1
|
Matsuura K, Yamaura M, Sakawaki H, Himeno A, Pisil Y, Kobayakawa T, Tsuji K, Tamamura H, Matsushita S, Miura T. Sensitivity to a CD4 mimic of a consensus clone of monkey-adapted CCR5-tropic SHIV-MK38C. Virology 2023; 578:171-179. [PMID: 36580864 DOI: 10.1016/j.virol.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
By acclimatizing CCR5-tropic tier 1B SHIV-MK1 to rhesus monkeys, a tier 2 SHIV-MK38 strain with neutralization resistance and high replication ability was generated. In this study, we generated SHIV-MK38C, a monkey-infectious consensus molecular clone of SHIV-MK38. Analysis using pseudotype viruses showed that MK38C was tier 1C because it lacked the N169D mutation, which is the most important mutation for neutralization resistance. MK38C harboring the N169D mutation became tier 2. However, the replication ability of SHIV-MK38C with N169D was low; more than 17 weeks elapsed before its detection in monkeys. Tier 1C MK38C was sensitive to a CD4 mimic. Therefore, SHIV-MK38C could be used to evaluate CD4 mimics in vivo.
Collapse
Affiliation(s)
- Kanako Matsuura
- Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Mizuki Yamaura
- Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hiromi Sakawaki
- Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Ai Himeno
- Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yalcin Pisil
- Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takuya Kobayakawa
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Kohei Tsuji
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Hirokazu Tamamura
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Shuzo Matsushita
- Division of Clinical Retrovirology, Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Tomoyuki Miura
- Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
2
|
Ode H, Saito A, Washizaki A, Seki Y, Yoshida T, Harada S, Ishii H, Shioda T, Yasutomi Y, Matano T, Miura T, Akari H, Iwatani Y. Development of a novel Macaque-Tropic HIV-1 adapted to cynomolgus macaques. J Gen Virol 2022; 103. [PMID: 36205476 DOI: 10.1099/jgv.0.001790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Macaque-tropic HIV-1 (HIV-1mt) variants have been developed to establish preferable primate models that are advantageous in understanding HIV-1 infection pathogenesis and in assessing the preclinical efficacy of novel prevention/treatment strategies. We previously reported that a CXCR4-tropic HIV-1mt, MN4Rh-3, efficiently replicates in peripheral blood mononuclear cells (PBMCs) of cynomolgus macaques homozygous for TRIMCyp (CMsTC). However, the CMsTC challenged with MN4Rh-3 displayed low viral loads during the acute infection phase and subsequently exhibited short-term viremia. These virological phenotypes in vivo differed from those observed in most HIV-1-infected people. Therefore, further development of the HIV-1mt variant was needed. In this study, we first reconstructed the MN4Rh-3 clone to produce a CCR5-tropic HIV-1mt, AS38. In addition, serial in vivo passages allowed us to produce a highly adapted AS38-derived virus that exhibits high viral loads (up to approximately 106 copies ml-1) during the acute infection phase and prolonged periods of persistent viremia (lasting approximately 16 weeks postinfection) upon infection of CMsTC. Whole-genome sequencing of the viral genomes demonstrated that the emergence of a unique 15-nt deletion within the vif gene was associated with in vivo adaptation. The deletion resulted in a significant increase in Vpr protein expression but did not affect Vif-mediated antagonism of antiretroviral APOBEC3s, suggesting that Vpr is important for HIV-1mt adaptation to CMsTC. In summary, we developed a novel CCR5-tropic HIV-1mt that can induce high peak viral loads and long-term viremia and exhibits increased Vpr expression in CMsTC.
