1
|
Klein HC, Guest PC, Dobrowolny H, Steiner J. Inflammation and viral infection as disease modifiers in schizophrenia. Front Psychiatry 2023; 14:1231750. [PMID: 37850104 PMCID: PMC10577328 DOI: 10.3389/fpsyt.2023.1231750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/12/2023] [Indexed: 10/19/2023] Open
Abstract
Numerous studies have now implicated a role for inflammation in schizophrenia. However, many aspects surrounding this aspect of the disease are still controversial. This controversy has been driven by conflicting evidence on the role of both pro-and anti-inflammatory factors and by often contentious findings concerning cytokine and immune cell profiles in the central nervous system and periphery. Current evidence supports the point that interleukin-6 is elevated in CSF, but does not support activation of microglia, resident macrophage-like cells in the brain. Furthermore, the mechanisms involving transit of the peripheral immune system factors across the blood brain barrier to central parenchyma have still not been completely elucidated. This process appears to involve perivascular macrophages and accompanying dendritic cells retained in the parenchyma by the chemokine and cytokine composition of the surrounding milieu. In addition, a number of studies have shown that this can be modulated by infection with viruses such as herpes simplex virus type I which may disrupt antigen presentation in the perivascular space, with long-lasting consequences. In this review article, we discuss the role of inflammation and viral infection as potential disease modifiers in schizophrenia. The primary viral hit may occur in the fetus in utero, transforming the immune response regulatory T-cells or the virus may secondarily remain latent in immune cells or neurons and modify further immune responses in the developing individual. It is hoped that unraveling this pathway further and solidifying our understanding of the pathophysiological mechanisms involved will pave the way for future studies aimed at identification and implementation of new biomarkers and drug targets. This may facilitate the development of more effective personalized therapies for individuals suffering with schizophrenia.
Collapse
Affiliation(s)
- Hans C. Klein
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Research and Education Department Addiction Care Northern Netherlands, Groningen, Netherlands
| | - Paul C. Guest
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Henrik Dobrowolny
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Johann Steiner
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Magdeburg, Germany
- German Center for Mental Health (DZPG), Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Halle-Jena-Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| |
Collapse
|
2
|
Muangsanit P, Chailangkarn T, Tanwattana N, Wongwanakul R, Lekcharoensuk P, Kaewborisuth C. Hydrogel-based 3D human iPSC-derived neuronal culture for the study of rabies virus infection. Front Cell Infect Microbiol 2023; 13:1215205. [PMID: 37692167 PMCID: PMC10485840 DOI: 10.3389/fcimb.2023.1215205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023] Open
Abstract
Background Rabies is a highly fatal infectious disease that poses a significant threat to human health in developing countries. In vitro study-based understanding of pathogenesis and tropism of different strains of rabies virus (RABV) in the central nervous system (CNS) is limited due to the lack of suitable culture models that recapitulate the complex communication pathways among host cells, extracellular matrices, and viruses. Therefore, a three-dimensional (3D) cell culture that mimics cell-matrix interactions, resembling in vivo microenvironment, is necessary to discover relevant underlying mechanisms of RABV infection and host responses. Methods The 3D collagen-Matrigel hydrogel encapsulating hiPSC-derived neurons for RABV infection was developed and characterized based on cell viability, morphology, and gene expression analysis of neuronal markers. The replication kinetics of two different strains of RABV [wild-type Thai (TH) and Challenge Virus Standard (CVS)-11 strains] in both 2D and 3D neuronal cultures were examined. Differential gene expression analysis (DEG) of the neuropathological pathway of RABV-infected 2D and 3D models was also investigated via NanoString analysis. Results The 3D hiPSC-derived neurons revealed a more physiologically interconnected neuronal network as well as more robust and prolonged maturation and differentiation than the conventional 2D monolayer model. TH and CVS-11 exhibited distinct growth kinetics in 3D neuronal model. Additionally, gene expression analysis of the neuropathological pathway observed during RABV infection demonstrated a vast number of differentially expressed genes (DEGs) in 3D model. Unlike 2D neuronal model, 3D model displayed more pronounced cellular responses upon infection with CVS-11 when compared to the TH-infected group, highlighting the influence of the cell environment on RABV-host interactions. Gene ontology (GO) enrichment of DEGs in the infected 3D neuronal culture showed alterations of genes associated with the inflammatory response, apoptotic signaling pathway, glutamatergic synapse, and trans-synaptic signaling which did not significantly change in 2D culture. Conclusion We demonstrated the use of a hydrogel-based 3D hiPSC-derived neuronal model, a highly promising technology, to study RABV infection in a more physiological environment, which will broaden our understanding of RABV-host interactions in the CNS.
