1
|
Huang Z, Shi N, Luo Z, Chen F, Feng X, Lai Y, Li J, Yi X, Xia W, Tang A. Identification and characterization of the tumor necrosis factor receptor superfamily in the Chinese tree shrew (Tupaia belangeri chinensis). BMC Genomics 2025; 26:338. [PMID: 40186114 PMCID: PMC11969777 DOI: 10.1186/s12864-025-11451-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/05/2025] [Indexed: 04/07/2025] Open
Abstract
The tumor necrosis factor receptor superfamily (TNFRSF) plays a vital role in eliciting immune responses against infections. The tree shrew, closely related to primates, is often utilized in human disease models. Here, we analyzed TNFRSF members from 11 different animal species, including the Chinese tree shrew, and identified 24 tree shrew TNFRSF (tTNFRSF) genes, which were grouped into seven subcategories with similar motifs, sequences, and gene structures. As expected, the multi-species collinearity analysis revealed that tTNFRSF genome bears a greater resemblance to humans than to mice. Transcriptome data from 28 samples across ten organ types showed high TNFRSF expression predominantly in immune organs. It was seen that TNFRSF13C co-expresses consistently with the B cell surface marker CD79A, which is consistent with its characteristics in humans. The tissue distribution and co-expression were confirmed via RT-qPCR and immunofluorescence. Evaluation of transcriptome data from 70 samples infected with six types of viruses showed that most TNFRSF genes were upregulated in tree shrew post-viral infection. TNFRSF exerts antiviral function most probably through the activation of the NF-κB pathway, subsequently causing apoptosis of infected cells. Our findings provide evolutionary and functional insights into tTNFRSF, indicating its potential utility in human viral infection models.
Collapse
Affiliation(s)
- Zongjian Huang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530000, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, 530000, China
| | - Nan Shi
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530000, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, 530000, China
| | - Zhenqiu Luo
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530000, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, 530000, China
| | - Fangfang Chen
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530000, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, 530000, China
| | - Xunwei Feng
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530000, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, 530000, China
| | - Yongjing Lai
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530000, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, 530000, China
| | - Jian Li
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530000, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, 530000, China
| | - Xiang Yi
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530000, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, 530000, China
| | - Wei Xia
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530000, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, 530000, China.
| | - Anzhou Tang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530000, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, 530000, China.
- State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| |
Collapse
|
2
|
Herron ICT, Laws TR, Nelson M. Marmosets as models of infectious diseases. Front Cell Infect Microbiol 2024; 14:1340017. [PMID: 38465237 PMCID: PMC10921895 DOI: 10.3389/fcimb.2024.1340017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/29/2024] [Indexed: 03/12/2024] Open
Abstract
Animal models of infectious disease often serve a crucial purpose in obtaining licensure of therapeutics and medical countermeasures, particularly in situations where human trials are not feasible, i.e., for those diseases that occur infrequently in the human population. The common marmoset (Callithrix jacchus), a Neotropical new-world (platyrrhines) non-human primate, has gained increasing attention as an animal model for a number of diseases given its small size, availability and evolutionary proximity to humans. This review aims to (i) discuss the pros and cons of the common marmoset as an animal model by providing a brief snapshot of how marmosets are currently utilized in biomedical research, (ii) summarize and evaluate relevant aspects of the marmoset immune system to the study of infectious diseases, (iii) provide a historical backdrop, outlining the significance of infectious diseases and the importance of developing reliable animal models to test novel therapeutics, and (iv) provide a summary of infectious diseases for which a marmoset model exists, followed by an in-depth discussion of the marmoset models of two studied bacterial infectious diseases (tularemia and melioidosis) and one viral infectious disease (viral hepatitis C).
Collapse
Affiliation(s)
- Ian C. T. Herron
- CBR Division, Defence Science and Technology Laboratory (Dstl), Salisbury, United Kingdom
| | | | | |
Collapse
|
3
|
Xia W, Liu L, Shi N, Zhang C, Tang A, He G. Epstein Barr virus infection in tree shrews alters the composition of gut microbiota and metabolome profile. Virol J 2023; 20:177. [PMID: 37553712 PMCID: PMC10410904 DOI: 10.1186/s12985-023-02147-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/30/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV) infection is a major global threat; its manifestations range from the absence of symptoms to multiorgan malignancies and various gastrointestinal diseases. Analyzing the composition and metabolomic profile of gut microbiota during acute EBV infection might be instrumental in understanding and controlling EBV. METHODS Six tree shrews were inoculated with EBV by intravenous injection. Blood was collected at regular intervals thereafter from the femoral vein to detect EBV and inflammatory biomarker. At the same time, tree shrew faeces were collected for 16 S rRNA gene sequencing and Non-targeted metabolomics analysis. RESULTS 16 S rRNA gene characterization along with β diversity analysis exhibited remarkable alterations in gut microflora structure with a peak at 7 days post-infection(dpi). Some alterations in the relative richness of bacterial taxon were linked to infectious indicators. Of note, Butyricicoccus relative richness was positively linked to EBV presence in the blood and plasma, the opposite correlation was seen with Variovorax and Paramuribaculum. Non-targeted metabolomics indicated the fecal metabolome profile altered during EBV infection, particularly 7 dpi. The relative abundance of geranic acid and undecylenic acid in stool samples was positively linked to systemic inflammatory biomarkers, and an inverse relationship was reported with the estrone glucuronide, linoleic acid, protoporphyrin IX and tyramine. CONCLUSION Collectively, EBV infection in this model correlated with changes in the composition and metabolome profile of the gut microbiota.
