1
|
Mičúchová A, Kyslík J, Korytář T, Piačková V, Frébort I. Barley as a production platform for oral vaccines in sustainable fish aquaculture. N Biotechnol 2024; 84:37-52. [PMID: 39332672 DOI: 10.1016/j.nbt.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/29/2024]
Abstract
Vaccination is the most effective measure to prevent disease outbreaks in fish aquaculture, with oral vaccine administration emerging as the most practical approach. However, oral vaccines face a notable limitation due to insufficient stimulation of the complex gut-associated lymphoid tissue caused by factors such as vaccine degradation, poor absorption, and recognition by the immune cells. An innovative solution to these limitations lies in the plant-based production of recombinant vaccines. Plant cells enable the production and targeted storage of recombinant vaccines in specific cell organelles which ensure superior protection from degradation and contain natural compounds acting as adjuvants. Our study explores the potential of barley (Hordeum vulgare), a globally significant cereal crop, for producing orally administered subunit vaccines against viral infections affecting economically important fish species in the Salmonidae and Cyprinidae families. Through Agrobacterium-mediated transformation of immature barley embryos, we have generated homozygous T2 generation of transgenic barley expressing recombinant antigens of spring viremia of carp virus and infectious salmon anaemia virus. The expression of these plant-based recombinant vaccines was confirmed by immunodetection, which was supported by fluorescence observation, specifically in the seed endosperm. The antigenicity of transgenic plant material containing recombinant antigens was evaluated using an intubation model of common carp (Cyprinus carpio), revealing a substantial upregulation of the immunoglobulin transcripts in both systemic and mucosal tissues over a period of 28 days following a single dose of transgenic antigens. Collectively, these results underscore the potential of barley-based recombinant vaccines for disease prevention in fish aquaculture.
Collapse
Affiliation(s)
- Alžbeta Mičúchová
- Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Olomouc, Czech Republic; Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Jiří Kyslík
- Biology Centre CAS, Institute of Parasitology, České Budějovice, Czech Republic
| | - Tomáš Korytář
- Biology Centre CAS, Institute of Parasitology, České Budějovice, Czech Republic; University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Vodňany, Czech Republic
| | - Veronika Piačková
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Vodňany, Czech Republic
| | - Ivo Frébort
- Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Olomouc, Czech Republic.
| |
Collapse
|
2
|
Thorarinsson R, Ramstad A, Wolf JC, Sindre H, Skjerve E, Rimstad E, Evensen Ø, Rodriguez JF. Effect of pancreas disease vaccines on infection levels and virus transmission in Atlantic salmon ( Salmo salar) challenged with salmonid alphavirus, genotype 2. Front Immunol 2024; 15:1342816. [PMID: 38515753 PMCID: PMC10955579 DOI: 10.3389/fimmu.2024.1342816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/21/2024] [Indexed: 03/23/2024] Open
Abstract
Salmonid alphavirus (SAV) causes pancreas disease (PD), which negatively impacts farmed Atlantic salmon. In this study, fish were vaccinated with a DNA-PD vaccine (DNA-PD) and an oil-adjuvanted, inactivated whole virus PD vaccine (Oil-PD). Controls were two non-PD vaccinated groups. Fish were kept in one tank and challenged by cohabitation with SAV genotype 2 in seawater. Protection against infection and mortality was assessed for 84 days (Efficacy study). Nineteen days post challenge (dpc), subgroups of fish from all treatment groups were transferred to separate tanks and cohabited with naïve fish (Transmission study 1) or fish vaccinated with a homologous vaccine (Transmission study 2), to evaluate virus transmission for 26 days (47 dpc). Viremia, heart RT-qPCR and histopathological scoring of key organs affected by PD were used to measure infection levels. RT-droplet digital PCR quantified shedding of SAV into water for transmission studies. The Efficacy study showed that PD associated growth-loss was significantly lower and clearance of SAV2 RNA significantly higher in the PD-DNA group compared to the other groups. The PD-DNA group had milder lesions in the heart and muscle. Cumulative mortality post challenge was low and not different between groups, but the DNA-PD group had delayed time-to-death. In Transmission study 1, the lowest water levels of SAV RNA were measured in the tanks containing the DNA-PD group at 21 and 34 dpc. Despite this, and irrespective of the treatment group, SAV2 was effectively transmitted to the naïve fish during 26-day cohabitation. At 47 dpc, the SAV RNA concentrations in the water were lower in all tanks compared to 34 dpc. In Transmission study 2, none of the DNA-PD immunized cohabitants residing with DNA-PD-vaccinated, pre-challenged fish got infected. In contrast, Oil-PD immunized cohabitants residing with Oil-PD-vaccinated, pre-challenged fish, showed infection levels similar to the naïve cohabitants in Transmission study 1. The results demonstrate that the DNA-PD vaccine may curb the spread of SAV infection as the DNA-PD vaccinated, SAV2 exposed fish, did not spread the infection to cohabiting DNA-PD vaccinated fish. This signifies that herd immunity may be achieved by the DNA-PD vaccine, a valuable tool to control the PD epizootic in farmed Atlantic salmon.
