1
|
Oshima K, Setaka R, Inui H, Kobayashi Y, Suzuki Y. Co-evolving pairs of complementary nucleotide sequence regions containing compensatory divergences and polymorphisms in rotavirus genomes. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
2
|
Matthijnssens J, Attoui H, Bányai K, Brussaard CPD, Danthi P, Del Vas M, Dermody TS, Duncan R, Fāng 方勤 Q, Johne R, Mertens PPC, Mohd Jaafar F, Patton JT, Sasaya 笹谷孝英 T, Suzuki 鈴木信弘 N, Wei 魏太云 T. ICTV Virus Taxonomy Profile: Sedoreoviridae 2022. J Gen Virol 2022; 103. [PMID: 36215107 DOI: 10.1099/jgv.0.001782] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Sedoreoviridae is a large family of icosahedral viruses that are usually regarded as non-enveloped with segmented (10-12 linear segments) dsRNA genomes of 18-26 kbp. Sedoreovirids have a broad host range, infecting mammals, birds, crustaceans, arthropods, algae and plants. Some of them have important pathogenic potential for humans (e.g. rotavirus A), livestock (e.g. bluetongue virus) and plants (e.g. rice dwarf virus). This is a summary of the ICTV Report on the family Sedoreoviridae, which is available at ictv.global/report/sedoreoviridae.
Collapse
Affiliation(s)
| | - Houssam Attoui
- National Institute for Agricultural Research (INRA), Maisons Alfort, France
| | | | - Corina P D Brussaard
- NIOZ Royal Netherlands Institute for Sea Research & University of Utrecht, Texel, The Netherlands
| | | | - Mariana Del Vas
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Buenos Aires, Argentina
| | - Terence S Dermody
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Roy Duncan
- Dalhousie University, Halifax, Nova Scotia, Canada
| | - Qín Fāng 方勤
- Wuhan Institute of Virology, Wuhan, PR China
| | - Reimar Johne
- German Federal Institute for Risk Assessment, Berlin, Germany
| | | | | | | | | | | | - Taiyun Wei 魏太云
- Fujian Agriculture and Forestry University, Fuzhou, PR China
| |
Collapse
|
3
|
Kopanke J, Carpenter M, Lee J, Reed K, Rodgers C, Burton M, Lovett K, Westrich JA, McNulty E, McDermott E, Barbera C, Cavany S, Rohr JR, Perkins TA, Mathiason CK, Stenglein M, Mayo C. Bluetongue Research at a Crossroads: Modern Genomics Tools Can Pave the Way to New Insights. Annu Rev Anim Biosci 2022; 10:303-324. [PMID: 35167317 DOI: 10.1146/annurev-animal-051721-023724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bluetongue virus (BTV) is an arthropod-borne, segmented double-stranded RNA virus that can cause severe disease in both wild and domestic ruminants. BTV evolves via several key mechanisms, including the accumulation of mutations over time and the reassortment of genome segments.Additionally, BTV must maintain fitness in two disparate hosts, the insect vector and the ruminant. The specific features of viral adaptation in each host that permit host-switching are poorly characterized. Limited field studies and experimental work have alluded to the presence of these phenomena at work, but our understanding of the factors that drive or constrain BTV's genetic diversification remains incomplete. Current research leveraging novel approaches and whole genome sequencing applications promises to improve our understanding of BTV's evolution, ultimately contributing to the development of better predictive models and management strategies to reduce future impacts of bluetongue epizootics.