Collapse
Affiliation(s)
- Papon Muangsanit
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Thanathom Chailangkarn
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Nathiphat Tanwattana
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
- Interdisciplinary Program in Genetic Engineering and Bioinformatics, Graduate School, Kasetsart University, Bangkok, Thailand
| | - Ratjika Wongwanakul
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Porntippa Lekcharoensuk
- Interdisciplinary Program in Genetic Engineering and Bioinformatics, Graduate School, Kasetsart University, Bangkok, Thailand
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- Center for Advance Studies in Agriculture and Food, KU Institute Studies, Kasetsart University, Bangkok, Thailand
| | - Challika Kaewborisuth
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
- Interdisciplinary Program in Genetic Engineering and Bioinformatics, Graduate School, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
3
|
Uyar O, Dominguez JM, Bordeleau M, Lapeyre L, Ibáñez FG, Vallières L, Tremblay ME, Corbeil J, Boivin G. Single-cell transcriptomics of the ventral posterolateral nucleus-enriched thalamic regions from HSV-1-infected mice reveal a novel microglia/microglia-like transcriptional response. J Neuroinflammation 2022; 19:81. [PMID: 35387656 PMCID: PMC8985399 DOI: 10.1186/s12974-022-02437-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/13/2022] [Indexed: 12/17/2022] Open
Abstract
Background Microglia participate in the immune response upon central nervous system (CNS) infections. However, the role of these cells during herpes simplex encephalitis (HSE) has not been fully characterized. We sought to identify different microglia/microglia-like cells and describe the potential mechanisms and signaling pathways involved during HSE. Methods The transcriptional response of CD11b+ immune cells, including microglia/microglia-like cells, was investigated using single-cell RNA sequencing (scRNA-seq) on cells isolated from the ventral posterolateral nucleus (VPL)-enriched thalamic regions of C57BL/6 N mice intranasally infected with herpes simplex virus-1 (HSV-1) (6 × 105 PFUs/20 µl). We further performed scanning electronic microscopy (SEM) analysis in VPL regions on day 6 post-infection (p.i.) to provide insight into microglial functions. Results We describe a novel microglia-like transcriptional response associated with a rare cell population (7% of all analyzed cells), named “in transition” microglia/microglia-like cells in HSE. This new microglia-like transcriptional signature, found in the highly infected thalamic regions, was enriched in specific genes (Retnlg, Cxcr2, Il1f9) usually associated with neutrophils. Pathway analysis of this cell-type transcriptome showed increased NLRP3-inflammasome-mediated interleukin IL-1β production, promoting a pro-inflammatory response. These cells' increased expression of viral transcripts suggests that the distinct “in transition” transcriptome corresponds to the intrinsic antiviral immune signaling of HSV-1-infected microglia/microglia-like cells in the thalamus. In accordance with this phenotype, we observed several TMEM119+/IBA-I+ microglia/microglia-like cells immunostained for HSV-1 in highly infected regions. Conclusions A new microglia/microglia-like state may potentially shed light on how microglia could react to HSV-1 infection. Our observations suggest that infected microglia/microglia-like cells contribute to an exacerbated CNS inflammation. Further characterization of this transitory state of the microglia/microglia-like cell transcriptome may allow the development of novel immunomodulatory approaches to improve HSE outcomes by regulating the microglial immune response. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02437-7.