Collapse
Affiliation(s)
- Hirotaka Ode
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, Japan
| | - Akatsuki Saito
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, Japan
- Present address: Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan (A. S.), National Institute of Biomedical Innovation, Osaka, Japan (A. W.); National Institute of Infectious Diseases (Y.S. and T.Y.), Tokyo, Japan
| | - Ayaka Washizaki
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, Japan
- Present address: Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan (A. S.), National Institute of Biomedical Innovation, Osaka, Japan (A. W.); National Institute of Infectious Diseases (Y.S. and T.Y.), Tokyo, Japan
| | - Yohei Seki
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, Japan
- Present address: Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan (A. S.), National Institute of Biomedical Innovation, Osaka, Japan (A. W.); National Institute of Infectious Diseases (Y.S. and T.Y.), Tokyo, Japan
| | - Takeshi Yoshida
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, Japan
- Present address: Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan (A. S.), National Institute of Biomedical Innovation, Osaka, Japan (A. W.); National Institute of Infectious Diseases (Y.S. and T.Y.), Tokyo, Japan
| | - Shigeyoshi Harada
- AIDS Research Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Hiroshi Ishii
- AIDS Research Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Tatsuo Shioda
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Yasuhiro Yasutomi
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Ibaraki, Japan
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Tomoyuki Miura
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hirofumi Akari
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, Japan
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, Japan
- AIDS Research Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Ibaraki, Japan
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yasumasa Iwatani
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, Japan
- Division of Basic Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
3
|
Pısıl Y, Shida H, Miura T. A Neutralization Assay Based on Pseudo-Typed Lentivirus with SARS CoV-2 Spike Protein in ACE2-Expressing CRFK Cells. Pathogens 2021; 10:pathogens10020153. [PMID: 33540924 PMCID: PMC7913246 DOI: 10.3390/pathogens10020153] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 12/19/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly pathogenic zoonotic virus that spreads rapidly. In this work, we improve the hitherto existing neutralization assay system to assess SARS-CoV-2 inhibitors using a pseudo-typed lentivirus coated with the SARS-CoV-2 spike protein (LpVspike +) and angiotensin-converting enzyme 2 (ACE2)-transfected cat Crandell–Rees feline kidney (CRFK) cells as the host cell line. Our method was 10-fold more sensitive compared to the typical human embryonic kidney 293T (HEK293T) cell system, and it was successfully applied to quantify the titers of convalescent antisera and monoclonal anti-spike antibodies required for pseudo virus neutralization. The 50% inhibition dilution (ID50) of two human convalescent sera, SARS-CoV-2 immunoglobulin G (IgG) and SARS-CoV-2 immunoglobulin M (IgM), which were 1:350 (±1:20) and 1:1250 (±1:350), respectively. The 50% inhibitory concentration (IC50) of the IgG, IgM and immunoglobulin A (IgA) anti-SARS-CoV-2 monoclonal antibodies (mAbs) against LpVspike(+) were 0.45 (±0.1), 0.002 (±0.001) and 0.004 (±0.001) µg mL−1, respectively. We also found that reagents typically used to enhance infection were not effective in the CFRK system. This methodology is both efficient and safe; it can be employed by researchers to evaluate neutralizing monoclonal antibodies and contribute to the discovery of new antiviral inhibitors against SARS-CoV-2.
Collapse
Affiliation(s)
- Yalçın Pısıl
- Laboratory of Primate Model, Research Center for Infectious Diseases, Institute for Frontier Life and Medical Science, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan;
- Graduate School of Human and Environmental Studies, Department of Interdisciplinary Environment, Dynamics of Natural Environment, Dynamics of Biological Environment, Kyoto University, Kyoto 606-8501, Japan
| | - Hisatoshi Shida
- Division of Molecular Virology, Institute of Immunological Science, Hokkaido University, Sapporo 060-0808, Japan;
| | - Tomoyuki Miura
- Laboratory of Primate Model, Research Center for Infectious Diseases, Institute for Frontier Life and Medical Science, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan;
- Correspondence:
| |
Collapse
|
4
|
Kobayakawa T, Tsuji K, Konno K, Himeno A, Masuda A, Yang T, Takahashi K, Ishida Y, Ohashi N, Kuwata T, Matsumoto K, Yoshimura K, Sakawaki H, Miura T, Harada S, Matsushita S, Tamamura H. Hybrids of Small-Molecule CD4 Mimics with Polyethylene Glycol Units as HIV Entry Inhibitors. J Med Chem 2021; 64:1481-1496. [PMID: 33497209 DOI: 10.1021/acs.jmedchem.0c01153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
CD4 mimics are small molecules that inhibit the interaction of gp120 with CD4. We have developed several CD4 mimics. Herein, hybrid molecules consisting of CD4 mimics with a long alkyl chain or a PEG unit attached through a self-cleavable linker were synthesized. In anti-HIV activity, modification with a PEG unit appeared to be more suitable than modification with a long alkyl chain. Thus, hybrid molecules of CD4 mimics, with PEG units attached through an uncleavable linker, were developed and showed high anti-HIV activity and low cytotoxicity. In investigation of pharmacokinetics in a rhesus macaque, a hybrid compound had a more effective PK profile than that of the parent compound, and intramuscular injection was a more useful administration route to maintain the high blood concentration of the CD4 mimic than intravenous injection. The presented hybrid molecules of CD4 mimics with a PEG unit would be practically useful when combined with a neutralizing antibody.
