple Genome Constellations of Similar and Distinct Influenza A Viruses Co-Circulate in Pigs During Epidemic Events. Sci Rep 2017; 7:11886. [PMID: 28928365 PMCID: PMC5605543 DOI: 10.1038/s41598-017-11272-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/22/2017] [Indexed: 12/22/2022] Open
Abstract
Swine play a key role in the ecology and transmission of influenza A viruses (IAVs) between species. However, the epidemiology and diversity of swine IAVs is not completely understood. In this cohort study, we sampled on a weekly basis 132 3-week old pigs for 15 weeks. We found two overlapping epidemic events of infection in which most pigs (98.4%) tested PCR positive for IAVs. The prevalence rate of infection ranged between 0 and 86% per week and the incidence density ranged between 0 and 71 cases per 100 pigs-week. Three distinct influenza viral groups (VGs) replicating as a "swarm" of viruses were identified (swine H1-gamma, H1-beta, and H3-cluster-IV IAVs) and co-circulated at different proportions over time suggesting differential allele fitness. Furthermore, using deep genome sequencing 13 distinct viral genome constellations were differentiated. Moreover, 78% of the pigs had recurrent infections with IAVs closely related to each other or IAVs clearly distinct. Our results demonstrated the molecular complexity of swine IAVs during natural infection of pigs in which novel strains of IAVs with zoonotic and pandemic potential can emerge. These are key findings to design better health interventions to reduce the transmission of swine IAVs and minimize the public health risk.
Collapse
Affiliation(s)
- Andres Diaz
- College of Veterinary Medicine, University of Minnesota, Saint Paul, 55108, United States of America
| | - Douglas Marthaler
- College of Veterinary Medicine, University of Minnesota, Saint Paul, 55108, United States of America
| | - Cesar Corzo
- College of Veterinary Medicine, University of Minnesota, Saint Paul, 55108, United States of America
| | - Claudia Muñoz-Zanzi
- School of Public Health, University of Minnesota, Minneapolis, 55454, United States of America
| | - Srinand Sreevatsan
- College of Veterinary Medicine, University of Minnesota, Saint Paul, 55108, United States of America
| | - Marie Culhane
- College of Veterinary Medicine, University of Minnesota, Saint Paul, 55108, United States of America
| | - Montserrat Torremorell
- College of Veterinary Medicine, University of Minnesota, Saint Paul, 55108, United States of America.
| |
Collapse
|
7
|
Complete Genome Sequencing of Influenza A Viruses within Swine Farrow-to-Wean Farms Reveals the Emergence, Persistence, and Subsidence of Diverse Viral Genotypes. J Virol 2017; 91:JVI.00745-17. [PMID: 28659482 PMCID: PMC5571239 DOI: 10.1128/jvi.00745-17] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 05/10/2017] [Indexed: 02/08/2023] Open
Abstract
Influenza A viruses (IAVs) are endemic in swine and represent a public health risk. However, there is limited information on the genetic diversity of swine IAVs within farrow-to-wean farms, which is where most pigs are born. In this longitudinal study, we sampled 5 farrow-to-wean farms for a year and collected 4,190 individual nasal swabs from three distinct pig subpopulations. Of these, 207 (4.9%) samples tested PCR positive for IAV, and 124 IAVs were isolated. We sequenced the complete genomes of 123 IAV isolates and found 31 H1N1, 26 H1N2, 63 H3N2, and 3 mixed IAVs. Based on the IAV hemagglutinin, seven different influenza A viral groups (VGs) were identified. Most of the remaining IAV gene segments allowed us to differentiate the same VGs, although an additional viral group was identified for gene segment 3 (PA). Moreover, the codetection of more than one IAV VG was documented at different levels (farm, subpopulation, and individual pigs), highlighting the environment for potential IAV reassortment. Additionally, 3 out of 5 farms contained IAV isolates (n = 5) with gene segments from more than one VG, and 79% of all the IAVs sequenced contained a signature mutation (S31N) in the matrix gene that has been associated with resistance to the antiviral amantadine. Within farms, some IAVs were detected only once, while others were detected for 283 days. Our results illustrate the maintenance and subsidence of different IAVs within swine farrow-to-wean farms over time, demonstrating that pig subpopulation dynamics are important to better understand the diversity and epidemiology of swine IAVs. IMPORTANCE On a global scale, swine are one of the main reservoir species for influenza A viruses (IAVs) and play a key role in the transmission of IAVs between species. Additionally, the 2009 IAV pandemics highlighted the role of pigs in the emergence of IAVs with pandemic potential. However, limited information is available regarding the diversity and distribution of swine IAVs on farrow-to-wean farms, where novel IAVs can emerge. In this study, we studied 5 swine farrow-to-wean farms for a year and characterized the genetic diversity of IAVs among three different pig subpopulations commonly housed on this type of farm. Using next-generation-sequencing technologies, we demonstrated the complex distribution and diversity of IAVs among the pig subpopulations studied. Our results demonstrated the dynamic evolution of IAVs within farrow-to-wean farms, which is crucial to improve health interventions to reduce the risk of transmission between pigs and from pigs to people.
Collapse
|
8
|
Vaccine immune pressure influences viral population complexity of avian influenza virus during infection. Vet Microbiol 2017; 203:88-94. [PMID: 28619173 DOI: 10.1016/j.vetmic.2017.02.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 02/24/2017] [Accepted: 02/26/2017] [Indexed: 12/23/2022]
Abstract
Vaccines are useful tools to control influenza A virus infection in poultry, but they need to be periodically reformulated to guarantee appropriate protection from infection and to limit viral replication and circulation, which could favour the emergence of new variants. In this study, a deep sequencing approach was used to characterize and follow the evolution of the hemagglutinin of the H5N1 highly pathogenic avian influenza viral population in infected animals vaccinated with two vaccines conferring different protection levels. Results from this preliminary investigation suggested that the evolution of the viral population, as well as the abundance and heterogeneity of minority variants could be influenced by the immune pressure conferred by vaccination.
Collapse
|