Collapse
Affiliation(s)
- Olus Uyar
- Research Center in Infectious Diseases, CHU de Québec-Laval University Research Center and Department of Pediatrics and Microbiology, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | - Juan Manuel Dominguez
- Research Center in Infectious Diseases, CHU de Québec-Laval University Research Center and Department of Molecular Medicine and Big Data Research Centre, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | - Maude Bordeleau
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.,Neurosciences Unit, CHU de Québec-Laval University Research Center, Quebec City, QC, Canada
| | - Lina Lapeyre
- Research Center in Infectious Diseases, CHU de Québec-Laval University Research Center and Department of Pediatrics and Microbiology, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | - Fernando González Ibáñez
- Neurosciences Unit, CHU de Québec-Laval University Research Center, Quebec City, QC, Canada.,Department of Molecular Medicine, Laval University, Quebec City, QC, Canada.,Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Luc Vallières
- Neurosciences Unit, CHU de Québec-Laval University Research Center, Quebec City, QC, Canada.,Department of Molecular Medicine, Laval University, Quebec City, QC, Canada
| | - Marie-Eve Tremblay
- Neurosciences Unit, CHU de Québec-Laval University Research Center, Quebec City, QC, Canada.,Department of Molecular Medicine, Laval University, Quebec City, QC, Canada.,Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada.,Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
| | - Jacques Corbeil
- Research Center in Infectious Diseases, CHU de Québec-Laval University Research Center and Department of Molecular Medicine and Big Data Research Centre, Faculty of Medicine, Laval University, Quebec City, QC, Canada.,Department of Molecular Medicine, Laval University, Quebec City, QC, Canada
| | - Guy Boivin
- Research Center in Infectious Diseases, CHU de Québec-Laval University Research Center and Department of Pediatrics and Microbiology, Faculty of Medicine, Laval University, Quebec City, QC, Canada.
| |
Collapse
|
4
|
The c-Rel transcription factor limits early interferon and neuroinflammatory responses to prevent herpes simplex encephalitis onset in mice. Sci Rep 2021; 11:21171. [PMID: 34707143 PMCID: PMC8551191 DOI: 10.1038/s41598-021-00391-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/27/2021] [Indexed: 12/03/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is the predominant cause of herpes simplex encephalitis (HSE), a condition characterized by acute inflammation and viral replication in the brain. Host genetics contribute to HSE onset, including monogenic defects in type I interferon signaling in cases of childhood HSE. Mouse models suggest a further contribution of immune cell-mediated inflammation to HSE pathogenesis. We have previously described a truncating mutation in the c-Rel transcription factor (RelC307X) that drives lethal HSE in 60% of HSV-1-infected RelC307X mice. In this study, we combined dual host-virus RNA sequencing with flow cytometry to explore cell populations and mechanisms involved in RelC307X-driven HSE. At day 5 postinfection, prior to HSE clinical symptom onset, elevated HSV-1 transcription was detected together with augmented host interferon-stimulated and inflammatory gene expression in the brainstems of high-responding RelC307X mice, predictive of HSE development. This early induction of host gene expression preceded pathological infiltration of myeloid and T cells in RelC307X mice at HSE onset by day 7. Thus, we establish c-Rel as an early regulator of viral and host responses during mouse HSE. These data further highlight the importance of achieving a balanced immune response and avoiding excess interferon-driven inflammation to promote HSE resistance.
Collapse
|
5
|
An Early Microglial Response Is Needed To Efficiently Control Herpes Simplex Virus Encephalitis. J Virol 2020; 94:JVI.01428-20. [PMID: 32938766 DOI: 10.1128/jvi.01428-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/09/2020] [Indexed: 12/25/2022] Open
Abstract
The role of a signaling pathway through macrophage colony-stimulating factor (MCSF) and its receptor, macrophage colony-stimulating factor 1 receptor (CSF1R), during experimental herpes simplex virus 1 (HSV-1) encephalitis (HSE) was studied by two different approaches. First, we evaluated the effect of stimulation of the MCSF/CSF1R axis before infection. Exogenous MCSF (40 μg/kg of body weight intraperitoneally [i.p.]) was administered once daily to BALB/c mice on days 4 and 2 before intranasal infection with 2,500 PFU of HSV-1. MCSF treatment significantly increased mouse survival compared to saline (50% versus 10%; P = 0.0169). On day 6 postinfection (p.i.), brain viral titers were significantly decreased, whereas beta interferon (IFN-β) was significantly increased in mice treated with MCSF compared to mice treated with saline. The number of CD68+ (a phagocytosis marker) microglial cells was significantly increased in MCSF-treated mice compared to the saline-treated group. Secondly, we conditionally depleted CSF1R on microglial cells of CSF1R-loxP-CX3CR1-cre/ERT2 mice (in a C57BL/6 background) through induction with tamoxifen. The mice were then infected intranasally with 600,000 PFU of HSV-1. The survival rate of mice depleted of CSF1R (knockout [KO] mice) was significantly lower than that of wild-type (WT) mice (0% versus 67%). Brain viral titers and cytokine/chemokine levels were significantly higher in KO than in WT animals on day 6 p.i. Furthermore, increased infiltration of monocytes into the brains of WT mice was seen on day 6 p.i., but not in KO mice. Our results suggest that microglial cells are essential to control HSE at early stages of the disease and that the MCSF/CSF1R axis could be a therapeutic target to regulate their response to infection.IMPORTANCE Microglia appear to be one of the principal regulators of neuroinflammation in the central nervous system (CNS). An increasing number of studies have demonstrated that the activation of microglia could result in either beneficial or detrimental effects in different CNS disorders. Hence, the role of microglia during herpes simplex virus encephalitis (HSE) has not been fully characterized. Using experimental mouse models, we showed that an early activation of the MCSF/CSF1R axis improved the outcome of the disease, possibly by inducing a proliferation of microglia. In contrast, depletion of microglia before HSV-1 infection worsened the prognosis of HSE. Thus, an early microglial response followed by sustained infiltration of monocytes and T cells into the brain seem to be key components for a better clinical outcome. These data suggest that microglia could be a potential target for immunomodulatory strategies combined with antiviral therapy to better control the outcome of this devastating disease.
