1
|
Behl A, Nair A, Mohagaonkar S, Yadav P, Gambhir K, Tyagi N, Sharma RK, Butola BS, Sharma N. Threat, challenges, and preparedness for future pandemics: A descriptive review of phylogenetic analysis based predictions. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 98:105217. [PMID: 35065303 DOI: 10.1016/j.meegid.2022.105217] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 12/01/2021] [Accepted: 01/14/2022] [Indexed: 11/27/2022]
Abstract
For centuries the world has been confronted with many infectious diseases, with a potential to turn into a pandemic posing a constant threat to human lives. Some of these pandemics occurred due to the emergence of new disease or re-emergence of previously known diseases with a few mutations. In such scenarios their optimal prevention and control options were not adequately developed. Most of these diseases are highly contagious and for their timely control, knowledge about the pathogens and disease progression is the basic necessity. In this review, we have presented a documented chronology of the earlier pandemics, evolutionary analysis of the infectious disease with pandemic potential, the role of RNA, difficulties in controlling pandemics, and the likely pathogens that could trigger future pandemics. In this study, the evolutionary history of the pathogens was identified by carrying out phylogenetic analysis. The percentage similarity between different infectious diseases is critically analysed for the identification of their correlation using online sequence matcher tools. The Baltimore classification system was used for finding the genomic nature of the viruses. It was observed that most of the infectious pathogens rise from their animal hosts with some mutations in their genome composition. The phylogenetic tree shows that the single-stranded RNA diseases have a common origin and many of them are having high similarity percentage. The outcomes of this study will help in the identification of potential pathogens that can cause future pandemics. This information will be helpful in the development of early detection techniques, devising preventive mechanism to limit their spread, prophylactic measures, Infection control and therapeutic options, thereby, strengthening our approach towards global preparedness against future pandemics.
Collapse
Affiliation(s)
- Amanpreet Behl
- Department of Molecular Medicine, Jamia Hamdard Univeristy, Hamdard Nagar, New Delhi, Delhi 110062, India
| | - Ashrit Nair
- Department of Textile and Fibre Engineering, Indian Institute of Technology, Hauz Khas, New Delhi-110016, India
| | - Sanika Mohagaonkar
- Department of Metabolism, Digestion and Reproduction, Imperial College, London, United Kingdom
| | - Pooja Yadav
- Department of Medical Elementology and Toxicology, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Kirtida Gambhir
- Stem cell and Gene Therapy Research Group, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organisation, Delhi 110054, India
| | - Nishant Tyagi
- Stem cell and Gene Therapy Research Group, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organisation, Delhi 110054, India
| | - Rakesh Kumar Sharma
- Saveetha Institute of Medical and Technical Sciences, 162, Poonamallee High Road, Chennai 600077, Tamil Nadu, India
| | - Bhupendra Singh Butola
- Department of Textile and Fibre Engineering, Indian Institute of Technology, Hauz Khas, New Delhi-110016, India
| | - Navneet Sharma
- Department of Textile and Fibre Engineering, Indian Institute of Technology, Hauz Khas, New Delhi-110016, India.
| |
Collapse
|
2
|
Reuter G, Várallyay É, Baráth D, Földvári G, Szekeres S, Boros Á, Kapusinszky B, Delwart E, Pankovics P. Analysis of a novel RNA virus in a wild northern white-breasted hedgehog (Erinaceus roumanicus). Arch Virol 2019; 164:3065-3071. [PMID: 31549303 PMCID: PMC6823297 DOI: 10.1007/s00705-019-04414-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/23/2019] [Indexed: 11/02/2022]
Abstract
Tombusviruses are generally considered plant viruses. A novel tombus-/carmotetravirus-like RNA virus was identified in a faecal sample and blood and muscle tissues from a wild northern white-breasted hedgehog (Erinaceus roumanicus). The complete genome of the virus, called H14-hedgehog/2015/HUN (GenBank accession number MN044446), is 4,118 nucleotides in length with a readthrough stop codon of type/group 1 in ORF1 and lacks a poly(A) tract at the 3' end. The predicted ORF1-RT (RdRp) and the capsid proteins had low (31-33%) amino acid sequence identity to unclassified tombus-/noda-like viruses (Hubei tombus-like virus 12 and Beihai noda-like virus 10), respectively, discovered recently in invertebrate animals. An in vivo experimental plant inoculation study showed that an in vitro-transcribed H14-hedgehog/2015/HUN viral RNA did not replicate in Nicotiana benthamiana, Chenopodium quinoa, or Chenopodium murale, the most susceptible hosts for plant-origin tombusviruses.
Collapse
Affiliation(s)
- Gábor Reuter
- Department of Medical Microbiology and Immunology, Medical Center, University of Pécs, Szigeti út 12, Pecs, 7624, Hungary.