Collapse
Affiliation(s)
- Wei Xia
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Gaungxi Medical University, Ministry of Education, Nanning, Guangxi, China
| | - Lei Liu
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Gaungxi Medical University, Ministry of Education, Nanning, Guangxi, China
| | - Nan Shi
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Gaungxi Medical University, Ministry of Education, Nanning, Guangxi, China
| | - Chaoyin Zhang
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Gaungxi Medical University, Ministry of Education, Nanning, Guangxi, China
| | - Anzhou Tang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Gaungxi Medical University, Ministry of Education, Nanning, Guangxi, China.
| | - Guangyao He
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Gaungxi Medical University, Ministry of Education, Nanning, Guangxi, China.
| |
Collapse
|
4
|
Feng J, Jia T, Wang Z, Zhu W. Differences of energy adaptation strategies in Tupaia belangeri between Pianma and Tengchong region by metabolomics of liver: Role of warmer temperature. Front Physiol 2022; 13:1068636. [PMID: 36467696 PMCID: PMC9713704 DOI: 10.3389/fphys.2022.1068636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/31/2022] [Indexed: 09/10/2024] Open
Abstract
Global warming is becoming the future climate trend and will have a significant impact on small mammals, and they will also adapt at the physiological levels in response to climate change, among which the adaptation of energetics is the key to their survival. In order to investigate the physiological adaptation strategies in Tupaia belangeri affected by the climate change and to predict their possible fate under future global warming, we designed a metabonomic study in T. belangeri between two different places, including Pianma (PM, annual average temperature 15.01°C) and Tengchong (TC, annual average temperature 20.32°C), to analyze the differences of liver metabolite. Moreover, the changes of resting metabolic rate, body temperature, uncoupling protein 1content (UCP1) and other energy indicators in T. belangeri between the two places were also measured. The results showed that T. belangeri in warm areas (TC) reduced the concentrations of energy metabolites in the liver, such as pyruvic acid, fructose 6-phosphate, citric acid, malic acid, fumaric acid etc., so their energy metabolism intensity was also reduced, indicating that important energy metabolism pathway of glycolysis and tricarboxylic acid cycle (TCA) pathway reduced in T. belangeri from warmer habitat. Furthermore, brown adipose tissue (BAT) mass, UCP1 content and RMR in TC also decreased significantly, but their body temperature increased. All of the results suggested that T. belangeri adapt to the impact of warm temperature by reducing energy expenditure and increasing body temperature. In conclusion, our research had broadened our understanding of the physiological adaptation strategies to cope with climate change, and also provided a preliminary insight into the fate of T. belangeri for the future global warming climate.
Collapse
Affiliation(s)
- Jiahong Feng
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Ting Jia
- Yunnan College of Business Management, Kunming, China
| | - Zhengkun Wang
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Sciences, Yunnan Normal University, Kunming, China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy Ministry of Education, Yunnan Normal University, Kunming, China
- Key Laboratory of Yunnan Province for Biomass Energy and Environment Biotechnology, Kunming, China
| | - Wanlong Zhu
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Sciences, Yunnan Normal University, Kunming, China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy Ministry of Education, Yunnan Normal University, Kunming, China
- Key Laboratory of Yunnan Province for Biomass Energy and Environment Biotechnology, Kunming, China
| |
Collapse
|
5
|
Bestion E, Halfon P, Mezouar S, Mège JL. Cell and Animal Models for SARS-CoV-2 Research. Viruses 2022; 14:1507. [PMID: 35891487 PMCID: PMC9319816 DOI: 10.3390/v14071507] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
During the last two years following the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, development of potent antiviral drugs and vaccines has been a global health priority. In this context, the understanding of virus pathophysiology, the identification of associated therapeutic targets, and the screening of potential effective compounds have been indispensable advancements. It was therefore of primary importance to develop experimental models that recapitulate the aspects of the human disease in the best way possible. This article reviews the information concerning available SARS-CoV-2 preclinical models during that time, including cell-based approaches and animal models. We discuss their evolution, their advantages, and drawbacks, as well as their relevance to drug effectiveness evaluation.
