1
|
Lamut A, Gjorgjieva M, Naesens L, Liekens S, Lillsunde KE, Tammela P, Kikelj D, Tomašič T. Anti-influenza virus activity of benzo[d]thiazoles that target heat shock protein 90. Bioorg Chem 2020; 98:103733. [DOI: 10.1016/j.bioorg.2020.103733] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/12/2020] [Accepted: 03/06/2020] [Indexed: 12/21/2022]
|
2
|
Patzina C, Botting CH, García-Sastre A, Randall RE, Hale BG. Human interactome of the influenza B virus NS1 protein. J Gen Virol 2017; 98:2267-2273. [PMID: 28869005 PMCID: PMC5656757 DOI: 10.1099/jgv.0.000909] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
NS1 proteins of influenza A and B viruses share limited sequence homology, yet both are potent manipulators of host cell processes, particularly interferon (IFN) induction. Although many cellular partners are reported for A/NS1, only a few (e.g. PKR and ISG15) have been identified for B/NS1. Here, affinity-purification and mass spectrometry were used to expand the known host interactome of B/NS1. We identified 22 human proteins as new putative targets for B/NS1, validating several, including DHX9, ILF3, YBX1 and HNRNPC. Consistent with two RNA-binding domains in B/NS1, many of the identified factors bind RNA and some interact with B/NS1 in an RNA-dependent manner. Functional characterization of several B/NS1 interactors identified SNRNP200 as a potential positive regulator of host IFN responses, while ILF3 exhibited dual roles in both IFN induction and influenza B virus replication. These data provide a resource for future investigations into the mechanisms underpinning host cell modulation by influenza B virus NS1.
Collapse
Affiliation(s)
- Corinna Patzina
- Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Catherine H. Botting
- Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews, Fife, KY16 9ST, UK
| | - Adolfo García-Sastre
- Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Richard E. Randall
- Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews, Fife, KY16 9ST, UK
| | - Benjamin G. Hale
- Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
- *Correspondence: Benjamin G. Hale,
| |
Collapse
|
3
|
Sadewasser A, Paki K, Eichelbaum K, Bogdanow B, Saenger S, Budt M, Lesch M, Hinz KP, Herrmann A, Meyer TF, Karlas A, Selbach M, Wolff T. Quantitative Proteomic Approach Identifies Vpr Binding Protein as Novel Host Factor Supporting Influenza A Virus Infections in Human Cells. Mol Cell Proteomics 2017; 16:728-742. [PMID: 28289176 DOI: 10.1074/mcp.m116.065904] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/03/2017] [Indexed: 12/24/2022] Open
Abstract
Influenza A virus (IAV) infections are a major cause for respiratory disease in humans, which affects all age groups and contributes substantially to global morbidity and mortality. IAV have a large natural host reservoir in avian species. However, many avian IAV strains lack adaptation to other hosts and hardly propagate in humans. While seasonal or pandemic IAV strains replicate efficiently in permissive human cells, many avian IAV cause abortive nonproductive infections in these hosts despite successful cell entry. However, the precise reasons for these differential outcomes are poorly defined. We hypothesized that the distinct course of an IAV infection with a given virus strain is determined by the differential interplay between specific host and viral factors. By using Spike-in SILAC mass spectrometry-based quantitative proteomics we characterized sets of cellular factors whose abundance is specifically up- or downregulated in the course of permissive versus nonpermissive IAV infection, respectively. This approach allowed for the definition and quantitative comparison of about 3500 proteins in human lung epithelial cells in response to seasonal or low-pathogenic avian H3N2 IAV. Many identified proteins were similarly regulated by both virus strains, but also 16 candidates with distinct changes in permissive versus nonpermissive infection were found. RNAi-mediated knockdown of these differentially regulated host factors identified Vpr binding protein (VprBP) as proviral host factor because its downregulation inhibited efficient propagation of seasonal IAV whereas overexpression increased viral replication of both seasonal and avian IAV. These results not only show that there are similar differences in the overall changes during permissive and nonpermissive influenza virus infections, but also provide a basis to evaluate VprBP as novel anti-IAV drug target.
Collapse
Affiliation(s)
- Anne Sadewasser
- From the ‡Unit 17 Influenza and other Respiratory Viruses", Robert Koch Institut, Seestr. 10, 13353 Berlin, Germany
| | - Katharina Paki
- From the ‡Unit 17 Influenza and other Respiratory Viruses", Robert Koch Institut, Seestr. 10, 13353 Berlin, Germany
| | - Katrin Eichelbaum
- §Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Boris Bogdanow
- §Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Sandra Saenger
- From the ‡Unit 17 Influenza and other Respiratory Viruses", Robert Koch Institut, Seestr. 10, 13353 Berlin, Germany
| | - Matthias Budt
- From the ‡Unit 17 Influenza and other Respiratory Viruses", Robert Koch Institut, Seestr. 10, 13353 Berlin, Germany
| | - Markus Lesch
- ¶Max Planck Institute for Infection Biology, Charitéplatz, 110117 Berlin, Germany
| | - Klaus-Peter Hinz
- ‖Institute of Inorganic and Analytical Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Andreas Herrmann
- **Molecular Biophysics, Department of Biology, Humboldt-Universität zu Berlin, Invalidenstr. 43, 10115 Berlin, Germany
| | - Thomas F Meyer
- ¶Max Planck Institute for Infection Biology, Charitéplatz, 110117 Berlin, Germany
| | - Alexander Karlas
- ¶Max Planck Institute for Infection Biology, Charitéplatz, 110117 Berlin, Germany
| | - Matthias Selbach
- §Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Thorsten Wolff
- From the ‡Unit 17 Influenza and other Respiratory Viruses", Robert Koch Institut, Seestr. 10, 13353 Berlin, Germany;
| |
Collapse
|