| | - Éva Várallyay
- Agricultural Biotechnology Institute, National Agricultural Research and Innovation Centre, Gödöllő, Hungary
| | - Dániel Baráth
- Agricultural Biotechnology Institute, National Agricultural Research and Innovation Centre, Gödöllő, Hungary
| | - Gábor Földvári
- Evolutionary Systems Research Group MTA Centre for Ecological Research, Tihany, Hungary.,Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
| | - Sándor Szekeres
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
| | - Ákos Boros
- Department of Medical Microbiology and Immunology, Medical Center, University of Pécs, Szigeti út 12, Pecs, 7624, Hungary
| | | | - Eric Delwart
- Vitalant Research Institute, San Francisco, CA, USA.,University of California, San Francisco, San Francisco, CA, USA
| | - Péter Pankovics
- Department of Medical Microbiology and Immunology, Medical Center, University of Pécs, Szigeti út 12, Pecs, 7624, Hungary
| |
Collapse
|
3
|
Jiwaji M, Matcher GF, de Bruyn MM, Awando JA, Moodley H, Waterworth D, Jarvie RA, Dorrington RA. Providence virus: An animal virus that replicates in plants or a plant virus that infects and replicates in animal cells? PLoS One 2019; 14:e0217494. [PMID: 31163039 PMCID: PMC6548363 DOI: 10.1371/journal.pone.0217494] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/13/2019] [Indexed: 12/11/2022] Open
Abstract
Introduction Emerging viral diseases, most of which are zoonotic, pose a significant threat to global health. There is a critical need to identify potential new viral pathogens and the challenge is to identify the reservoirs from which these viruses might emerge. Deep sequencing of invertebrate transcriptomes has revealed a plethora of viruses, many of which represent novel lineages representing both plant and animal viruses and little is known about the potential threat that these viruses pose. Methods Providence virus, an insect virus, was used to establish a productive infection in Vigna unguiculata (cowpea) plants. Providence virus particles purified from these cowpea plants were used to infect two mammalian cell lines. Findings Here, we present evidence that Providence virus, a non-enveloped insect RNA virus, isolated from a lepidopteran midgut cell line can establish a productive infection in plants as well as in animal cells. The observation that Providence virus can readily infect both plants and mammalian cell culture lines demonstrates the ability of an insect RNA virus to establish productive infections across two kingdoms, in plants and invertebrate and vertebrate animal cell lines. Conclusions The study highlights the potential of phytophagous insects as reservoirs for viral re-assortment and that plants should be considered as reservoirs for emerging viruses that may be potentially pathogenic to humans.
Collapse
Affiliation(s)
- Meesbah Jiwaji
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
- * E-mail:
| | | | - Mart-Mari de Bruyn
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Janet Awino Awando
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Holisha Moodley
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Dylan Waterworth
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Rachel Anne Jarvie
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | | |
Collapse
|
4
|
Sadeghi M, Popov V, Guzman H, Phan TG, Vasilakis N, Tesh R, Delwart E. Genomes of viral isolates derived from different mosquitos species. Virus Res 2017; 242:49-57. [PMID: 28855097 DOI: 10.1016/j.virusres.2017.08.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/10/2017] [Accepted: 08/23/2017] [Indexed: 10/19/2022]
Abstract
Eleven viral isolates derived mostly in albopictus C6/36 cells from mosquito pools collected in Southeast Asia and the Americas between 1966 and 2014 contained particles with electron microscopy morphology typical of reoviruses. Metagenomics analysis yielded the near complete genomes of three novel reoviruses, Big Cypress orbivirus, Ninarumi virus, and High Island virus and a new tetravirus, Sarawak virus. Strains of previously characterized Sathuvarachi, Yunnan, Banna and Parry's Lagoon viruses (Reoviridae), Bontang virus (Mesoniviridae), and Culex theileri flavivirus (Flaviviridae) were also characterized. The availability of these mosquito virus genomes will facilitate their detection by metagenomics or PCR to better determine their geographic range, extent of host tropism, and possible association with arthropod or vertebrate disease.
Collapse
Affiliation(s)
- Mohammadreza Sadeghi
- Blood Systems Research Institute, San Francisco, CA, USA; Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA; Department of Virology, University of Helsinki, Helsinki, Finland
| | - Vsevolod Popov
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
| | - Hilda Guzman
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
| | - Tung Gia Phan
- Blood Systems Research Institute, San Francisco, CA, USA; Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Nikos Vasilakis
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Robert Tesh
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, CA, USA; Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
5
|
Penkler DL, Jiwaji M, Domitrovic T, Short JR, Johnson JE, Dorrington RA. Binding and entry of a non-enveloped T=4 insect RNA virus is triggered by alkaline pH. Virology 2016; 498:277-287. [PMID: 27614703 DOI: 10.1016/j.virol.2016.08.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/24/2016] [Accepted: 08/29/2016] [Indexed: 11/29/2022]
Abstract
Tetraviruses are small, non-enveloped, RNA viruses that exclusively infect lepidopteran insects. Their particles comprise 240 copies of a single capsid protein precursor (CP), which undergoes autoproteolytic cleavage during maturation. The molecular mechanisms of capsid assembly and maturation are well understood, but little is known about the viral infectious lifecycle due to a lack of tissue culture cell lines that are susceptible to tetravirus infection. We show here that binding and entry of the alphatetravirus, Helicoverpa armigera stunt virus (HaSV), is triggered by alkaline pH. At pH 9.0, wild-type HaSV virus particles undergo conformational changes that induce membrane-lytic activity and binding to Spodoptera frugiperda Sf9 cells. Binding is followed by entry and infection, with virus replication complexes detected by immunofluorescence microscopy within 2h post-infection and the CP after 12h. HaSV particles produced in S. frugiperda Sf9 cells are infectious. Helicoverpa armigera larval virus biofeed assays showed that pre-treatment with the V-ATPase inhibitor, Bafilomycin A1, resulted in a 50% decrease in larval mortality and stunting, while incubation of virus particles at pH 9.0 prior to infection restored infectivity. Together, these data show that HaSV, and likely other tetraviruses, requires the alkaline environment of the lepidopteran larval midgut for binding and entry into host cells.
Collapse
Affiliation(s)
- David L Penkler
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa
| | - Meesbah Jiwaji
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa
| | - Tatiana Domitrovic
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - James R Short
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa; Illumina Inc., 5200 Illumina Way, San Diego, CA 92122, USA
| | - John E Johnson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rosemary A Dorrington
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa.
| |
Collapse
|