Collapse
Affiliation(s)
- Eloïne Bestion
- Microbe Evolution Phylogeny Infection, Institut pour la Recherche et le Developpement, Assistance Publique Hopitaux de Marseille, Aix-Marseille University, 13005 Marseille, France; (E.B.); (P.H.)
- Institue Hospitalo, Universitaire Mediterranée Infection, 13005 Marseille, France
- Genoscience Pharma, 13005 Marseille, France
| | - Philippe Halfon
- Microbe Evolution Phylogeny Infection, Institut pour la Recherche et le Developpement, Assistance Publique Hopitaux de Marseille, Aix-Marseille University, 13005 Marseille, France; (E.B.); (P.H.)
- Institue Hospitalo, Universitaire Mediterranée Infection, 13005 Marseille, France
- Genoscience Pharma, 13005 Marseille, France
| | - Soraya Mezouar
- Microbe Evolution Phylogeny Infection, Institut pour la Recherche et le Developpement, Assistance Publique Hopitaux de Marseille, Aix-Marseille University, 13005 Marseille, France; (E.B.); (P.H.)
- Institue Hospitalo, Universitaire Mediterranée Infection, 13005 Marseille, France
- Genoscience Pharma, 13005 Marseille, France
| | - Jean-Louis Mège
- Microbe Evolution Phylogeny Infection, Institut pour la Recherche et le Developpement, Assistance Publique Hopitaux de Marseille, Aix-Marseille University, 13005 Marseille, France; (E.B.); (P.H.)
- Institue Hospitalo, Universitaire Mediterranée Infection, 13005 Marseille, France
| |
Collapse
|
6
|
Qiu D, Kui X, Wang W, Li N, Tong P, Sun X, Lu C, Dai J. Identification of SEC14 like lipid binding 2(SEC14L2) sequence and expression profiles in the Chinese tree shrew (Tupaia belangeri chinensis). Mol Biol Rep 2022; 49:7307-7314. [PMID: 35767108 DOI: 10.1007/s11033-022-07518-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND The product of the SEC14L2 (SEC14 Like Lipid Binding 2) gene belongs to a family of lipid-binding proteins including Sec14p, alpha-tocopherol transfer protein, and cellular retinol-binding protein. SEC14L2 expression enables replication of clinical hepatitis C virus (HCV) isolates in several hepatoma cell lines, and mutations in SEC14L2 may enhance HCV replication in vitro. The Chinese tree shrew (Tupaia belangeri chinensis) is a potential animal model for studying HCV replication, however, the cDNA sequence, protein structure, and expression of the Chinese tree shrew SEC14L2 gene have yet to be characterized. METHODS AND RESULTS In the present study, we cloned the full-length cDNA sequence of the SEC14L2 in the Chinese tree shrew by using rapid amplification of cDNA ends technology. This led us to determine that, this is 2539 base pairs (bp) in length, the open reading frame sequence is 1212 bp, and encodes 403 amino acids. Following this, we constructed a phylogenetic tree based on SEC14L2 molecules from various species and compared SEC14L2 amino acid sequence with other species. This analysis indicated that the Chinese tree shrew SEC14L2 protein (tsSEC14L2) has 96.28% amino acid similarity to the human protein, and is more closely related to the human protein than either mouse or rat protein. The Chinese tree shrew SEC14L2 mRNA was detected in all tissues, and showed highest expression levels in the pancreas, small intestine and trachea, however the tsSEC14L2 protein abundance was highest in the liver and small intestine. CONCLUSION The Chinese tree shrew SEC14L2 gene was closer in evolutionary relation to humans and non-human primates and expression of the tsSEC14L2 protein was highest in the liver and small intestine. These results may provide useful information for tsSEC14L2 function in HCV infection.
Collapse
Affiliation(s)
- Dandan Qiu
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, No. 935 Jiaoling Road, Kunming, Yunan, China.,The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Xiuying Kui
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, No. 935 Jiaoling Road, Kunming, Yunan, China
| | - Wenguang Wang
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, No. 935 Jiaoling Road, Kunming, Yunan, China
| | - Na Li
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, No. 935 Jiaoling Road, Kunming, Yunan, China
| | - Pinfen Tong
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, No. 935 Jiaoling Road, Kunming, Yunan, China
| | - Xiaomei Sun
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, No. 935 Jiaoling Road, Kunming, Yunan, China
| | - Caixia Lu
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, No. 935 Jiaoling Road, Kunming, Yunan, China.
| | - Jiejie Dai
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, No. 935 Jiaoling Road, Kunming, Yunan, China.