Collapse
Affiliation(s)
| | | | - Jeffrey C. Wolf
- Experimental Pathology Laboratories Inc., Sterling, VA, United States
| | | | - Eystein Skjerve
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Espen Rimstad
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Øystein Evensen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | | |
Collapse
|
3
|
Thorarinsson R, Wolf JC, Inami M, Sindre H, Skjerve E, Evensen Ø, Rimstad E. Effects of a DNA and multivalent oil-adjuvanted vaccines against pancreas disease in Atlantic salmon (Salmo salar) challenged with salmonid alphavirus subtype 3. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2022; 3:100063. [PMID: 36419608 PMCID: PMC9680106 DOI: 10.1016/j.fsirep.2022.100063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 12/03/2022] Open
Abstract
Efficacy of a DNA- and conventional vaccines against pancreas disease is compared. Higher neutralization antibody levels in the DNA vaccine group compared to controls. Significantly lower viremia levels in the DNA vaccine group than the controls. Efficacy against disease-induced growth loss and damage in target organs is shown . Mortality levels low and not significantly different from the control group.
Salmonid alphavirus (SAV) causes pancreas disease (PD) in Atlantic salmon (Salmo salar). In seawater-farmed salmonids in the southern part of Norway SAV subtype 3 (SAV3) is dominating. PD continues to cause significant economic and fish health concerns in this region despite years of extensive use of oil-adjuvanted vaccines (OAVs) containing inactivated whole virus (IWV) antigens. In the current study, three commercially available PD vaccines were tested. Group A got a DNA vaccine (DNAV) injected intramuscularly (i.m.) plus an OAV without a PD component injected intraperitoneally (i.p.). Groups B and C got different OAV IWV vaccines injected i.p., respectively. The control group was i.p. injected with saline. Approximately 12 weeks after vaccination, the post smolt groups were challenged in seawater with SAV3 by cohabitation. Samples were collected pre-challenge, and at 19, 54 and 83 days post-challenge (dpc). There were no differences in growth or visible intraperitoneal side effects between the immunized groups prior to challenge. Fish in group A had significantly higher SAV3 neutralizing antibody titers than the other groups pre-challenge and significantly lower SAV3 viremia levels than the control group at 19 dpc. Fish in group A had significantly more weight gain than the other groups measured at 54 and 83 dpc. Prevalence and severity of heart necrosis at 19 dpc and loss of exocrine pancreas tissue at 54 and 83 dpc were significantly lower in groups A and B compared to group C and controls. The cumulative mortality in the control group during the challenge period was 10.5%. Group A experienced the lowest mortality (6.4%) albeit not statistically different from the controls. The results suggest that DNAV may reduce the clinical and economic impact of PD by improved protection against SAV3-induced changes in pancreas tissue and growth impairment.