Collapse
|
6
|
Sehl J, Hölper JE, Klupp BG, Baumbach C, Teifke JP, Mettenleiter TC. An improved animal model for herpesvirus encephalitis in humans. PLoS Pathog 2020; 16:e1008445. [PMID: 32226043 PMCID: PMC7145201 DOI: 10.1371/journal.ppat.1008445] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/09/2020] [Accepted: 02/29/2020] [Indexed: 12/17/2022] Open
Abstract
Herpesviral encephalitis caused by Herpes Simplex Virus 1 (HSV-1) is one of the most devastating diseases in humans. Patients present with fever, mental status changes or seizures and when untreated, sequelae can be fatal. Herpes Simplex Encephalitis (HSE) is characterized by mainly unilateral necrotizing inflammation effacing the frontal and mesiotemporal lobes with rare involvement of the brainstem. HSV-1 is hypothesized to invade the CNS via the trigeminal or olfactory nerve, but viral tropism and the exact route of infection remain unclear. Several mouse models for HSE have been developed, but they mimic natural infection only inadequately. The porcine alphaherpesvirus Pseudorabies virus (PrV) is closely related to HSV-1 and Varicella Zoster Virus (VZV). While pigs can control productive infection, it is lethal in other susceptible animals associated with severe pruritus leading to automutilation. Here, we describe the first mutant PrV establishing productive infection in mice that the animals are able to control. After intranasal inoculation with a PrV mutant lacking tegument protein pUL21 and pUS3 kinase activity (PrV-ΔUL21/US3Δkin), nearly all mice survived despite extensive infection of the central nervous system. Neuroinvasion mainly occurred along the trigeminal pathway. Whereas trigeminal first and second order neurons and autonomic ganglia were positive early after intranasal infection, PrV-specific antigen was mainly detectable in the frontal, mesiotemporal and parietal lobes at later times, accompanied by a long lasting lymphohistiocytic meningoencephalitis. Despite this extensive infection, mice showed only mild to moderate clinical signs, developed alopecic skin lesions, or remained asymptomatic. Interestingly, most mice exhibited abnormalities in behavior and activity levels including slow movements, akinesia and stargazing. In summary, clinical signs, distribution of viral antigen and inflammatory pattern show striking analogies to human encephalitis caused by HSV-1 or VZV not observed in other animal models of disease. In developed countries, more than 50% of humans are seropositive for the neurotropic Herpes Simplex Virus 1 (HSV-1) and two to four million cases of Herpes simplex encephalitis (HSE) are reported per year worldwide. Primary infection with HSV-1 takes place via the skin or the oral mucosa followed by intraaxonal retrograde spread to sensory ganglia of the peripheral nervous system where HSV-1 usually establishes latency. Further spread to the central nervous system results in HSE, a necrotizing encephalitis effacing predominantly the temporal and frontal lobes of the brain. Mice infected with HSV-1 develop encephalitis, but do not show the typical lesions and exhibit high mortality rates. Here we demonstrate that mice infected with a mutant pseudorabies virus lacking the tegument protein pUL21 and an active viral kinase pUS3 were able to survive the productive infection but developed lymphohistiocytic encephalitis with viral antigen distribution, inflammation and associated behavioral changes comparable to HSE in humans. These striking analogies offer new perspectives to study herpesviral encephalitis in a suitable animal model.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Encephalitis, Varicella Zoster/genetics
- Encephalitis, Varicella Zoster/metabolism
- Female
- Ganglia, Autonomic/metabolism
- Ganglia, Autonomic/pathology
- Ganglia, Autonomic/virology
- Herpes Simplex/genetics
- Herpes Simplex/metabolism
- Herpesvirus 1, Human/genetics
- Herpesvirus 1, Human/metabolism
- Herpesvirus 1, Suid/genetics
- Herpesvirus 1, Suid/metabolism
- Herpesvirus 3, Human/genetics
- Herpesvirus 3, Human/metabolism
- Humans
- Mice
- Neurons/metabolism
- Neurons/pathology
- Neurons/virology
- Pseudorabies/genetics
- Pseudorabies/metabolism
- Pseudorabies/pathology
- Swine
Collapse
Affiliation(s)
- Julia Sehl
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Julia E. Hölper
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Barbara G. Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Christina Baumbach
- Department of Animal Health Diagnostics, Food Safety and Fishery in Mecklenburg-Western Pomerania, Rostock, Germany