| |
Collapse
|
7
|
Xia W, Chen H, Feng Y, Shi N, Huang Z, Feng Q, Jiang X, He G, Xie M, Lai Y, Wang Z, Yi X, Tang A. Tree Shrew Is a Suitable Animal Model for the Study of Epstein Barr Virus. Front Immunol 2022; 12:789604. [PMID: 35111158 PMCID: PMC8801525 DOI: 10.3389/fimmu.2021.789604] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/27/2021] [Indexed: 12/19/2022] Open
Abstract
Epstein-Barr virus (EBV) is a human herpesvirus that latently infects approximately 95% of adults and is associated with a spectrum of human diseases including Infectious Mononucleosis and a variety of malignancies. However, understanding the pathogenesis, vaccines and antiviral drugs for EBV-associated disease has been hampered by the lack of suitable animal models. Tree shrew is a novel laboratory animal with a close phylogenetic relationship to primates, which is a critical advantage for many animal models for human disease, especially viral infections. Herein, we first identified the key residues in the CR2 receptor that bind the gp350 protein and facilitate viral entry. We found that tree shrew shares 100% sequence identity with humans in these residues, which is much higher than rabbits (50%) and rats (25%). In vitro analysis showed that B lymphocytes of tree shrews are susceptible to EBV infection and replication, as well as EBV-enhanced cell proliferation. Moreover, results of in vivo experiments show that EBV infection in tree shrews resembles EBV infection in humans. The infected animals exhibited transient fever and loss of weight accompanied by neutropenia and high viremia levels during the acute phase of the viral infection. Thereafter, tree shrews acted as asymptomatic carriers of the virus in most cases that EBV-related protein could be detected in blood and tissues. However, a resurgence of EBV infection occurred at 49 dpi. Nanopore transcriptomic sequencing of peripheral blood in EBV-infected animals revealed the dynamic changes in biological processes occurring during EBV primary infection. Importantly, we find that neutrophil function was impaired in tree shrew model as well as human Infectious Mononucleosis datasets (GSE85599 and GSE45918). In addition, retrospective case reviews suggested that neutropenia may play an important role in EBV escaping host innate immune response, leading to long-term latent infection. Our findings demonstrated that tree shrew is a suitable animal model to evaluate the mechanisms of EBV infection, and for developing vaccines and therapeutic drugs against EBV.
Collapse
Affiliation(s)
- Wei Xia
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Gaungxi Medical University), Ministry of Education, Nanning, China
| | - Honglin Chen
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Gaungxi Medical University), Ministry of Education, Nanning, China
| | - Yiwei Feng
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Gaungxi Medical University), Ministry of Education, Nanning, China
| | - Nan Shi
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Gaungxi Medical University), Ministry of Education, Nanning, China
| | - Zongjian Huang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Gaungxi Medical University), Ministry of Education, Nanning, China
| | - Qingyuan Feng
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Gaungxi Medical University), Ministry of Education, Nanning, China
| | - Xu Jiang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Gaungxi Medical University), Ministry of Education, Nanning, China
| | - Guangyao He
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Gaungxi Medical University), Ministry of Education, Nanning, China
| | - Mao Xie
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Gaungxi Medical University), Ministry of Education, Nanning, China
| | - Yongjin Lai
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Gaungxi Medical University), Ministry of Education, Nanning, China
| | - Zhi Wang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Gaungxi Medical University), Ministry of Education, Nanning, China
| | - Xiang Yi
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Gaungxi Medical University), Ministry of Education, Nanning, China
| | - Anzhou Tang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Gaungxi Medical University), Ministry of Education, Nanning, China
| |
Collapse
|
8
|
Molecular cloning and characterization of NPC1L1 in the Chinese tree shrew (Tupaia belangeri chinensis). Mol Biol Rep 2021; 48:7975-7984. [PMID: 34716864 DOI: 10.1007/s11033-021-06829-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 10/11/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND The Niemann-Pick C1-Like 1 protein, a multi-transmembrane domain molecule, is critical for intestinal cholesterol absorption, and is the entry factor for hepatitis C virus (HCV). The Chinese tree shrew (Tupaia belangeri chinensis) is closer to primates in terms of genetic evolution than rodents. Previous studies indicated that the tree shrew was suitable for HCV research; however, little is known about tree shrew NPC1L1. METHODS AND RESULTS TsNPC1L1 cDNA was amplified by rapid amplification of cDNA ends (RACE) technology. The cDNA sequence, its encoded protein structure, and expression profile were analyzed. Results indicated that the tsNPC1L1 mRNA is 4948 bp in length and encodes a 1326 amino acid protein. TsNPC1L1 possesses 84.97% identity in homology to human NPC1L1 which is higher than both mouse (80.37%) and rat (81.80%). The protein structure was also similar to human with 13 conserved transmembrane helices, and a sterol-sensing domain (SSD). Like human NPC1L1, the tsNPC1L1 mRNA transcript is highly expressed in small intestine, but it was also well-expressed in the lung and pancreas of the tree shrew. CONCLUSION The homology of tree shrew NPC1L1 was closer to human than that of rodent NPC1L1. The expression of tsNPC1L1 was the highest in small intestine, and was detectable in lung and pancreas. These results may be useful in the study of tsNPC1L1 function in cholesterol absorption and HCV infection.