Collapse
|
4
|
The C-Terminal Domain of Salmonid Alphavirus Nonstructural Protein 2 (nsP2) Is Essential and Sufficient To Block RIG-I Pathway Induction and Interferon-Mediated Antiviral Response. J Virol 2021; 95:e0115521. [PMID: 34523969 DOI: 10.1128/jvi.01155-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonid alphavirus (SAV) is an atypical alphavirus that has a considerable impact on salmon and trout farms. Unlike other alphaviruses, such as the chikungunya virus, SAV is transmitted without an arthropod vector, and it does not cause cell shutoff during infection. The mechanisms by which SAV escapes the host immune system remain unknown. By studying the role of SAV proteins on the RIG-I signaling cascade, the first line of defense of the immune system during infection, we demonstrated that nonstructural protein 2 (nsP2) effectively blocks the induction of type I interferon (IFN). This inhibition, independent of the protease activity carried by nsP2, occurs downstream of IRF3, which is the transcription factor allowing the activation of the IFN promoter and its expression. The inhibitory effect of nsP2 on the RIG-I pathway depends on the localization of nsP2 in the host cell nucleus, which is linked to two nuclear localization sequences (NLS) located in its C-terminal part. The C-terminal domain of nsP2 by itself is sufficient and necessary to block IFN induction. Mutation of the NLS of nsP2 is deleterious to the virus. Finally, nsP2 does not interact with IRF3, indicating that its action is possible through a targeted interaction within discrete areas of chromatin, as suggested by its punctate distribution observed in the nucleus. These results therefore demonstrate a major role for nsP2 in the control by SAV of the host cell's innate immune response. IMPORTANCE The global consumption of fish continues to rise, and the future demand cannot be met by capture fisheries alone due to limited stocks of wild fish. Aquaculture is currently the world's fastest-growing food production sector, with an annual growth rate of 6 to 8%. Recurrent outbreaks of SAV result in significant economic losses with serious environmental consequences for wild stocks. While the clinical and pathological signs of SAV infection are fairly well known, the molecular mechanisms involved are poorly described. In the present study, we focus on the nonstructural protein nsP2 and characterize a specific domain containing nuclear localization sequences that are critical for the inhibition of the host innate immune response mediated by the RIG-I pathway.
Collapse
|
5
|
Thorarinsson R, Wolf JC, Inami M, Phillips L, Jones G, Macdonald AM, Rodriguez JF, Sindre H, Skjerve E, Rimstad E, Evensen Ø. Effect of a novel DNA vaccine against pancreas disease caused by salmonid alphavirus subtype 3 in Atlantic salmon (Salmo salar). FISH & SHELLFISH IMMUNOLOGY 2021; 108:116-126. [PMID: 33285168 DOI: 10.1016/j.fsi.2020.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/29/2020] [Accepted: 12/01/2020] [Indexed: 05/13/2023]
Abstract
Pancreas disease (PD) caused by salmonid alphavirus subtype 3 (SAV3) is a serious disease with large economic impact on farmed Norwegian Atlantic salmon production despite years of use of oil-adjuvanted vaccines against PD (OAVs). In this study, two commercially available PD vaccines, a DNA vaccine (DNAV) and an OAV, were compared in an experimental setting. At approximately 1040° days (dd) at 12 °C post immunization, the fish were challenged with SAV3 by cohabitation 9 days after transfer to sea water. Sampling was done prior to challenge and at 19, 54, and 83 days post-challenge (dpc). When compared to the OAV and control (Saline) groups, the DNAV group had significantly higher SAV3 neutralizing antibody titers after the immunization period, significantly lower SAV3 viremia levels at 19 dpc, significantly reduced transmission of SAV3 to naïve fish in the latter part of the viremic phase, significantly higher weight gain post-challenge, and significantly reduced prevalence and/or severity of SAV-induced morphologic changes in target organs. The DNAV group had also significantly higher post-challenge survival compared to the Saline group, but not to the OAV group. The data suggest that use of DNAV may reduce the economic impact of PD by protecting against destruction of the pancreas tissue and subsequent growth impairment which is the most common and costly clinical outcome of this disease.