Collapse
Affiliation(s)
- Jennifer Kopanke
- Office of the Campus Veterinarian, Washington State University, Spokane, Washington, USA;
| | - Molly Carpenter
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Justin Lee
- Genomic Sequencing Laboratory, Centers for Disease Control and Prevention, Atlanta, Georgia, USA;
| | - Kirsten Reed
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Case Rodgers
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Mollie Burton
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Kierra Lovett
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Joseph A Westrich
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Erin McNulty
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Emily McDermott
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, Arkansas, USA;
| | - Carly Barbera
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA; , , ,
| | - Sean Cavany
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA; , , ,
| | - Jason R Rohr
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA; , , ,
| | - T Alex Perkins
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA; , , ,
| | - Candace K Mathiason
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Mark Stenglein
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Christie Mayo
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| |
Collapse
|
4
|
Arnold MM, Dijk A, López S. Double‐stranded RNA Viruses. Virology 2021. [DOI: 10.1002/9781119818526.ch2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Smith SC, Gribble J, Diller JR, Wiebe MA, Thoner TW, Denison MR, Ogden KM. Reovirus RNA recombination is sequence directed and generates internally deleted defective genome segments during passage. J Virol 2021; 95:JVI.02181-20. [PMID: 33472930 PMCID: PMC8103698 DOI: 10.1128/jvi.02181-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
For viruses with segmented genomes, genetic diversity is generated by genetic drift, reassortment, and recombination. Recombination produces RNA populations distinct from full-length gene segments and can influence viral population dynamics, persistence, and host immune responses. Viruses in the Reoviridae family, including rotavirus and mammalian orthoreovirus (reovirus), have been reported to package segments containing rearrangements or internal deletions. Rotaviruses with RNA segments containing rearrangements have been isolated from immunocompromised and immunocompetent children and in vitro following serial passage at relatively high multiplicity. Reoviruses that package small, defective RNA segments have established chronic infections in cells and in mice. However, the mechanism and extent of Reoviridae RNA recombination are undefined. Towards filling this gap in knowledge, we determined the titers and RNA segment profiles for reovirus and rotavirus following serial passage in cultured cells. The viruses exhibited occasional titer reductions characteristic of interference. Reovirus strains frequently accumulated segments that retained 5' and 3' terminal sequences and featured large internal deletions, while similarly fragmented segments were rarely detected in rotavirus populations. Using next-generation RNA-sequencing to analyze RNA molecules packaged in purified reovirus particles, we identified distinct recombination sites within individual viral genome segments. Recombination junctions were frequently but not always characterized by short direct sequence repeats upstream and downstream that spanned junction sites. Taken together, these findings suggest that reovirus accumulates defective gene segments featuring internal deletions during passage and undergoes sequence-directed recombination at distinct sites.IMPORTANCE Viruses in the Reoviridae family include important pathogens of humans and other animals and have segmented RNA genomes. Recombination in RNA virus populations can facilitate novel host exploration and increased disease severity. The extent, patterns, and mechanisms of Reoviridae recombination and the functions and effects of recombined RNA products are poorly understood. Here, we provide evidence that mammalian orthoreovirus regularly synthesizes RNA recombination products that retain terminal sequences but contain internal deletions, while rotavirus rarely synthesizes such products. Recombination occurs more frequently at specific sites in the mammalian orthoreovirus genome, and short regions of identical sequence are often detected at junction sites. These findings suggest that mammalian orthoreovirus recombination events are directed in part by RNA sequences. An improved understanding of recombined viral RNA synthesis may enhance our capacity to engineer improved vaccines and virotherapies in the future.