Collapse
|
9
|
Feng Y, Xia W, Zhao P, Yi X, Tang A. Survey anatomy and histological observation of the nasal cavity of Tupaia belangeri chinensis (Tupaiidae, Scandentia, Mammalia). Anat Rec (Hoboken) 2021; 305:1448-1458. [PMID: 34605617 DOI: 10.1002/ar.24793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 11/10/2022]
Abstract
This study aimed to provide researchers with an atlas of the survey anatomy, histology, and imaging of the nasal cavity of Tupaia belangeri chinensis. Seven T. b. chinensis adult males were euthanized and scanned using micro-computed tomography (CT). The nose was separated, and tissue sections were made on the coronal and axial planes to observe the survey anatomy and histological and imaging characteristics of the nose. T. b. chinensis contains one maxilloturbinal and three ethmoturbinals, one nasoturbinal, one interturbinal, two frontoturbinals, and one lamina semicircularis in the unilateral nasal cavity. Other identified structures were the ostiomeatal complex, vomeronasal organ, superior nasal vault, maxillary sinus, and frontal recess. The drainage pathways of the sinuses and nasal airflow in T. b. chinensis were confirmed. The vault epithelium consisted of the squamous epithelium, respiratory epithelium, transitional epithelium, and olfactory epithelium. Micro-CT confirmed our findings of the coronal tissue sections. The nasal cavity anatomy of T. b. chinensis is similar to that of some strepsirrhine primates. However, the airflow and olfactory function are quite different from that of humans. Our gross and histological atlas of the nasal septum, turbinals, maxillary sinus, and frontal recess provides a reference for researchers to use T. b. chinensis for nasal cavity functional research.
Collapse
Affiliation(s)
- Yiwei Feng
- First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wei Xia
- First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Pengcheng Zhao
- First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiang Yi
- First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Anzhou Tang
- First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
10
|
Li D, Baloch Z, Zhao Y, Bai L, Wang X, Wang G, Zhang AM, Lan K, Xia X. Establishment of Tree Shrew Animal Model for Kaposi's Sarcoma-Associated Herpesvirus (HHV-8) Infection. Front Microbiol 2021; 12:710067. [PMID: 34603235 PMCID: PMC8481836 DOI: 10.3389/fmicb.2021.710067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/01/2021] [Indexed: 01/22/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the most common cause of Kaposi's sarcoma (KS) and other malignant growths in humans. However, the lack of a KSHV-infected small animal model has hampered understanding of the mechanisms of KSHV infection, virus replication, pathogenesis, and persistence. This study was designed to explore the susceptibility of tree shrews as a possible KSHV-infected small animal model. A recombinant GFP (latent)/RFP (lytic)-positive rKSHV.219 strain was used to infect primary cells cultured from different tissues of tree shrews as an in vitro model and adult tree shrews as an in vivo model. KSHV latent nuclear antigen (LANA) and DNA were successfully detected in primary cells of tree shrews. Among them, tree shrew kidney epithelial cells (TSKEC) were the most susceptible cells to KSHV infection compared to other cells. KSHV genomic DNA, mRNA, and KSHV-specific proteins were readily detected in the TSKEC cultured up to 32 dpi. Moreover, KSHV DNA and mRNA transcription were also readily detected in the peripheral blood mononuclear cells (PBMCs) and various tissues of tree shrews infected with KSHV. Haematoxylin and eosin (HE) staining showed lymphocyte infiltration, lymphoid tissue focal aggregation, alveolar wall thickening, hepatocyte edema, hepatic necrosis in the spleen, lung, and liver of KSHV-infected animals. Additionally, immune-histochemical (IHC) staining showed that LANA or ORF62-positive cells were present in the spleen, lung, liver, and kidney of KSHV-infected tree shrews. Here, we have successfully established in vitro and in vivo KSHV latent infection in tree shrews. This small animal model is not only useful for studying the pathogenesis of KSHV in vivo but can also be a useful model to study transmission routes of viral infection and a useful platform to characterize the novel therapeutics against KSHV.
Collapse
Affiliation(s)
- Daoqun Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Institute of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zulqarnain Baloch
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yang Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Lei Bai
- State Key Laboratory of Virology, College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan, China
| | - Xing Wang
- State Key Laboratory of Virology, College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan, China
| | - Gang Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - A-Mei Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan, China
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
11
|
Shou S, Liu M, Yang Y, Kang N, Song Y, Tan D, Liu N, Wang F, Liu J, Xie Y. Animal Models for COVID-19: Hamsters, Mouse, Ferret, Mink, Tree Shrew, and Non-human Primates. Front Microbiol 2021; 12:626553. [PMID: 34531831 PMCID: PMC8438334 DOI: 10.3389/fmicb.2021.626553] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel coronavirus causing acute respiratory tract infection in humans. The virus has the characteristics of rapid transmission, long incubation period and strong pathogenicity, and has spread all over the world. Therefore, it is of great significance to select appropriate animal models for antiviral drug development and therapeutic effect evaluation. Here, we review and compare the current animal models of SARS-CoV-2.