| | - Jens P. Teifke
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Thomas C. Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
- * E-mail:
| |
Collapse
|
7
|
Hatton CF, Duncan CJA. Microglia Are Essential to Protective Antiviral Immunity: Lessons From Mouse Models of Viral Encephalitis. Front Immunol 2019; 10:2656. [PMID: 31798586 PMCID: PMC6863772 DOI: 10.3389/fimmu.2019.02656] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/28/2019] [Indexed: 12/22/2022] Open
Abstract
Viral encephalitis is a rare but clinically serious consequence of viral invasion of the brain and insight into its pathogenesis is urgently needed. Important research questions concern the involvement of the host innate immune response in pathogenesis, key to which is the role played by microglia, resident macrophages of the brain parenchyma. Do microglia have a protective function, by coordinating the innate immune response to viral infection, or do they drive pathogenic neuroinflammation? Here we synthesize recent data from mouse models of acute viral encephalitis, which reveal an unambiguously protective role for microglia. Depletion of microglia, via blockade of colony-stimulating factor 1 receptor (CSF1R) signaling, led to increased viral replication accompanied by more severe neurological disease and heightened mortality. Whilst the underlying mechanism(s) remain to be defined, microglial interactions with T cells and phagocytosis of infected neurones appear to play a role. Paradoxically, the production of inflammatory cytokines was increased in several instances following viral infection in microglia-depleted brains, suggesting that: (i) cells other than microglia mediate inflammatory responses and/or (ii) microglia may exert a regulatory function. Under certain circumstances the microglial antiviral response might contribute negatively to longer-term neurological sequelae, although fewer studies have focused on this aspect in encephalitis models. Understanding regulation of the microglial response, and how it contributes to disease is therefore a priority for future studies. Collectively, these findings demonstrate the central role of microglia in pathogenesis, suggesting the exciting possibility that defects of microglial function might contribute to encephalitis susceptibility and/or outcome in humans.
Collapse
Affiliation(s)
- Catherine F Hatton
- Immunity and Inflammation Theme, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Christopher J A Duncan
- Immunity and Inflammation Theme, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.,Department of Infection and Tropical Medicine, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
8
|
Lannes N, Garcia-Nicolàs O, Démoulins T, Summerfield A, Filgueira L. CX 3CR1-CX 3CL1-dependent cell-to-cell Japanese encephalitis virus transmission by human microglial cells. Sci Rep 2019; 9:4833. [PMID: 30886214 PMCID: PMC6423114 DOI: 10.1038/s41598-019-41302-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/01/2019] [Indexed: 01/10/2023] Open
Abstract
The neurotropic Japanese encephalitis virus (JEV) is responsible for Japanese encephalitis, an uncontrolled inflammatory disease of the central nervous system. Microglia cells are the unique innate immune cell type populating the brain that cross-communicate with neurons via the CX3CR1-CX3CL1 axis. However, microglia may serve as a viral reservoir for JEV. Human microglia are able to transmit JEV infectivity to neighbouring cells in a cell-to-cell contact-dependent manner. Using JEV-treated human blood monocyte-derived microglia, the present study investigates molecular mechanisms behind cell-to-cell virus transmission by human microglia. For that purpose, JEV-associated microglia were co-cultured with JEV susceptible baby hamster kidney cells under various conditions. Here, we show that microglia hosting JEV for up to 10 days were able to transmit the virus to susceptible cells. Interestingly, neutralizing anti-JEV antibodies did not completely abrogate cell-to-cell virus transmission. Hence, intracellular viral RNA could be a contributing source of infectious virus material upon intercellular interactions. Importantly, the CX3CL1-CX3CR1 axis was a key regulator of cell-to-cell virus transmission from JEV-hosting human microglia. Our findings suggest that human microglia may be a source of infection for neuronal populations and sustain JEV brain pathogenesis in long-term infection. Moreover, the present work emphasizes on the critical role of the CX3CR1-CX3CL1 axis in JEV pathogenesis mediating transmission of infectious genomic JEV RNA.