Collapse
Affiliation(s)
- Sydni Caet Smith
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center
| | - Jennifer Gribble
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center
| | - Julia R Diller
- Department of Pediatrics, Vanderbilt University Medical Center
| | - Michelle A Wiebe
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center
| | - Timothy W Thoner
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center
| | - Mark R Denison
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center
- Department of Pediatrics, Vanderbilt University Medical Center
| | - Kristen M Ogden
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center
- Department of Pediatrics, Vanderbilt University Medical Center
| |
Collapse
|
6
|
The Genetic Diversification of a Single Bluetongue Virus Strain Using an In Vitro Model of Alternating-Host Transmission. Viruses 2020; 12:v12091038. [PMID: 32961886 PMCID: PMC7551957 DOI: 10.3390/v12091038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/31/2020] [Accepted: 09/15/2020] [Indexed: 12/16/2022] Open
Abstract
Bluetongue virus (BTV) is an arbovirus that has been associated with dramatic epizootics in both wild and domestic ruminants in recent decades. As a segmented, double-stranded RNA virus, BTV can evolve via several mechanisms due to its genomic structure. However, the effect of BTV’s alternating-host transmission cycle on the virus’s genetic diversification remains poorly understood. Whole genome sequencing approaches offer a platform for investigating the effect of host-alternation across all ten segments of BTV’s genome. To understand the role of alternating hosts in BTV’s genetic diversification, a field isolate was passaged under three different conditions: (i) serial passages in Culicoides sonorensis cells, (ii) serial passages in bovine pulmonary artery endothelial cells, or (iii) alternating passages between insect and bovine cells. Aliquots of virus were sequenced, and single nucleotide variants were identified. Measures of viral population genetics were used to quantify the genetic diversification that occurred. Two consensus variants in segments 5 and 10 occurred in virus from all three conditions. While variants arose across all passages, measures of genetic diversity remained largely similar across cell culture conditions. Despite passage in a relaxed in vitro system, we found that this BTV isolate exhibited genetic stability across passages and conditions. Our findings underscore the valuable role that whole genome sequencing may play in improving understanding of viral evolution and highlight the genetic stability of BTV.
Collapse
|
7
|
Sutton G, Sun D, Fu X, Kotecha A, Hecksel CW, Clare DK, Zhang P, Stuart DI, Boyce M. Assembly intermediates of orthoreovirus captured in the cell. Nat Commun 2020; 11:4445. [PMID: 32895380 PMCID: PMC7477198 DOI: 10.1038/s41467-020-18243-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 08/08/2020] [Indexed: 12/03/2022] Open
Abstract
Traditionally, molecular assembly pathways for viruses are inferred from high resolution structures of purified stable intermediates, low resolution images of cell sections and genetic approaches. Here, we directly visualise an unsuspected 'single shelled' intermediate for a mammalian orthoreovirus in cryo-preserved infected cells, by cryo-electron tomography of cellular lamellae. Particle classification and averaging yields structures to 5.6 Å resolution, sufficient to identify secondary structural elements and produce an atomic model of the intermediate, comprising 120 copies each of protein λ1 and σ2. This λ1 shell is 'collapsed' compared to the mature virions, with molecules pushed inwards at the icosahedral fivefolds by ~100 Å, reminiscent of the first assembly intermediate of certain prokaryotic dsRNA viruses. This supports the supposition that these viruses share a common ancestor, and suggests mechanisms for the assembly of viruses of the Reoviridae. Such methodology holds promise for dissecting the replication cycle of many viruses.
Collapse
Affiliation(s)
- Geoff Sutton
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Dapeng Sun
- Department of Structure Biology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Xiaofeng Fu
- Department of Structure Biology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Abhay Kotecha
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Thermo Fisher Scientific, Achtseweg Noorg 5, 5651 GG, Eindhoven, The Netherlands
| | - Corey W Hecksel
- Diamond Light Source Limited, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA
| | - Daniel K Clare
- Diamond Light Source Limited, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.
- Department of Structure Biology, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
- Diamond Light Source Limited, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK.
| | - David I Stuart
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.
- Diamond Light Source Limited, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK.
| | - Mark Boyce
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.
| |
Collapse
|
8
|
Suzuki Y, Inoue T, Nishimura M, Kobayashi Y. Putative bundling signals incompatible between influenza C and D viruses. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Newburn LR, White KA. Trans-Acting RNA-RNA Interactions in Segmented RNA Viruses. Viruses 2019; 11:v11080751. [PMID: 31416187 PMCID: PMC6723669 DOI: 10.3390/v11080751] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/08/2019] [Accepted: 08/11/2019] [Indexed: 12/18/2022] Open
Abstract
RNA viruses represent a large and important group of pathogens that infect a broad range of hosts. Segmented RNA viruses are a subclass of this group that encode their genomes in two or more molecules and package all of their RNA segments in a single virus particle. These divided genomes come in different forms, including double-stranded RNA, coding-sense single-stranded RNA, and noncoding single-stranded RNA. Genera that possess these genome types include, respectively, Orbivirus (e.g., Bluetongue virus), Dianthovirus (e.g., Red clover necrotic mosaic virus) and Alphainfluenzavirus (e.g., Influenza A virus). Despite their distinct genomic features and diverse host ranges (i.e., animals, plants, and humans, respectively) each of these viruses uses trans-acting RNA–RNA interactions (tRRIs) to facilitate co-packaging of their segmented genome. The tRRIs occur between different viral genome segments and direct the selective packaging of a complete genome complement. Here we explore the current state of understanding of tRRI-mediated co-packaging in the abovementioned viruses and examine other known and potential functions for this class of RNA–RNA interaction.