Collapse
Affiliation(s)
- Takuya Kobayakawa
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kohei Tsuji
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kiju Konno
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Ai Himeno
- Institute for Frontier Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Ami Masuda
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Tingting Yang
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kohei Takahashi
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Yusuke Ishida
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Nami Ohashi
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Takeo Kuwata
- The Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Kaho Matsumoto
- The Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Kazuhisa Yoshimura
- Institute of Public Health, Bureau of Social Welfare and Public Health, Tokyo Metropolitan Government, Shinjuku-ku, Tokyo, 169-0073, Japan
| | - Hiromi Sakawaki
- Institute for Frontier Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Tomoyuki Miura
- Institute for Frontier Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shigeyoshi Harada
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Shuzo Matsushita
- The Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Hirokazu Tamamura
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
5
|
Moyo T, Guleid FH, Schomaker M, Williamson C, Dorfman JR. HIV-1 Subtype C Tier 3 Viruses Have Increased Infectivity Compared to Tier 2 Viruses. AIDS Res Hum Retroviruses 2020; 36:1010-1019. [PMID: 32935560 DOI: 10.1089/aid.2020.0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A primary concern of an antibody-based HIV-1 therapy is the virus' ability to rapidly escape antibody responses. Therefore, we investigated the relationships between antibody neutralization sensitivity, viral phenotype, and infectivity in 13 subtype C viruses using a HeLa transfectant-based assay. We observed that the seven tier 3 viruses exhibited higher infectivity than the tier 2 viruses, suggesting that higher neutralization resistance did not have a substantial entry cost. There was no relationship between neutralization resistance and susceptibility to entry inhibitors Maraviroc, PSC RANTES, or the fusion inhibitor T20, indicating that neutralization resistance may not alter these inhibitor target sites. By analyzing glycosylation patterns in 82 subtype C viruses, we found that the presence of an N-linked glycan motif at position N413 and its absence at N332 were the most important predictors of neutralization resistance. In a set of 200 subtype C viruses, tier 3 strains were more resistant than tier 2 or 1B viruses to several broadly neutralizing monoclonal antibodies targeting three different epitopes. This suggests that it is unlikely that resistance to antibodies targeting a single epitope drives overall resistance. In the context of an antibody-based intervention, highly resistant viruses with increased infectivity, circulating in the population, could hinder HIV-1 control since entry of tier 3 viruses is not always selected against. Therefore, for any long-term antibody-based intervention to be globally relevant, it must elicit responses that limit the occurrence of resistance.