Collapse
Affiliation(s)
- Nils Lannes
- Unit of Anatomy, Department of Medicine, University of Fribourg, Route Albert-Gockel 1, Fribourg, Switzerland.
| | - Obdullio Garcia-Nicolàs
- Institute of Virology and Immunology, Sensemattstrasse 293, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Langassstrasse 122, Bern, Switzerland
| | - Thomas Démoulins
- Institute of Virology and Immunology, Sensemattstrasse 293, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Langassstrasse 122, Bern, Switzerland
| | - Artur Summerfield
- Institute of Virology and Immunology, Sensemattstrasse 293, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Langassstrasse 122, Bern, Switzerland
| | - Luis Filgueira
- Unit of Anatomy, Department of Medicine, University of Fribourg, Route Albert-Gockel 1, Fribourg, Switzerland
| |
Collapse
|
9
|
Mancini M, Caignard G, Charbonneau B, Dumaine A, Wu N, Leiva-Torres GA, Gerondakis S, Pearson A, Qureshi ST, Sladek R, Vidal SM. Rel-Dependent Immune and Central Nervous System Mechanisms Control Viral Replication and Inflammation during Mouse Herpes Simplex Encephalitis. THE JOURNAL OF IMMUNOLOGY 2019; 202:1479-1493. [DOI: 10.4049/jimmunol.1800063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 12/21/2018] [Indexed: 01/01/2023]
|
10
|
Mancini M, Vidal SM. Insights into the pathogenesis of herpes simplex encephalitis from mouse models. Mamm Genome 2018; 29:425-445. [PMID: 30167845 PMCID: PMC6132704 DOI: 10.1007/s00335-018-9772-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/09/2018] [Indexed: 01/05/2023]
Abstract
A majority of the world population is infected with herpes simplex viruses (HSV; human herpesvirus types 1 and 2). These viruses, perhaps best known for their manifestation in the genital or oral mucosa, can also cause herpes simplex encephalitis, a severe and often fatal disease of the central nervous system. Antiviral therapies for HSV are only partially effective since the virus can establish latent infections in neurons, and severe pathological sequelae in the brain are common. A better understanding of disease pathogenesis is required to develop new strategies against herpes simplex encephalitis, including the precise viral and host genetic determinants that promote virus invasion into the central nervous system and its associated immunopathology. Here we review the current understanding of herpes simplex encephalitis from the host genome perspective, which has been illuminated by groundbreaking work on rare herpes simplex encephalitis patients together with mechanistic insight from single-gene mouse models of disease. A complex picture has emerged, whereby innate type I interferon-mediated antiviral signaling is a central pathway to control viral replication, and the regulation of immunopathology and the balance between apoptosis and autophagy are critical to disease severity in the central nervous system. The lessons learned from mouse studies inform us on fundamental defense mechanisms at the interface of host–pathogen interactions within the central nervous system, as well as possible rationales for intervention against infections from severe neuropathogenic viruses.