Collapse
Affiliation(s)
- Laura R Newburn
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | - K Andrew White
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| |
Collapse
|
10
|
Development of Stable Rotavirus Reporter Expression Systems. J Virol 2019; 93:JVI.01774-18. [PMID: 30541830 DOI: 10.1128/jvi.01774-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/27/2018] [Indexed: 01/22/2023] Open
Abstract
Engineered recombinant viruses expressing reporter genes have been developed for real-time monitoring of replication and for mass screening of antiviral inhibitors. Recently, we reported using a reverse genetics system to develop the first recombinant reporter rotaviruses (RVs) that expressed NanoLuc (NLuc) luciferase. Here, we describe a strategy for developing stable reporter RVs expressing luciferase and green or red fluorescent proteins. The reporter genes were inserted into the open reading frame of NSP1 and expressed as a fusion with an NSP1 peptide consisting of amino acids 1 to 27. The stability of foreign genes within the reporter RV strains harboring a shorter chimeric NSP1-reporter gene was greater than that of those in the original reporter RV strain, independent of the transgene inserted. The improved reporter RV was used to screen for neutralizing monoclonal antibodies (MAbs). Sequence analysis of escape mutants from one MAb clone (clone 29) identified an amino acid substitution (arginine to glycine) at position 441 in the VP4 protein, which resides within neutralizing epitope 5-1 in the VP5* fragment. Furthermore, to express a native reporter protein lacking NSP1 amino acids 1 to 27, the 5'- and 3'-terminal region sequences were modified to restore the predicted secondary RNA structure of the NSP1-reporter chimeric gene. These data demonstrate the utility of reporter RVs for live monitoring of RV infections and also suggest further applications (e.g., RV vaccine vectors, which can induce mucosal immunity against intestinal pathogens).IMPORTANCE Development of reporter RVs has been hampered by the lack of comprehensive reverse genetics systems. Recently, we developed a plasmid-based reverse genetics system that enables generation of reporter RVs expressing NLuc luciferase. The prototype reporter RV had some disadvantages (i.e., the transgene was unstable and was expressed as a fusion protein with a partial NSP1 peptide); however, the improved reporter RV overcomes these problems through modification of the untranslated region of the reporter-NSP1 chimeric gene. This strategy for generating stable reporter RVs could be expanded to diverse transgenes and be used to develop RV transduction vectors. Also, the data improve our understanding of the importance of 5'- and 3'-terminal sequences in terms of genome replication, assembly, and packaging.
Collapse
|
11
|
AlShaikhahmed K, Leonov G, Sung PY, Bingham RJ, Twarock R, Roy P. Dynamic network approach for the modelling of genomic sub-complexes in multi-segmented viruses. Nucleic Acids Res 2018; 46:12087-12098. [PMID: 30299495 PMCID: PMC6294558 DOI: 10.1093/nar/gky881] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/14/2018] [Accepted: 10/03/2018] [Indexed: 01/09/2023] Open
Abstract
Viruses with segmented genomes, including pathogens such as influenza virus, Rotavirus and Bluetongue virus (BTV), face the collective challenge of packaging their genetic material in terms of the correct number and types of segments. Here we develop a novel network approach to predict RNA-RNA interactions between different genomic segments. Experimental data on RNA complex formation in the multi-segmented BTV genome are used to establish proof-of-concept of this technique. In particular, we show that trans interactions between segments occur at multiple specific sites, termed segment assortment signals (SASs) that are dispersed across each segment. In order to validate the putative trans acting networks, we used various biochemical and molecular techniques which confirmed predictions of the RNA network approach. A combination of mutagenesis and reverse genetics systems revealed that the RNA-RNA interacting sites identified are indeed responsible for segment assortment and complex formation, which are essential criteria for genome packaging. This paves the way for their exploitation as novel types of drug target, either to inhibit assembly, or for designing defective interfering particles containing an incomplete set of genomic segments.