Collapse
Affiliation(s)
- Shuyu Shou
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Menghui Liu
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yang Yang
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ning Kang
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yingying Song
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Dan Tan
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Nannan Liu
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Feifei Wang
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jing Liu
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Youhua Xie
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Children’s Hospital, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Kayesh MEH, Sanada T, Kohara M, Tsukiyama-Kohara K. Tree Shrew as an Emerging Small Animal Model for Human Viral Infection: A Recent Overview. Viruses 2021; 13:v13081641. [PMID: 34452505 PMCID: PMC8402676 DOI: 10.3390/v13081641] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 02/08/2023] Open
Abstract
Viral infection is a global public health threat causing millions of deaths. A suitable small animal model is essential for viral pathogenesis and host response studies that could be used in antiviral and vaccine development. The tree shrew (Tupaia belangeri or Tupaia belangeri chinenesis), a squirrel-like non-primate small mammal in the Tupaiidae family, has been reported to be susceptible to important human viral pathogens, including hepatitis viruses (e.g., HBV, HCV), respiratory viruses (influenza viruses, SARS-CoV-2, human adenovirus B), arboviruses (Zika virus and dengue virus), and other viruses (e.g., herpes simplex virus, etc.). The pathogenesis of these viruses is not fully understood due to the lack of an economically feasible suitable small animal model mimicking natural infection of human diseases. The tree shrew model significantly contributes towards a better understanding of the infection and pathogenesis of these important human pathogens, highlighting its potential to be used as a viable viral infection model of human viruses. Therefore, in this review, we summarize updates regarding human viral infection in the tree shrew model, which highlights the potential of the tree shrew to be utilized for human viral infection and pathogenesis studies.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan;
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal 8210, Bangladesh
| | - Takahiro Sanada
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (T.S.); (M.K.)
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (T.S.); (M.K.)
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan;
- Correspondence: ; Tel.: +81-99-285-3589
| |
Collapse
|
13
|
Baloch Z, Shen Z, Zhang L, Feng Y, Li D, Zhang NN, Deng YQ, Yang C, Sun X, Dai J, Yang Z, Qin CF, Xia X. Recapitulating Zika Virus Infection in Vagina of Tree Shrew (Tupaia belangeri). Front Cell Infect Microbiol 2021; 11:687338. [PMID: 34249779 PMCID: PMC8270636 DOI: 10.3389/fcimb.2021.687338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/10/2021] [Indexed: 01/03/2023] Open
Abstract
Sexual transmission of Zika Virus (ZIKV) elevates the risk of its dissemination in the female reproductive tract and causes a serious threat to the fetus. However, the available animal models are not appropriate to investigate sexual transmission, dynamics of ZIKV infection, replication, and shedding. The use of tree shrew as a small animal model of ZIKV vaginal infection was assessed in this study. A total of 23 sexually mature female tree shrews were infected with ZIKV GZ01 via the intravaginal route. There was no significant difference in change of body weight, and the temperature between ZIKV infected and control animals. Viral RNA loads were detected in blood, saliva, urine, and vaginal douching. ZIKV RNA was readily detected in vaginal lavage of 22 animals (95.65%, 22/23) at 1 dpi, and viral load ranged from 104.46 to 107.35 copies/ml, and the peak of viral load appeared at 1 dpi. The expression of key inflammatory genes, such as IL6, 8, CCL5, TNF-a, and CXCL9, was increased in the spleen of ZIKV infected animals. In the current study, female tree shrews have been successfully infected with ZIKV through the vaginal route for the first time. Interestingly, at first, ZIKV replicates at the local site of infection and then spreads throughout the host body to develop a robust systemic infection and mounted a protective immune response. This small animal model is not only valuable for exploring ZIKV sexual transmission and may also help to explain the cause of debilitating manifestations of the fetus in vivo.