Collapse
Affiliation(s)
| | - Jeffrey C Wolf
- Experimental Pathology Laboratories Inc., 45600 Terminal Drive, Sterling, VA, 20166, USA.
| | - Makoto Inami
- VESO Vikan, Beisvågveien 108, Vikan, N-7810, Namsos, Norway.
| | - Lisa Phillips
- Elanco Canada Ltd., 37 McCarville Street, Charlottetown, PE C1E 2A7, Canada.
| | - Ginny Jones
- Elanco Canada Ltd., 37 McCarville Street, Charlottetown, PE C1E 2A7, Canada.
| | - Alicia M Macdonald
- Elanco Canada Ltd., 37 McCarville Street, Charlottetown, PE C1E 2A7, Canada.
| | - Jose F Rodriguez
- Elanco Canada Ltd., 37 McCarville Street, Charlottetown, PE C1E 2A7, Canada.
| | - Hilde Sindre
- Norwegian Veterinary Institute, Ullevålsveien 68, N-0454, Oslo, Norway.
| | - Eystein Skjerve
- Norwegian University of Life Sciences, School of Veterinary Medicine, Ullevålsveien 72, N-0454, Oslo, Norway.
| | - Espen Rimstad
- Norwegian University of Life Sciences, School of Veterinary Medicine, Ullevålsveien 72, N-0454, Oslo, Norway.
| | - Øystein Evensen
- Norwegian University of Life Sciences, School of Veterinary Medicine, Ullevålsveien 72, N-0454, Oslo, Norway.
| |
Collapse
|
6
|
Teige LH, Aksnes I, Røsæg MV, Jensen I, Jørgensen J, Sindre H, Collins C, Collet B, Rimstad E, Dahle MK, Boysen P. Detection of specific Atlantic salmon antibodies against salmonid alphavirus using a bead-based immunoassay. FISH & SHELLFISH IMMUNOLOGY 2020; 106:374-383. [PMID: 32738513 DOI: 10.1016/j.fsi.2020.07.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Salmonid alphavirus (SAV) is the etiological cause of pancreas disease (PD) in Atlantic salmon (Salmo salar). Several vaccines against SAV are in use, but PD still cause significant mortality and concern in European aquaculture, raising the need for optimal tools to monitor SAV immunity. To monitor and control the distribution of PD in Norway, all salmonid farms are regularly screened for SAV by RT-qPCR. While the direct detection of SAV is helpful in the early stages of infection, serological methods could bring additional information on acquired SAV immunity in the later stages. Traditionally, SAV antibodies are monitored in neutralization assays, but they are time-consuming and cumbersome, thus alternative assays are warranted. Enzyme-linked immunosorbent assays (ELISAs) have not yet been successfully used for anti-SAV antibody detection in aquaculture. We aimed to develop a bead-based immunoassay for SAV-specific antibodies. By using detergent-treated SAV particles as antigens, we detected SAV-specific antibodies in plasma collected from both a SAV challenge trial and a field outbreak of PD. Increased levels of SAV-specific antibodies were seen after most fish had become negative for viral RNA. The bead-based assay is time saving compared to virus neutralization assays, and suitable for non-lethal testing due to low sample size requirements. We conclude that the bead-based immunoassay for SAV antibody detection is a promising diagnostic tool to complement SAV screening in aquaculture.
Collapse
Affiliation(s)
- Lena Hammerlund Teige
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Ida Aksnes
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | | | - Ingvill Jensen
- The Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Jorunn Jørgensen
- The Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Hilde Sindre
- Department of Fish Health, Norwegian Veterinary Institute, Oslo, Norway
| | - Catherine Collins
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Bertrand Collet
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Espen Rimstad
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Maria K Dahle
- The Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway; Department of Fish Health, Norwegian Veterinary Institute, Oslo, Norway
| | - Preben Boysen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway.