Collapse
Affiliation(s)
- Kinda AlShaikhahmed
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - German Leonov
- Departments of Mathematics and Biology & York Cross-disciplinary Centre for Systems Analysis, University of York, York YO10 5GE, UK
| | - Po-Yu Sung
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Richard J Bingham
- Departments of Mathematics and Biology & York Cross-disciplinary Centre for Systems Analysis, University of York, York YO10 5GE, UK
| | - Reidun Twarock
- Departments of Mathematics and Biology & York Cross-disciplinary Centre for Systems Analysis, University of York, York YO10 5GE, UK
| | - Polly Roy
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|
12
|
GENETIC RELATEDNESS OF EPIZOOTIC HEMORRHAGIC DISEASE VIRUS SEROTYPE 2 FROM 2012 OUTBREAK IN THE USA. J Wildl Dis 2018; 55:363-374. [PMID: 30284951 DOI: 10.7589/2017-05-125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During summer and early fall of 2012, the US experienced the largest outbreak of hemorrhagic disease (HD) on record; deer (both Odocoileus virginianus and Odocoileus hemionus) in 35 states were affected, including many northern states where HD typically does not occur. Epizootic hemorrhagic disease virus (EHDV) was the predominant virus isolated, with serotype 2 (EHDV-2) representing 66% (135/205) of all isolated viruses. Viruses within the EHDV serogroup are genetically similar, but we hypothesized that subtle genetic distinctions between viruses would exist across the geographic range of the outbreak if multiple EHDV-2 strains were responsible. We examined viral relatedness and molecular epidemiology of the outbreak by sequencing the mammalian binding protein (VP2) gene and the insect vector binding protein (VP7) gene of 34 EHDV-2 isolates from 2012 across 21 states. Nucleotide sequences of VP2 had 99.0% pairwise identity; VP7 nucleotide sequences had 99.1% pairwise identity. Very few changes were observed in either protein at the amino acid level. Despite the high genetic similarity between isolates, subtle nucleotide differences existed. Both VP2 and VP7 gene sequences separated into two distinct clades based on patterns of single-nucleotide polymorphisms after phylogenetic analysis. The clades were divided geographically into eastern and western clades, although those divisions were not identical between VP2 and VP7. There was also an association between percent sequence identity and geographic distance between isolates. We concluded that multiple EHDV-2 strains contributed to this outbreak.
Collapse
|
13
|
Suzuki Y. Co-evolving pairs of complementary nucleotide sequence regions as candidates for bundling signals in viruses with segmented genomes. Meta Gene 2018. [DOI: 10.1016/j.mgene.2018.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
14
|
Fajardo T, AlShaikhahmed K, Roy P. Generation of infectious RNA complexes in Orbiviruses: RNA-RNA interactions of genomic segments. Oncotarget 2018; 7:72559-72570. [PMID: 27736800 PMCID: PMC5341929 DOI: 10.18632/oncotarget.12496] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 09/29/2016] [Indexed: 11/25/2022] Open
Abstract
Viruses with segmented RNA genomes must package the correct number of segments for synthesis of infectious virus particles. Recent studies suggest that the members of the Reoviridae family with segmented double-stranded RNA genomes achieve this challenging task by forming RNA networks of segments prior to their recruitment into the assembling capsid albeit direct evidence is still lacking. Here, we investigated the capability of virus recovery by preformed complexes of ten RNA segments of H Virus (EHDV), a Reoviridae member, by transcribing exact T7 cDNA copies of genomic RNA segments in a single in vitro reaction followed by transfection of mammalian cells. The data obtained was further confirmed by RNA complexes generated from Bluetongue virus, another family member. Formation of RNA complexes was demonstrated by sucrose gradient ultracentrifugation, and RNA-RNA interactions inherent to the formation of the RNA complexes were demonstrated by electrophoretic mobility shift assay. Further, we showed that disruption of RNA complex formation inhibits virus recovery, confirming that recruitment of complete RNA networks is essential for packaging and consequently, virus recovery. This efficient reverse genetics system will allow further understanding of evolutionary relationships of Reoviridae members and may also contribute to development of antiviral molecules.