Collapse
Affiliation(s)
- Zulqarnain Baloch
- Faculty of Life Science and Technology, Yunnan Provincial Center for Molecular Medicine, Kunming University of Science and Technology, Kunming, China
| | - Zhili Shen
- Faculty of Life Science and Technology, Yunnan Provincial Center for Molecular Medicine, Kunming University of Science and Technology, Kunming, China
| | - Li Zhang
- Faculty of Life Science and Technology, Yunnan Provincial Center for Molecular Medicine, Kunming University of Science and Technology, Kunming, China
| | - Yue Feng
- Faculty of Life Science and Technology, Yunnan Provincial Center for Molecular Medicine, Kunming University of Science and Technology, Kunming, China
| | - Daoqun Li
- Faculty of Life Science and Technology, Yunnan Provincial Center for Molecular Medicine, Kunming University of Science and Technology, Kunming, China
| | - Na-Na Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yong-Qiang Deng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Chunguang Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Xiaomei Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiejie Dai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zifeng Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xueshan Xia
- Faculty of Life Science and Technology, Yunnan Provincial Center for Molecular Medicine, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
14
|
Wang G, Zhang A, Wang B, Yin J, Feng Y, Baloch Z, Xia X. The homology analysis of ACE2 gene and its distinct expression in laboratory and wild animals.. [DOI: 10.1101/2021.04.08.439088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2023]
Abstract
AbstractAngiotensin-converting enzyme-2 (ACE2) has been recognized as an entry receptor of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into the host cells while bats has been suspected as natural host of SARS-CoV-2. However, the detail of intermediate host or the route of transmission of SARS-CoV-2 is still unclear. In this study, we analyze the conservation of ACE2 gene in 11 laboratory and wild animals that live in close proximity either with Bats or human and further investigated its RNA and protein expression pattern in wild bats, mice and tree shrew. We verified that the wild-bats and mice were belonged to Hipposideros pomona and Rattus norvegicus, respectively. ACE2 gene is highly conserved among all 11 animals species at the DNA level. Phylogenetic analysis based on the ACE2 nucleotide sequences revealed that wild bat and Tree shrew were forming a cluster close to human. We further report that ACE2 RNA expression pattern is highly species-specific in different tissues of different animals. Most notably, we found that the expression pattern of ACE2 RNA and protein are very different in each animal species. In summary, our results suggested that ACE2 gene is highly conserved among all 11 animals species. However, different relative expression pattern of ACE2 RNA and protein in each animal species is interesting. Further research is needed to clarify the possible connection between different relative expression pattern of ACE2 RNA and protein in different laboratory and wild animal species and the susceptibility to SARS-CoV-2 infection.
Collapse
|
15
|
Lu C, Li M, Sun X, Li N, Wang W, Tong P, Dai J. Comparing the hippocampal miRNA expression profiles of wild and domesticated Chinese tree shrews (Tupaia belangeri chinensis). BMC Ecol Evol 2021; 21:12. [PMID: 33514308 PMCID: PMC7853310 DOI: 10.1186/s12862-020-01740-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/21/2020] [Indexed: 11/10/2022] Open
Abstract
Background The domestication of tree shrews represents an important advance in the development of standardized laboratory animals. Little is known regarding the miRNA changes that accompany the transformation of wild tree shrews into domestic tree shrews. Results By performing miRNA-seq analysis on wild and domestic tree shrews, we identified 2410 miRNAs and 30 differentially expressed miRNAs in the hippocampus during tree shrew domestication. A KEGG analysis of the differentially expressed genes showed that the differentially expressed miRNAs were associated with ECM-receptor interaction, the phosphatidylinositol signaling system, protein digestion and absorption, inositol phosphate metabolism, lysine degradation, fatty acid degradation and focal adhesion. Most of these pathways could be classified under environmental information processing, organismal systems and metabolism. The miRNAs exclusively expressed in wild and tame tree shrews GO enriched in terms of divergent functions. The miRNA-mRNA networks suggested that novel-m1388-5p and novel-m0746-5p might play regulatory roles in domestication of tree shrews. Real–time RT-PCR analysis was employed to verify the presence of these miRNAs. Conclusion We identified a number of candidate miRNA-regulated domestication genes that may represent targets for selection during the domestication of tree shrews.
Collapse
Affiliation(s)
- Caixia Lu
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China. .,Yunnan Key Laboratory of Vaccine Research and Development On Severe Infectious Diseases, Kunming, China.
| | - Mingxue Li
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Xiaomei Sun
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research and Development On Severe Infectious Diseases, Kunming, China
| | - Na Li
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research and Development On Severe Infectious Diseases, Kunming, China
| | - Wenguang Wang
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research and Development On Severe Infectious Diseases, Kunming, China
| | - Pinfen Tong
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research and Development On Severe Infectious Diseases, Kunming, China
| | - Jiejie Dai
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China. .,Yunnan Key Laboratory of Vaccine Research and Development On Severe Infectious Diseases, Kunming, China.
