1
|
Gelasakis AI, Boukouvala E, Babetsa M, Katharopoulos E, Palaska V, Papakostaki D, Giadinis ND, Loukovitis D, Langeveld JPM, Ekateriniadou LV. Polymorphisms of Codons 110, 146, 211 and 222 at the Goat PRNP Locus and Their Association with Scrapie in Greece. Animals (Basel) 2021; 11:ani11082340. [PMID: 34438796 PMCID: PMC8388637 DOI: 10.3390/ani11082340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/27/2022] Open
Abstract
Scrapie is considered an endemic disease in both sheep and goats in Greece. However, contrary to sheep, in goats more than one prion protein (PrP) polymorphism has been recognized as a candidate for resistance breeding against the disease. For an impression, candidates which are circulating, (i) brain samples (n = 525) from scrapie-affected (n = 282) and non-affected (n = 243) animals within the national surveillance program, and (ii) individual blood samples (n = 1708) from affected (n = 241) and non-affected (n = 1467) herds, in a large part of mainland Greece and its islands, were collected and assayed. A dedicated Taqman method was used to test for amino acid polymorphisms 110T/P, 146N/S/D, 211R/Q, and 222Q/K. Highly prevalent genotypes were 110TT, 146NN, 211RR, and 222QQ. The frequencies of polymorphisms in blood and negative brain samples for codons 110P, 211Q, and 222K were 4.0%, 3.0%, and 1.9%, respectively, while 146D (0.7%) was present only on Karpathos island. Codon 110P was exclusively found in scrapie-negative brains, and homozygous 110P/P in two scrapie-negative goats. It is concluded that breeding programs in Karpathos could focus on codon 146D, while in other regions carriers of the 110P and 222K allele should be sought. Case-control and challenge studies are now necessary to elucidate the most efficient breeding strategies.
Collapse
Affiliation(s)
- Athanasios I. Gelasakis
- Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, 11855 Athens, Greece;
| | - Evridiki Boukouvala
- Veterinary Research Institute, ELGO-DIMITRA, 54124 Thessaloniki, Greece; (E.B.); (M.B.); (E.K.)
| | - Maria Babetsa
- Veterinary Research Institute, ELGO-DIMITRA, 54124 Thessaloniki, Greece; (E.B.); (M.B.); (E.K.)
| | | | - Vayia Palaska
- National Reference Laboratory for TSEs, Ministry of Agricultural Development and Food, 41110 Larissa, Greece;
| | - Dimitra Papakostaki
- Veterinary Center of Thessaloniki, Ministry of Agricultural Development and Food, 54627 Thessaloniki, Greece;
| | - Nektarios D. Giadinis
- School of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece;
| | | | - Jan P. M. Langeveld
- Department of Infection Biology, Wageningen Bioveterinary Research (WBVR), 8221 RA Lelystad, The Netherlands;
| | - Loukia V. Ekateriniadou
- Veterinary Research Institute, ELGO-DIMITRA, 54124 Thessaloniki, Greece; (E.B.); (M.B.); (E.K.)
- Correspondence:
| |
Collapse
|
2
|
Zeineldin M, Lehman K, Urie N, Branan M, Wiedenheft A, Marshall K, Robbe-Austerman S, Thacker T. Large-scale survey of prion protein genetic variability in scrapie disease-free goats from the United States. PLoS One 2021; 16:e0254998. [PMID: 34280230 PMCID: PMC8289333 DOI: 10.1371/journal.pone.0254998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/08/2021] [Indexed: 11/19/2022] Open
Abstract
Scrapie is a slowly progressive neurodegenerative disease of small ruminants caused by an accumulation of an abnormal isoform of prion protein in the central nervous system. Polymorphisms of the prion protein gene (PRNP) strongly modulate scrapie resistance and incubation period in goats. The aim of this study was to identify PRNP genetic variability in goats across the United States. Blood from a total of 6,029 apparent scrapie disease-free goats from 654 operations and 19 breeds were analyzed. Sequencing of PRNP revealed 26 genotypes with different rates based on eight codons. The GG127, RR154, and QQ222 genotypes were predominant and showed a remarkably high rate across all goats. The QK222 and NS146 genotypes, known to be protective against scrapie, were found in 0.6% [with 95% CI = (0.3, 1.2)] and 22.0% [95% CI = (19.1, 25.2)] of goats, respectively. The QK222 genotype was found in 23.1% of Oberhasli goats tested, with 95%CI = (3.9, 68.7)] and 22.0% of Toggenburg goats tested with 95%CI = (9.7, 42.5)], while NS146 was found in 65.5% of Savannah goats tested, with 95%CI = (30.8, 89.9), 36.7% of Boer goats tested, with 95%CI = (33.1, 40.4), 36.3% of Nubian goats tested, with 95%CI = (27.0, 46.7)], and 35.6% of LaMancha goats tested, with 95%CI = (22.8, 50.8%). The MM142 and IM142 genotypes were found more frequently in goats on dairy operations, while the HR143, NS146, and ND146 genotypes were found more frequently in goats on meat operations. Goats in the east region had a higher percentage of goats with RH154, RQ211, and QK222 genotypes than goats in the west region. The results of this study showed high genetic variability of PRNP among the U.S. goat population, with differences by location and breed, and may serve as a rationale for development of goat breeding programs at the national level to mitigate the risk of scrapie.