Collapse
Affiliation(s)
- Teodoro Fajardo
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, United Kingdom
| | - Kinda AlShaikhahmed
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, United Kingdom.,Current address: Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Polly Roy
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, United Kingdom
| |
Collapse
|
15
|
Rotavirus Genomic RNA Complex Forms via Specific RNA-RNA Interactions: Disruption of RNA Complex Inhibits Virus Infectivity. Viruses 2017; 9:v9070167. [PMID: 28661470 PMCID: PMC5537659 DOI: 10.3390/v9070167] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 01/18/2023] Open
Abstract
Rotavirus (RV), a member of the Reoviridae family, causes infection in children and infants, with high morbidity and mortality. To be viable, the virus particle must package a set of eleven RNA segments. In order to understand the packaging mechanism, here, we co-synthesized sets of RNA segments in vitro in different combinations and detected by two alternate methods: the electrophoretic mobility shift assay (EMSA) and the RNA-bead pull-down assay. We showed that viral positive-sense RNA segments interact with each other in a specific manner, forming RNA complexes, and that the RNA–RNA interactions followed a sequential order initiated by small RV segments. Further, we demonstrated that RNA complexes were perturbed by targeted specific antisense oligoribonucleotides (ORNs) complementary to short RNA sequences, indicating that the RNA–RNA interactions between different segments were sequence-specific. The same inhibitory ORNs also had the capability to inhibit virus replication. The combined in vitro and in vivo data inferred that RNA–RNA interactions and specific complex formation are essential for sorting different segments, possibly prior to, or during, genome packaging. As genome assembly is a universal requirement in the Reoviridae family, this work offers an approach towards a further understanding of the sorting and packaging mechanisms of RV and related dsRNA (double-stranded RNA) viruses.
Collapse
|
16
|
Roy P. Bluetongue virus structure and assembly. Curr Opin Virol 2017; 24:115-123. [PMID: 28609677 DOI: 10.1016/j.coviro.2017.05.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 05/19/2017] [Accepted: 05/24/2017] [Indexed: 01/09/2023]
Abstract
Bluetongue virus (BTV) is an insect-vectored emerging pathogen of wild ruminants and livestock in many parts of the world. The virion particle is a complex structure of consecutive layers of protein surrounding a genome of ten double-stranded (ds) RNA segments. BTV has been studied as a model system for large, non-enveloped dsRNA viruses. Several new techniques have been applied to define the virus-encoded enzymes required for RNA replication to provide an order for the assembly of the capsid shell and the protein sequestration required for it. Further, a reconstituted in vitro system has defined the individual steps of the assembly and packaging of the genomic RNA. These findings illuminate BTV assembly and indicate the pathways that related viruses might use to provide an informed starting point for intervention or prevention.
Collapse
Affiliation(s)
- Polly Roy
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, WC1E 7HT, UK.