Collapse
Affiliation(s)
- Mathieu Mancini
- Department of Human Genetics, McGill University, Montreal, QC, Canada.,McGill Research Centre on Complex Traits, McGill University, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
| | - Silvia M Vidal
- Department of Human Genetics, McGill University, Montreal, QC, Canada. .,McGill Research Centre on Complex Traits, McGill University, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada.
| |
Collapse
|
11
|
Murdock BJ, Zhou T, Kashlan SR, Little RJ, Goutman SA, Feldman EL. Correlation of Peripheral Immunity With Rapid Amyotrophic Lateral Sclerosis Progression. JAMA Neurol 2017; 74:1446-1454. [PMID: 28973548 DOI: 10.1001/jamaneurol.2017.2255] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Importance Amyotrophic lateral sclerosis (ALS) has an immune component, but previous human studies have not examined immune changes over time. Objectives To assess peripheral inflammatory markers in participants with ALS and healthy control individuals and to track immune changes in ALS and determine whether these changes correlate with disease progression. Design, Setting, and Participants In this longitudinal cohort study, leukocytes were isolated from peripheral blood samples from 35 controls and 119 participants with ALS at the ALS Clinic of the University of Michigan, Ann Arbor, from June 18, 2014, through May 26, 2016. Follow-up visits occurred every 6 to 12 months. Fifty-one participants with ALS provided samples at multiple points. Immune cell populations were measured and compared between control and ALS groups. Surface marker expression of CD11b+ myeloid cells was also assessed. Changes over time were correlated with disease progression using multivariate regression. Main Outcomes and Measures The number of immune cells per milliliter of blood and the fold expression of cell surface markers. Multivariate regression models were used to correlate changes in immune metrics with changes on the Revised Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS-R). Results Thirty-five controls (17 women [48.6%] and 18 men [51.4%]; mean [SD] age, 63.5 [9.9] years) and 119 participants with ALS (50 women [42.0%] and 69 men [68.0%]; mean [SD] age, 61.4 [11.5] years) were enrolled. Compared with controls, participants with ALS had increased mean (SEM) counts ( × 106/mL) of total leukocytes (4.57 [0.29; 95% CI, 3.94-5.11] vs 5.53 [0.16; 95% CI, 5.21-5.84]), neutrophils (2.87 [0.23; 95% CI, 2.40-3.35] vs 3.80 [0.12; 95% CI, 3.56-4.04]), CD16+ monocytes (0.03 [0.003; 95% CI, 0.02-0.04] vs 0.04 [0.002; 95% CI, 0.03-0.04]), CD16- monocytes (0.25 [0.02; 95% CI, 0.21-0.30] vs 0.29 [0.01; 95% CI, 0.27-0.31]), and natural killer cells (0.13 [0.02; 95% CI, 0.10-0.17] vs 0.18 [0.01; 95% CI, 0.16-0.21]). We also observed an acute, transient increase in a population of CD11b+ myeloid cells expressing HLA-DR, CD11c, and CX3CR1. Finally, early changes in immune cell numbers had a significant correlation with disease progression measured by change in ALSFRS-R score, particularly neutrophils (-4.37 [95% CI, -6.60 to -2.14] per 11.47 × 104/mL [SD, 58.04 × 104/mL] per year) and CD4 T cells (-30.47 [95% CI, -46.02 to -14.94] per -3.72 × 104/mL [SD, 26.21 × 104/mL] per year). Conclusions and Relevance Changes in the immune system occur during ALS and may contribute to the pathologic features of ALS.
Collapse
Affiliation(s)
| | - Tingting Zhou
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor
| | - Samy R Kashlan
- Department of Neurology, University of Michigan, Ann Arbor
| | - Roderick J Little
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor
| | | | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor.,A. Alfred Taubman Medical Research Institute, University of Michigan, Ann Arbor
| |
Collapse
|
12
|
Müller I, Pappritz K, Savvatis K, Puhl K, Dong F, El-Shafeey M, Hamdani N, Hamann I, Noutsias M, Infante-Duarte C, Linke WA, Van Linthout S, Tschöpe C. CX3CR1 knockout aggravates Coxsackievirus B3-induced myocarditis. PLoS One 2017; 12:e0182643. [PMID: 28800592 PMCID: PMC5553786 DOI: 10.1371/journal.pone.0182643] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 07/22/2017] [Indexed: 11/19/2022] Open
Abstract
Studies on inflammatory disorders elucidated the pivotal role of the CX3CL1/CX3CR1 axis with respect to the pathophysiology and diseases progression. Coxsackievirus B3 (CVB3)-induced myocarditis is associated with severe cardiac inflammation, which may progress to heart failure. We therefore investigated the influence of CX3CR1 ablation in the model of acute myocarditis, which was induced by inoculation with 5x105 plaque forming units of CVB3 (Nancy strain) in either CX3CR1-/- or C57BL6/j (WT) mice. Seven days after infection, myocardial inflammation, remodeling, and titin expression and phosphorylation were examined by immunohistochemistry, real-time PCR and Pro-Q diamond stain. Cardiac function was assessed by tip catheter. Compared to WT CVB3 mice, CX3CR1-/- CVB3 mice exhibited enhanced left ventricular expression of inflammatory cytokines and chemokines, which was associated with an increase of immune cell infiltration/presence. This shift towards a pro-inflammatory immune response further resulted in increased cardiac fibrosis and cardiomyocyte apoptosis, which was reflected by an impaired cardiac function in CX3CR1-/- CVB3 compared to WT CVB3 mice. These findings demonstrate a cardioprotective role of CX3CR1 in CVB3-infected mice and indicate the relevance of the CX3CL1/CX3CR1 system in CVB3-induced myocarditis.