Collapse
Affiliation(s)
- Mohamed Zeineldin
- National Veterinary Services Laboratories, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, IA, United States of America
- Department of Animal Medicine, College of Veterinary Medicine, Benha University, Benha, Egypt
| | - Kimberly Lehman
- National Veterinary Services Laboratories, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, IA, United States of America
| | - Natalie Urie
- National Animal Health Monitoring System, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, United States of America
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Matthew Branan
- National Animal Health Monitoring System, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, United States of America
| | - Alyson Wiedenheft
- National Animal Health Monitoring System, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, United States of America
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Katherine Marshall
- National Animal Health Monitoring System, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, United States of America
| | - Suelee Robbe-Austerman
- National Veterinary Services Laboratories, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, IA, United States of America
| | - Tyler Thacker
- National Veterinary Services Laboratories, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, IA, United States of America
| |
Collapse
|
3
|
Madsen-Bouterse SA, Stewart P, Williamson H, Schneider DA, Goldmann W. Caprine PRNP polymorphisms N146S and Q222K are associated with proteolytic cleavage of PrP C. Genet Sel Evol 2021; 53:52. [PMID: 34147084 PMCID: PMC8214774 DOI: 10.1186/s12711-021-00646-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 06/09/2021] [Indexed: 11/17/2022] Open
Abstract
Expression of the cellular prion protein (PrPC) is crucial for the development of prion diseases. Amino acid changes in PrPC or a reduced amount of PrPC may modulate disease resistance. The relative abundance of C1, a natural α-cleavage fragment of PrPC, was previously found to be associated with a resistant PRNP genotype in sheep. Goats are another small ruminant where classical scrapie susceptibility is under strong genetic control. In this study, we assessed PrPC in goats for the existence of similar associations between PrPC fragments and genotype. Brain tissue homogenates from scrapie-free goats with wild type PRNP or polymorphisms (I142M, H143R, N146S, or Q222K) were deglycosylated prior to immunoblot for assessment of the relative abundance of the C1 fragment of PrPC. The presence of K222 or S146 alleles demonstrated significantly different relative levels of C1 compared to that observed in wild type goats, which suggests that the genotype association with C1 is neither unique to sheep nor exclusive to the ovine Q171R dimorphism.
Collapse
Affiliation(s)
- Sally A Madsen-Bouterse
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA.