Collapse
Affiliation(s)
- Thandeka Moyo
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
| | - Fatuma H. Guleid
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
| | - Michael Schomaker
- Centre for Infectious Disease Epidemiology and Research, University of Cape Town, Cape Town, South Africa
| | - Carolyn Williamson
- Division of Medical Virology and Institute of Infectious Disease and Molecular Medicine, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- National Health Laboratory Service, Cape Town, South Africa
| | - Jeffrey R. Dorfman
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
6
|
Oda T, Kim KS, Fujita Y, Ito Y, Miura T, Iwami S. Quantifying antiviral effects against simian/human immunodeficiency virus induced by host immune response. J Theor Biol 2020; 509:110493. [PMID: 32956668 DOI: 10.1016/j.jtbi.2020.110493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/09/2020] [Accepted: 09/12/2020] [Indexed: 10/23/2022]
Abstract
Chimeric simian and human immunodeficiency viruses (SHIVs) are appropriate animal models for the human immunodeficiency virus (HIV) because HIV has quite a narrow host range. Additionally, SHIVs that encode the HIV-1 Env protein and are infectious to macaques have many strains that show different pathogenesis, such as the highly pathogenic SHIV-KS661 and the less pathogenic SHIV-#64. Therefore, we used SHIVs to understand different aspects of AIDS pathogenesis. In a previous study, we established a mathematical model of in vivo early SHIV infection dynamics, which revealed the expected uninfected and infected dynamics in Rhesus macaques. In concrete, the number of uninfected CD4+ T cells in SHIV-KS661-infected Rhesus macaques decreased more significantly and rapidly than that of SHIV-#64 Rhesus macaques, and these Rhesus macaques did not any induce host immune response. In contrast, the number of uninfected CD4+ T cells in SHIV-#64-infected Rhesus macaques is maintained, and host immune response developed. Although we considered that the peak viral load might determine whether systemic CD4+ T cell depletion occurs or host immune responses develop, we could not investigate this because our model quantified only SHIV infection prior to the development of the pathogenicity or host immune responses. Therefore, we developed a new mathematical model to investigate why SHIV-#64 and SHIV-KS661 showed different long-term viral dynamics. We fitted our new model considering antibody responses to our experimental datasets that included antibody titers, CD4+ T cells, and viral load data. We performed a maximum likelihood estimation using a non-linear mixed effect model. From the results, we derived the basic reproduction numbers of SHIV-#64 and SHIV-KS661 from intravenous infection (IV) and SHIV-KS661 from intrarectal infection (IR), as well as the antiviral effects of antibodies against SHIV-#64(IV) and SHIV-KS661(IR). We found significant differences between the basic reproduction number of SHIV-#64(IV) or -KS661(IR) and that of SHIV-KS661(IV). We found no clear difference between the antiviral effects of SHIV-#64(IV) and SHIV-KS661(IR), and revealed that an antiviral effect more than 90% of that of maximum antibody responses was induced from initial antibody responses (i.e., antibody response just after its inducement). In conclusion, we found that the basic reproduction number, rather than SHIV strains determines whether systemic CD4+ T cell depletion develops, and the subsequent antibody responses occurs.
Collapse
Affiliation(s)
- Takafumi Oda
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Kwang Su Kim
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Yasuhisa Fujita
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Yusuke Ito
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Tomoyuki Miura
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.
| | - Shingo Iwami
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 819-0395, Japan; MIRAI, JST, Saitama 332-0012, Japan; Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8501, Japan; NEXT-Ganken Program, Japanese Foundation for Cancer Research (JFCR), Tokyo 135-8550, Japan; Science Groove Inc., Fukuoka 810-0041, Japan.
| |
Collapse
|
7
|
Pisil Y, Yazici Z, Shida H, Matsushita S, Miura T. Specific Substitutions in Region V2 of gp120 env confer SHIV Neutralisation Resistance. Pathogens 2020; 9:pathogens9030181. [PMID: 32138199 PMCID: PMC7157653 DOI: 10.3390/pathogens9030181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 11/16/2022] Open
Abstract
A tier 2 SHIV-MK38 strain was obtained after two in vivo passages of tier 1 SHIV-MK1. SHIV-MK38#818, cloned from the MK38 strain, was neutralisation-resistant, like the parental MK38 strain, to SHIV-infected monkey plasma (MP), HIV-1-infected human pooled plasma (HPP), and KD247 monoclonal antibody (mAb) (anti-V3 gp120 env). We investigated the mechanisms underlying the resistance of #818, specifically the amino acid substitutions that confer resistance to MK1. We introduced amino acid substitutions in the MK1 envelope by in vitro mutagenesis and then compared the neutralisation resistance to MP, HPP, and KD247 mAb with #818 in a neutralisation assay using TZM-bl cells. We selected 11 substitutions in the V1, V2, C2, V4, C4, and V5 regions based on the alignment of env of MK1 and #818. The neutralisation resistance of the mutant MK1s with 7 of 11 substitutions in the V1, C2, C4, and V5 regions did not change significantly. These substitutions did not alter any negative charges or N-glycans. The substitutions N169D and K187E, which added negative charges, and S190N in the V2 region of gp120 and A389T in V4, which created sites for N-glycan, conferred high neutralisation resistance. The combinations N169D+K187E, N169D+S190N, and N169D+A389T resulted in MK1 neutralisation resistance close to that of #818. The combinations without 169D were neutralisation-sensitive. Therefore, N169D is the most important substitution for neutralisation resistance. This study demonstrated that although the V3 region sequences of #818 and MK1 are the same, V3 binding antibodies cannot neutralise #818 pseudovirus. Instead, mutations in the V2 and V4 regions inhibit the neutralisation of anti-V3 antibodies. We hypothesised that 169D and 190N altered the MK1 Env conformation so that the V3 region is buried. Therefore, the V2 region may block KD247 from binding to the tip of the V3 region.