| |
Collapse
|
7
|
Aksnes I, Markussen T, Braaen S, Rimstad E. Mutation of N-glycosylation Sites in Salmonid Alphavirus (SAV) Envelope Proteins Attenuate the Virus in Cell Culture. Viruses 2020; 12:v12101071. [PMID: 32987930 PMCID: PMC7650630 DOI: 10.3390/v12101071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022] Open
Abstract
Salmonid alphavirus (SAV) is the cause of pancreas disease and sleeping disease in farmed salmonid fish in Europe. The spread of these diseases has been difficult to control with biosecurity and current vaccination strategies, and increased understanding of the viral pathogenesis could be beneficial for the development of novel vaccine strategies. N-glycosylation of viral envelope proteins may be crucial for viral virulence and a possible target for its purposed attenuation. In this study, we mutated the N-glycosylation consensus motifs of the E1 and E2 glycoproteins of a SAV3 infectious clone using site-directed mutagenesis. Mutation of the glycosylation motif in E1 gave a complete inactivation of the virus as no viral replication could be detected in cell culture and infectious particles could not be rescued. In contrast, infectious virus particles could be recovered from the SAV3 E2 mutants (E2319Q, E2319A), but not if they were accompanied by lack of N-glycosylation in E1. Compared to the non-mutated infectious clone, the SAV3-E2319Q and SAV3-E2319A recombinant viruses produced less cytopathic effects in cell culture and lower amounts of infectious viral particles. In conclusion, the substitution in the N-linked glycosylation site in E2 attenuated SAV3 in cell culture. The findings could be useful for immunization strategies using live attenuated vaccines and testing in fish will be desirable to study the clone’s properties in vivo.
Collapse
|
8
|
Jansen MD, Guarracino M, Carson M, Modahl I, Taksdal T, Sindre H, Brun E, Tavornpanich S. Field Evaluation of Diagnostic Test Sensitivity and Specificity for Salmonid Alphavirus (SAV) Infection and Pancreas Disease (PD) in Farmed Atlantic salmon ( Salmo salar L.) in Norway Using Bayesian Latent Class Analysis. Front Vet Sci 2019; 6:419. [PMID: 31850380 PMCID: PMC6893554 DOI: 10.3389/fvets.2019.00419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/07/2019] [Indexed: 01/02/2023] Open
Abstract
Salmonid alphavirus (SAV) is the OIE-listed, viral cause of pancreas disease (PD) in farmed Atlantic salmon. SAV is routinely detected by PCR–methods while typical histopathological lesions are additionally used to confirm the diagnosis. Field evaluation of diagnostic test performance is essential to ensure confidence in a test's ability to predict the infection or disease status of a target animal. For most tests used in aquaculture, characteristics like sensitivity (Se) and specificity (Sp) at the analytical level may be known. Few tests are, however, evaluated at the diagnostic level according to the OIE standard. In the present work, we estimated diagnostic test sensitivity (DSe) and diagnostic test specificity (DSp) for five laboratory tests used for SAV detection. As there is no gold standard, the study was designed using Bayesian latent class analysis. Real-time RT-PCR, cell culture, histopathology, virus neutralization test, and immunohistochemistry were compared using samples taken from three different farmed Atlantic salmon populations with different infection status; one population regarded negative, one in an early stage of infection, and one in a later stage of infection. The average fish weight in the three populations was 2.0, 1.6, and 1.5 kg, respectively. The DSe and DSp of real-time RT-PCR is of particular interest due to its common use as a screening tool. The method showed high DSe (≥0.977) and moderate DSp (0.831) in all 3-populations models. The results further suggest that a follow-up test of serum samples in real-time RT-PCR negative populations may be prudent in cases where epidemiological information suggest a high risk of infection and where a false negative result is of high consequence. This study underlines the need to choose a test appropriate for the purpose of the testing. In the case of a weak positive PCR-result, a follow-up test should be conducted to verify the presence of SAV. Cell culture showed high DSe and DSp and may be used to verify viral presence.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Edgar Brun
- Norwegian Veterinary Institute, Oslo, Norway
| | | |
Collapse
|