| | - Paula Stewart
- The Roslin Institute and R(D)SVS University of Edinburgh, Easter Bush, Midlothian, UK
| | - Helen Williamson
- The Roslin Institute and R(D)SVS University of Edinburgh, Easter Bush, Midlothian, UK
| | - David A Schneider
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA.,Animal Disease Research Unit, Agricultural Research Service, US Department of Agriculture, Pullman, WA, USA
| | - Wilfred Goldmann
- The Roslin Institute and R(D)SVS University of Edinburgh, Easter Bush, Midlothian, UK
| |
Collapse
|
4
|
Abstract
Scrapie is a naturally occurring transmissible spongiform encephalopathy (TSE) or prion disease of sheep and goats. Scrapie is a protein misfolding disease where the normal prion protein (PrPC) misfolds into a pathogenic form (PrPSc) that is highly resistant to enzymatic breakdown within the cell and accumulates, eventually leading to neurodegeneration. The amino acid sequence of the prion protein and tissue distribution of PrPSc within affected hosts have a major role in determining susceptibility to and potential environmental contamination with the scrapie agent. Many countries have genotype-based eradication programs that emphasize using rams that express arginine at codon 171 in the prion protein, which is associated with resistance to the classical scrapie agent. In classical scrapie, accumulation of PrPSc within lymphoid and other tissues facilitates environmental contamination and spread of the disease within flocks. A major distinction can be made between classical scrapie strains that are readily spread within populations of susceptible sheep and goats and atypical (Nor-98) scrapie that has unique molecular and phenotype characteristics and is thought to occur spontaneously in older sheep or goats. This review provides an overview of classical and atypical scrapie with consideration of potential transmission of classical scrapie to other mammalian hosts.
Collapse
Affiliation(s)
- Justin J Greenlee
- 1 Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| |
Collapse
|
5
|
Vouraki S, Gelasakis AI, Alexandri P, Boukouvala E, Ekateriniadou LV, Banos G, Arsenos G. Genetic profile of scrapie codons 146, 211 and 222 in the PRNP gene locus in three breeds of dairy goats. PLoS One 2018; 13:e0198819. [PMID: 29879210 PMCID: PMC5991713 DOI: 10.1371/journal.pone.0198819] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/27/2018] [Indexed: 11/29/2022] Open
Abstract
Polymorphisms at PRNP gene locus have been associated with resistance against classical scrapie in goats. Genetic selection on this gene within appropriate breeding programs may contribute to the control of the disease. The present study characterized the genetic profile of codons 146, 211 and 222 in three dairy goat breeds in Greece. A total of 766 dairy goats from seven farms were used. Animals belonged to two indigenous Greek, Eghoria (n = 264) and Skopelos (n = 287) and a foreign breed, Damascus (n = 215). Genomic DNA was extracted from blood samples from individual animals. Polymorphisms were detected in these codons using Real-Time PCR analysis and four different Custom TaqMan® SNP Genotyping Assays. Genotypic, allelic and haplotypic frequencies were calculated based on individual animal genotypes. Chi-square tests were used to examine Hardy-Weinberg equilibrium state and compare genotypic distribution across breeds. Genetic distances among the three breeds, and between these and 30 breeds reared in other countries were estimated based on haplotypic frequencies using fixation index FST with Arlequin v3.1 software; a Neighbor-Joining tree was created using PHYLIP package v3.695. Level of statistical significance was set at P = 0.01. All scrapie resistance-associated alleles (146S, 146D, 211Q and 222K) were detected in the studied population. Significant frequency differences were observed between the indigenous Greek and Damascus breeds. Alleles 222K and 146S had the highest frequency in the two indigenous and the Damascus breed, respectively (ca. 6.0%). The studied breeds shared similar haplotypic frequencies with most South Italian and Turkish breeds but differed significantly from North-Western European, Far East and some USA goat breeds. Results suggest there is adequate variation in the PRNP gene locus to support breeding programs for enhanced scrapie resistance in goats reared in Greece. Genetic comparisons among goat breeds indicate that separate breeding programs should apply to the two indigenous and the imported Damascus breeds.
Collapse
Affiliation(s)
- Sotiria Vouraki
- Laboratory of Animal Husbandry, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasios I. Gelasakis
- Veterinary Research Institute of Thessaloniki, Hellenic Agricultural Organization Demeter, Thessaloniki, Greece
| | - Panoraia Alexandri
- Laboratory of Animal Husbandry, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evridiki Boukouvala
- Veterinary Research Institute of Thessaloniki, Hellenic Agricultural Organization Demeter, Thessaloniki, Greece
| | - Loukia V. Ekateriniadou
- Veterinary Research Institute of Thessaloniki, Hellenic Agricultural Organization Demeter, Thessaloniki, Greece
| | - Georgios Banos
- Laboratory of Animal Husbandry, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Scotland’s Rural College and The Roslin Institute, University of Edinburgh, Scotland, United Kingdom
| | - Georgios Arsenos
- Laboratory of Animal Husbandry, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|