Collapse
Affiliation(s)
- Yalcin Pisil
- Laboratory of Primate Model, Research Center for Infectious Diseases, Institute for Frontier Life and Medical Science, Kyoto University, Kyoto 615-8530, Japan;
| | - Zafer Yazici
- Department of Virology, Faculty of Veterinary Medicine, 19 Mayis University, Samsun 55270, Turkey;
| | - Hisatoshi Shida
- Division of Molecular Virology, Institute of Immunological Science, Hokkaido University, Hokkaido 060-0808, Japan;
| | - Shuzo Matsushita
- Center for AIDS Research, Kumamoto University, Kumamoto 860-8555, Japan;
| | - Tomoyuki Miura
- Laboratory of Primate Model, Research Center for Infectious Diseases, Institute for Frontier Life and Medical Science, Kyoto University, Kyoto 615-8530, Japan;
- Correspondence:
| |
Collapse
|
8
|
Hara A, Iwanami S, Ito Y, Miura T, Nakaoka S, Iwami S. Revealing uninfected and infected target cell dynamics from peripheral blood data in highly and less pathogenic simian/human immunodeficiency virus infected Rhesus macaque. J Theor Biol 2019; 479:29-36. [PMID: 31299334 DOI: 10.1016/j.jtbi.2019.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 06/02/2019] [Accepted: 07/08/2019] [Indexed: 10/26/2022]
Abstract
Since chimeric simian and human immunodeficiency viruses (SHIVs) used here, that is, SHIV-#64 and -KS661 utilize both CCR5 and CXCR4 chemokine receptors, they have broad target cell properties. A highly pathogenic SHIV strain, SHIV-KS661, causes an infection that systemically depletes the CD4+ T cells of Rhesus macaques, while a less pathogenic strain, SHIV-#64, does not cause severe symptoms in the macaques. In our previous studies, we established in vitro quantification system for virus infection dynamics, and concluded that SHIV-KS661 effectively produces infectious virions compared with SHIV-#64 in the HSC-F cell culture. However, in vivo dynamics of SHIV infection have not been well understood. To quantify SHIV-#64 and -KS661 infection dynamics in Rhesus macaques, we developed a novel approach and analyzed total CD4+ T cells and viral load in peripheral blood, and reproduced the expected dynamics for the uninfected and infected CD4+ T cells in silico. Using our previous cell culture experimental datasets, we revealed that an infection rate constant is different between SHIV-#64 and -KS661, but the viral production rate and the death rate are similar for the both strains. Thus, here, we assumed these relations in our in vivo data and carried out the data fitting. We performed Bayesian estimation for the whole dataset using MCMC sampling, and simultaneously fitted our novel model to total CD4+ T cells and viral load of SHIV-#64 and -KS661 infection. Our analyses explained that the Malthusian parameter (i.e., fitness of virus infection) and the basic reproduction number (i.e., potential of virus infection) for SHIV-KS661 are significantly higher than those of SHIV-#64. In addition, we demonstrated that the number of uninfected CD4+ T cells in SHIV-KS661 infected Rhesus macaques decreases to the significantly lower value than that before the inoculation several days earlier compared with SHIV-#64 infection. Taken together, the differences between SHIV-#64 and -KS661 infection before the peak viral load might determine the subsequent destiny, that is, whether the systemic CD4+ T cell depletion occurs or the host immune response develop.