| |
Collapse
|
17
|
de Haro LA, Dumón AD, Mattio MF, Argüello Caro EB, Llauger G, Zavallo D, Blanc H, Mongelli VC, Truol G, Saleh MC, Asurmendi S, del Vas M. Mal de Río Cuarto Virus Infection Triggers the Production of Distinctive Viral-Derived siRNA Profiles in Wheat and Its Planthopper Vector. FRONTIERS IN PLANT SCIENCE 2017; 8:766. [PMID: 28539933 PMCID: PMC5423983 DOI: 10.3389/fpls.2017.00766] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/24/2017] [Indexed: 05/03/2023]
Abstract
Plant reoviruses are able to multiply in gramineae plants and delphacid vectors encountering different defense strategies with unique features. This study aims to comparatively assess alterations of small RNA (sRNA) populations in both hosts upon virus infection. For this purpose, we characterized the sRNA profiles of wheat and planthopper vectors infected by Mal de Río Cuarto virus (MRCV, Fijivirus, Reoviridae) and quantified virus genome segments by quantitative reverse transcription PCR We provide evidence that plant and insect silencing machineries differentially recognize the viral genome, thus giving rise to distinct profiles of virus-derived small interfering RNAs (vsiRNAs). In plants, most of the virus genome segments were targeted preferentially within their upstream sequences and vsiRNAs mapped with higher density to the smaller genome segments than to the medium or larger ones. This tendency, however, was not observed in insects. In both hosts, vsiRNAs were equally derived from sense and antisense RNA strands and the differences in vsiRNAs accumulation did not correlate with mRNAs accumulation. We also established that the piwi-interacting RNA (piRNA) pathway was active in the delphacid vector but, contrary to what is observed in virus-infected mosquitoes, virus-specific piRNAs were not detected. This work contributes to the understanding of the silencing response in insect and plant hosts.
Collapse
Affiliation(s)
- Luis A. de Haro
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria, HurlinghamBuenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Analía D. Dumón
- Instituto de Patología Vegetal, Instituto Nacional de Tecnología AgropecuariaCórdoba, Argentina
| | - María F. Mattio
- Instituto de Patología Vegetal, Instituto Nacional de Tecnología AgropecuariaCórdoba, Argentina
| | | | - Gabriela Llauger
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria, HurlinghamBuenos Aires, Argentina
| | - Diego Zavallo
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria, HurlinghamBuenos Aires, Argentina
| | - Hervé Blanc
- Institut Pasteur, Viruses and RNA Interference Unit, CNRS UMR 3569Paris, France
| | - Vanesa C. Mongelli
- Institut Pasteur, Viruses and RNA Interference Unit, CNRS UMR 3569Paris, France
| | - Graciela Truol
- Instituto de Patología Vegetal, Instituto Nacional de Tecnología AgropecuariaCórdoba, Argentina
| | - María-Carla Saleh
- Institut Pasteur, Viruses and RNA Interference Unit, CNRS UMR 3569Paris, France
| | - Sebastián Asurmendi
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria, HurlinghamBuenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Mariana del Vas
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria, HurlinghamBuenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| |
Collapse
|
18
|
Suzuki Y. Co-evolution in a putative bundling signal of bluetongue and epizootic hemorrhagic disease viruses. Genes Genet Syst 2017; 91:283-288. [PMID: 27853052 DOI: 10.1266/ggs.16-00035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV) possess a genome of 10 segmented RNAs (S1-S10), one copy of each of which is considered to be packaged in a virion. This selective packaging is thought to be mediated by supramolecular complex formation of the 10 RNAs, through intermolecular base pairing of complementary nucleotide sequences termed the bundling signal. Here, the whole genomic sequences of BTV and EHDV isolates were analyzed to identify co-evolving pairs of complementary nucleotide sequences within and between genomic segments. One co-evolving pair was identified within S5 and another between S5 and S10. The co-evolving pair between S5 and S10, consisting of six bases in each segment, was a candidate for a bundling signal and was identical to one of two putative bundling signals reported in a previous experimental study, validating the effectiveness of the method used in the present study. The six bases in S10 were confirmed to be located in a loop at the end of a stable stem. Although the six bases in S5 were located in a loop at the end of a stem of only four bases long, the complementary nucleotide sequences constituting this stem were, remarkably, the co-evolving pair within S5. These results highlight the importance not only of loops but also of stems in the intermolecular base pairing of bundling signals.