Collapse
MESH Headings
- Animals
- Apoptosis
- CX3C Chemokine Receptor 1
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/immunology
- Chemokine CX3CL1/genetics
- Chemokine CX3CL1/immunology
- Coxsackievirus Infections/genetics
- Coxsackievirus Infections/immunology
- Coxsackievirus Infections/pathology
- Coxsackievirus Infections/virology
- Disease Models, Animal
- Enterovirus B, Human/growth & development
- Enterovirus B, Human/pathogenicity
- Gene Expression Regulation
- Heart Function Tests
- Host-Pathogen Interactions/immunology
- Humans
- Interleukins/genetics
- Interleukins/immunology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Myocarditis/genetics
- Myocarditis/immunology
- Myocarditis/pathology
- Myocarditis/virology
- Myocytes, Cardiac/immunology
- Myocytes, Cardiac/pathology
- Phosphorylation
- Protein Kinases/genetics
- Protein Kinases/immunology
- Receptors, Chemokine/deficiency
- Receptors, Chemokine/genetics
- Receptors, Chemokine/immunology
Collapse
Affiliation(s)
- Irene Müller
- Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Internal Medicine and Cardiology, Campus Virchow Klinikum, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany
- Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies, Campus Virchow Klinikum, Berlin, Germany
| | - Kathleen Pappritz
- Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Internal Medicine and Cardiology, Campus Virchow Klinikum, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany
- Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies, Campus Virchow Klinikum, Berlin, Germany
| | - Konstantinos Savvatis
- Inherited Cardiovascular Diseases Unit, Barts Health NHS Trust, Barts Heart Centre, London, United Kingdom
- William Harvey Research Institute, Queen Mary University London, London, United Kingdom
| | - Kerstin Puhl
- Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Internal Medicine and Cardiology, Campus Virchow Klinikum, Berlin, Germany
- Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies, Campus Virchow Klinikum, Berlin, Germany
| | - Fengquan Dong
- Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Internal Medicine and Cardiology, Campus Virchow Klinikum, Berlin, Germany
- Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies, Campus Virchow Klinikum, Berlin, Germany
| | - Muhammad El-Shafeey
- Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Internal Medicine and Cardiology, Campus Virchow Klinikum, Berlin, Germany
- Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies, Campus Virchow Klinikum, Berlin, Germany
| | - Nazha Hamdani
- Department of Cardiovascular Physiology, Ruhr University Bochum, Bochum, Germany
| | - Isabell Hamann
- Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Medical Immunology, Campus Virchow Klinikum, Berlin, Germany
| | - Michel Noutsias
- Department of Internal Medicine III, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Halle (Saale), Germany
| | - Carmen Infante-Duarte
- Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Medical Immunology, Campus Virchow Klinikum, Berlin, Germany
| | - Wolfgang A. Linke
- Department of Cardiovascular Physiology, Ruhr University Bochum, Bochum, Germany
| | - Sophie Van Linthout
- Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Internal Medicine and Cardiology, Campus Virchow Klinikum, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany
- Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies, Campus Virchow Klinikum, Berlin, Germany
| | - Carsten Tschöpe
- Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Internal Medicine and Cardiology, Campus Virchow Klinikum, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany
- Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies, Campus Virchow Klinikum, Berlin, Germany
- * E-mail:
| |
Collapse
|