Collapse
Affiliation(s)
- Akane Hara
- Department of Biology, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Shoya Iwanami
- Department of Biology, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Yusuke Ito
- Department of Biology, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Tomoyuki Miura
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Kyoto, Japan.
| | - Shinji Nakaoka
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido, Japan; PRESTO, JST, Kawaguchi, Saitama, Japan
| | - Shingo Iwami
- Department of Biology, Kyushu University, Nishi-ku, Fukuoka, Japan; MIRAI, JST, Kawaguchi, Saitama, Japan; CREST, JST, Kawaguchi, Saitama, Japan.
| |
Collapse
|
9
|
Induction of neutralizing antibodies against tier 2 human immunodeficiency virus 1 in rhesus macaques infected with tier 1B simian/human immunodeficiency virus. Arch Virol 2019; 164:1297-1308. [PMID: 30820667 PMCID: PMC6469619 DOI: 10.1007/s00705-019-04173-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/17/2019] [Indexed: 11/21/2022]
Abstract
We previously developed CCR5-tropic neutralization-resistant simian/human immunodeficiency virus (SHIV) strains and a rhesus macaque model of infection with these SHIVs. We induced the production of neutralizing antibodies (nAbs) against HIV-1 by infecting rhesus macaques with different neutralization-resistant SHIV strains. First, SHIV-MK1 (MK1) (neutralization susceptible, tier 1B) with CCR5 tropism was generated from SHIV-KS661 using CXCR4 as the main co-receptor. nAbs against parental-lineage and heterologous tier 2 viruses were induced by tier 1B virus (MK1) infection of the rhesus macaque MM482. We analyzed viral resistance to neutralization over time in MM482 and observed that the infecting virus mutated from tier 1B to tier 2 at 36 weeks postinfection (wpi). In addition, an analysis of mutations showed that N169D, K187E, S190N, S239, T459N (T459D at 91 wpi), and V842A mutations were present after 36 wpi. This led to the appearance of neutralization-resistant viral clones. In addition, MK1 was passaged in three rhesus macaques to generate neutralization-resistant SHIV-MK38 (MK38) (tier 2). We evaluated nAb production by rhesus macaques infected with SHIV-MK38 #818 (#818) (tier 2), a molecular clone of MK38. Neutralization of the parental lineage was induced earlier than in macaques infected with tier 1B virus, and neutralization activity against heterologous tier 2 virus was beginning to develop. Therefore, CCR5-tropic neutralization-resistant SHIV-infected rhesus macaques may be useful models of anti-HIV-1 nAb production and will facilitate the development of a vaccine that elicits nAbs against HIV-1.
Collapse
|
10
|
Doi N, Miura T, Mori H, Sakawaki H, Koma T, Adachi A, Nomaguchi M. CXCR4- and CCR5-Tropic HIV-1 Clones Are Both Tractable to Grow in Rhesus Macaques. Front Microbiol 2018; 9:2510. [PMID: 30405570 PMCID: PMC6200915 DOI: 10.3389/fmicb.2018.02510] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/02/2018] [Indexed: 01/08/2023] Open
Abstract
A major issue for present HIV-1 research is to establish model systems that reflect or mimic viral replication and pathogenesis actually observed in infected humans. To this end, various strategies using macaques as infection targets have long been pursued. In particular, experimental infections of rhesus macaques by HIV-1 derivatives have been believed to be best suited, if practicable, for studies on interaction of HIV-1 and humans under various circumstances. Recently, through in vitro genetic manipulations and viral cell-adaptations, we have successfully generated a series of HIV-1 derivatives with CXCR4-tropism or CCR5-tropism that grow in macaque cells to various degrees. Of these viruses, those with best replicative potentials can grow comparably with a pathogenic SIVmac in macaque cells by counteracting major restriction factors TRIM5, APOBEC3, and tetherin proteins. In this study, rhesus macaques were challenged with CXCR4-tropic (MN4/LSDQgtu) or CCR5-tropic (gtu + A4CI1) virus. The two viruses were found to productively infect rhesus macaques, being rhesus macaque-tropic HIV-1 (HIV-1rmt). However, plasma viral RNA was reduced to be an undetectable level in infected macaques at 5–6 weeks post-infection and thereafter. While replicated similarly well in rhesus peripheral blood mononuclear cells, MN4/LSDQgtu grew much better than gtu + A4CI1 in the animals. To the best of our knowledge, this is the first report demonstrating that HIV-1 derivatives (variants) grow in rhesus macaques. These viruses certainly constitute firm bases for generating HIV-1rmt clones pathogenic for rhesus monkeys, albeit they grow more poorly than pathogenic SIVmac and SHIV clones reported to date.