Collapse
|
19
|
Isel C, Munier S, Naffakh N. Experimental Approaches to Study Genome Packaging of Influenza A Viruses. Viruses 2016; 8:v8080218. [PMID: 27517951 PMCID: PMC4997580 DOI: 10.3390/v8080218] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/26/2016] [Accepted: 08/01/2016] [Indexed: 11/16/2022] Open
Abstract
The genome of influenza A viruses (IAV) consists of eight single-stranded negative sense viral RNAs (vRNAs) encapsidated into viral ribonucleoproteins (vRNPs). It is now well established that genome packaging (i.e., the incorporation of a set of eight distinct vRNPs into budding viral particles), follows a specific pathway guided by segment-specific cis-acting packaging signals on each vRNA. However, the precise nature and function of the packaging signals, and the mechanisms underlying the assembly of vRNPs into sub-bundles in the cytoplasm and their selective packaging at the viral budding site, remain largely unknown. Here, we review the diverse and complementary methods currently being used to elucidate these aspects of the viral cycle. They range from conventional and competitive reverse genetics, single molecule imaging of vRNPs by fluorescence in situ hybridization (FISH) and high-resolution electron microscopy and tomography of budding viral particles, to solely in vitro approaches to investigate vRNA-vRNA interactions at the molecular level.
Collapse
Affiliation(s)
- Catherine Isel
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Moléculaire et Cellulaire (IBMC), 15 rue René Descartes, 67084 Strasbourg, France.
- Département de Virologie, Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, 75015 Paris, France.
| | - Sandie Munier
- Département de Virologie, Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, 75015 Paris, France.
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 3569, 75016 Paris, France.
- Unité de Génétique Moléculaire des Virus à ARN, Sorbonne Paris Cité, Université Paris Diderot, 75013 Paris, France.
| | - Nadia Naffakh
- Département de Virologie, Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, 75015 Paris, France.
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 3569, 75016 Paris, France.
- Unité de Génétique Moléculaire des Virus à ARN, Sorbonne Paris Cité, Université Paris Diderot, 75013 Paris, France.
| |
Collapse
|
20
|
Kobayashi Y, Dadonaite B, van Doremalen N, Suzuki Y, Barclay WS, Pybus OG. Computational and molecular analysis of conserved influenza A virus RNA secondary structures involved in infectious virion production. RNA Biol 2016; 13:883-94. [PMID: 27399914 DOI: 10.1080/15476286.2016.1208331] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
As well as encoding viral proteins, genomes of RNA viruses harbor secondary and tertiary RNA structures that have been associated with functions essential for successful replication and propagation. Here, we identified stem-loop structures that are extremely conserved among 1,884 M segment sequences of influenza A virus (IAV) strains from various subtypes and host species using computational and evolutionary methods. These structures were predicted within the 3' and 5' ends of the coding regions of M1 and M2, respectively, where packaging signals have been previously proposed to exist. These signals are thought to be required for the incorporation of a single copy of 8 different negative-strand RNA segments (vRNAs) into an IAV particle. To directly test the functionality of conserved stem-loop structures, we undertook reverse genetic experiments to introduce synonymous mutations designed to disrupt secondary structures predicted at 3 locations and found them to attenuate infectivity of recombinant virus. In one mutant, predicted to disrupt stem loop structure at nucleotide positions 219-240, attenuation was more evident at increased temperature and was accompanied by an increase in the production of defective virus particles. Our results suggest that the conserved secondary structures predicted in the M segment are involved in the production of infectious viral particles during IAV replication.
Collapse
Affiliation(s)
- Yuki Kobayashi
- a Nihon University Veterinary Research Center , Fujisawa , Kanagawa , Japan.,b Department of Zoology , University of Oxford , Oxford , UK
| | - Bernadeta Dadonaite
- c Section of Virology, Department of Medicine, Imperial College London , London , UK
| | - Neeltje van Doremalen
- c Section of Virology, Department of Medicine, Imperial College London , London , UK.,d Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Hamilton , MT , USA
| | - Yoshiyuki Suzuki
- e Graduate School of Natural Sciences, Nagoya City University , Nagoya , Japan
| | - Wendy S Barclay
- c Section of Virology, Department of Medicine, Imperial College London , London , UK
| | - Oliver G Pybus
- b Department of Zoology , University of Oxford , Oxford , UK
| |
Collapse
|