Collapse
Affiliation(s)
- Naoya Doi
- Department of Microbiology, Graduate School of Medical Sciences, Tokushima University, Tokushima, Japan
| | - Tomoyuki Miura
- Laboratory of Primate Model, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hiromi Mori
- Laboratory of Primate Model, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hiromi Sakawaki
- Non-human Primate Experimental Facility, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takaaki Koma
- Department of Microbiology, Graduate School of Medical Sciences, Tokushima University, Tokushima, Japan
| | - Akio Adachi
- Department of Microbiology, Kansai Medical University, Hirakata, Japan
| | - Masako Nomaguchi
- Department of Microbiology, Graduate School of Medical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
11
|
Dutta D, Johnson S, Dalal A, Deymier MJ, Hunter E, Byrareddy SN. High throughput generation and characterization of replication-competent clade C transmitter-founder simian human immunodeficiency viruses. PLoS One 2018; 13:e0196942. [PMID: 29758076 PMCID: PMC5951672 DOI: 10.1371/journal.pone.0196942] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/23/2018] [Indexed: 01/10/2023] Open
Abstract
Traditional restriction endonuclease-based cloning has been routinely used to generate replication-competent simian-human immunodeficiency viruses (SHIV) and simian tropic HIV (stHIV). This approach requires the existence of suitable restriction sites or the introduction of nucleotide changes to create them. Here, using an In-Fusion cloning technique that involves homologous recombination, we generated SHIVs and stHIVs based on epidemiologically linked clade C transmitted/founder HIV molecular clones from Zambia. Replacing vif from these HIV molecular clones with vif of SIVmac239 resulted in chimeric genomes used to generate infectious stHIV viruses. Likewise, exchanging HIV env genes and introducing N375 mutations to enhance macaque CD4 binding site and cloned into a SHIVAD8-EO backbone. The generated SHIVs and stHIV were infectious in TZMbl and ZB5 cells, as well as macaque PBMCs. Therefore, this method can replace traditional methods and be a valuable tool for the rapid generation and testing of molecular clones of stHIV and SHIV based on primary clinical isolates will be valuable to generate rapid novel challenge viruses for HIV vaccine/cure studies.
Collapse
Affiliation(s)
- Debashis Dutta
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Samuel Johnson
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Alisha Dalal
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Martin J Deymier
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
| | - Eric Hunter
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America.,Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America.,Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| |
Collapse
|
12
|
Kato F, Ishida Y, Kawakami A, Takasaki T, Saijo M, Miura T, Hishiki T. Evaluation of Macaca radiata as a non-human primate model of Dengue virus infection. Sci Rep 2018; 8:3421. [PMID: 29467430 PMCID: PMC5821881 DOI: 10.1038/s41598-018-21582-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/07/2018] [Indexed: 01/07/2023] Open
Abstract
Dengue virus (DENV) causes a wide range of illnesses in humans, including dengue fever and dengue haemorrhagic fever. Current animal models of DENV infection are limited for understanding infectious diseases in humans. Bonnet monkeys (Macaca radiata), a type of Old World monkey, have been used to study experimental and natural infections by flaviviruses, but Old World monkeys have not yet been used as DENV infection models. In this study, the replication levels of several DENV strains were evaluated using peripheral blood mononuclear cells. Our findings indicated that DENV-4 09-48 strain, isolated from a traveller returning from India in 2009, was a highly replicative virus. Three bonnet monkeys were infected with 09-48 strain and antibody responses were assessed. DENV nonstructural protein 1 antigen was detected and high viraemia was observed. These results indicated that bonnet monkeys and 09-48 strain could be used as a reliable primate model for the study of DENV.
Collapse
Affiliation(s)
- Fumihiro Kato
- Laboratory of Primate Model, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuki Ishida
- Laboratory of Primate Model, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Akihiko Kawakami
- Laboratory of Primate Model, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Tomohiko Takasaki
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan.,Kanagawa Prefectural Institute of Public Health, Kanagawa, Japan
| | - Masayuki Saijo
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomoyuki Miura
- Laboratory of Primate Model, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takayuki Hishiki
- Laboratory of Primate Model, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan. .,Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| |
Collapse
|
13
|
Iwanami S, Kakizoe Y, Morita S, Miura T, Nakaoka S, Iwami S. A highly pathogenic simian/human immunodeficiency virus effectively produces infectious virions compared with a less pathogenic virus in cell culture. Theor Biol Med Model 2017; 14:9. [PMID: 28431573 PMCID: PMC5401468 DOI: 10.1186/s12976-017-0055-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/18/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The host range of human immunodeficiency virus (HIV) is quite narrow. Therefore, analyzing HIV-1 pathogenesis in vivo has been limited owing to lack of appropriate animal model systems. To overcome this, chimeric simian and human immunodeficiency viruses (SHIVs) that encode HIV-1 Env and are infectious to macaques have been developed and used to investigate the pathogenicity of HIV-1 in vivo. So far, we have many SHIV strains that show different pathogenesis in macaque experiments. However, dynamic aspects of SHIV infection have not been well understood. To fully understand the dynamic properties of SHIVs, we focused on two representative strains-the highly pathogenic SHIV, SHIV-KS661, and the less pathogenic SHIV, SHIV-#64-and measured the time-course of experimental data in cell culture. METHODS We infected HSC-F with SHIV-KS661 and -#64 and measured the concentration of Nef-negative (target) and Nef-positive (infected) HSC-F cells, the total viral load, and the infectious viral load daily for 9 days. The experiments were repeated at two different multiplicities of infection, and a previously developed mathematical model incorporating the infectious and non-infectious viruses was fitted to the full dataset of each strain simultaneously to characterize the infection dynamics of these two strains. RESULTS AND CONCLUSIONS We quantified virological indices including virus burst sizes and basic reproduction number of both SHIV-KS661 and -#64. Comparing the burst size of total and infectious viruses (viral RNA copies and TCID50, respectively), we found that there was a statistically significant difference between the infectious virus burst size of SHIV-KS661 and -#64, while there was no significant difference between the total virus burst size. Furthermore, our analyses showed that the fraction of infectious virus among the produced SHIV-KS661 viruses, which is defined as the infectious viral load (TCID50/ml) divided by the total viral load (RNA copies/ml), is more than 10-fold higher than that of SHIV-#64 during overall infection (i.e., for 9 days). Taken together, we conclude that the highly pathogenic SHIV produces infectious virions more effectively than the less pathogenic SHIV in cell culture.
Collapse
Affiliation(s)
- Shoya Iwanami
- Department of Biology, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Yusuke Kakizoe
- Department of Biology, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Satoru Morita
- Department of Mathematical and Systems Engineering, Shizuoka University, Hamamatsu, Shizuoka, Japan
| | - Tomoyuki Miura
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Shinji Nakaoka
- PRESTO, JST, Kawaguchi, Saitama, Japan.,Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Shingo Iwami
- Department of Biology, Kyushu University, Nishi-ku, Fukuoka, Japan. .,PRESTO, JST, Kawaguchi, Saitama, Japan. .,CREST, JST, Kawaguchi, Saitama, Japan.
| |
Collapse
|