| |
Collapse
|
16
|
Lu C, Feng Y, Sun X, Li N, Kuang D, Wang W, Tong P, Han Y, Xia X, Dai J. Tree shrew bone marrow-derived mesenchymal stem cells express CD81, OCLN, and miR-122, facilitating the entire hepatitis C virus life cycle. J Med Virol 2020; 92:3465-3474. [PMID: 32056224 DOI: 10.1002/jmv.25710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 02/10/2020] [Indexed: 01/12/2023]
Abstract
Hepatitis C virus (HCV) infection is a major cause of chronic liver disease and associated cirrhosis, and hepatocellular carcinoma worldwide. At present, there is no prophylactic vaccine against HCV due to the lack of in vivo and in vitro model systems. Although most recombinants of all major HCV genotypes replicate in Huh-7 cell line and derivatives, these cells are human hepatoma-derived cell line. Therefore, the development of un-tumor-derived cell systems facilitating the entire HCV life cycle is urgently needed. In this study, we aimed to establish a novel tree shrew-derived bone marrow-derived mesenchymal stem cell (BM-MSC) system to reconstruct the HCV life cycle. We transduction cluster of differentiation 81 (CD81), occludin (OCLN), and microRNA-122 (miR-122) into BM-MSCs, then used a well-established HCV, produced from the J6/JFH1-Huh7.5.1 culture system, to infect the cells. We observed that BM-MSCs transduction with CD81/OCLN or CD81/OCLN/miR-122 support HCV RNA replication and infectious virus production. We also found that the addition of exogenous vascular endothelial growth factor (VEGF) can enhance HCV infectivity in BM-MSCs, with HCV virus load up to 105 copies/mL. In conclusion, we identified the minimum essential factors required for HCV replication in tree shrew-derived nonhuman nonhepatic BM-MSCs. Further, we identified that exogenous addition of VEGF, and exogenous expression of CD81, OCLN, and miR-122, facilitates efficient viral replication and production of infectious particles. Our results describe a novel cell system capable of supporting the entire HCV life cycle, which may provide an essential tool for anti-HCV drug discovery, vaccine development, and study of pathogenesis.
Collapse
Affiliation(s)
- Caixia Lu
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
- Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - Yue Feng
- Yunnan Provincial Center for Molecular Medicine, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiaomei Sun
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
- Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - Na Li
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Dexuan Kuang
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Wenguang Wang
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Pinfen Tong
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Yuanyuan Han
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Xueshan Xia
- Yunnan Provincial Center for Molecular Medicine, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Jiejie Dai
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
- Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| |
Collapse
|
17
|
Zhang J, Xiao H, Bi Y, Long Q, Gong Y, Dai J, Sun M, Cun W. Characteristics of the tree shrew humoral immune system. Mol Immunol 2020; 127:175-185. [PMID: 32992149 DOI: 10.1016/j.molimm.2020.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022]
Abstract
Preclinical studies require an immune response similar to that of humans in a small animal model that is convenient to operate. Based on genome alignment, tree shrews are small animals considered to be more similar to primates than are rodents, and many human disease models have been established with tree shrews. However, the characteristics of the humoral immune response of tree shrews remain to be elucidated. In this study, the genetic sequence of the heavy chain constant region of tree shrew immunoglobulin (Ig) was complemented, and the results of immunoglobulin domain homology and transcriptome analysis showed that the tree shrew genome encodes only four classes of antibodies and does not encode IgD. The oldest IgM antibody has the highest homology with primates. After the complete sequence of each type of antibody was obtained, the tree shrew antibody protein was further expressed and purified by in vitro recombination, and an IgG quantitative evaluation system was established. The highly effective immuno protective effect induced by HSV-1 infection and the significant bactericidal effect induced by Neisseria meningitidis group C polysaccharide immunization showed that tree shrews exhibited immune responses more similar to humans than to mice. This may provide better predictive value for vaccine preclinical research.
Collapse
Affiliation(s)
- Jingjing Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, China; Yunnan Key Laboratory of Vaccine Research and Development of Severe Infectious Disease, 935 Jiaoling Road, Kunming, 650118, Yunnan, China
| | - Hongjian Xiao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, China; Yunnan Key Laboratory of Vaccine Research and Development of Severe Infectious Disease, 935 Jiaoling Road, Kunming, 650118, Yunnan, China
| | - Yanwei Bi
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, China; Yunnan Key Laboratory of Vaccine Research and Development of Severe Infectious Disease, 935 Jiaoling Road, Kunming, 650118, Yunnan, China
| | - Qiong Long
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, China; Yunnan Key Laboratory of Vaccine Research and Development of Severe Infectious Disease, 935 Jiaoling Road, Kunming, 650118, Yunnan, China
| | - Yue Gong
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, China; Yunnan Key Laboratory of Vaccine Research and Development of Severe Infectious Disease, 935 Jiaoling Road, Kunming, 650118, Yunnan, China
| | - Jiejie Dai
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, China; Yunnan Key Laboratory of Vaccine Research and Development of Severe Infectious Disease, 935 Jiaoling Road, Kunming, 650118, Yunnan, China
| | - Ming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, China; Yunnan Key Laboratory of Vaccine Research and Development of Severe Infectious Disease, 935 Jiaoling Road, Kunming, 650118, Yunnan, China
| | - Wei Cun
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, China; Yunnan Key Laboratory of Vaccine Research and Development of Severe Infectious Disease, 935 Jiaoling Road, Kunming, 650118, Yunnan, China.
| |
Collapse
|
18
|
Establishment and transcriptomic features of an immortalized hepatic cell line of the Chinese tree shrew. Appl Microbiol Biotechnol 2020; 104:8813-8823. [PMID: 32880691 DOI: 10.1007/s00253-020-10855-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/03/2020] [Accepted: 08/23/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND The Chinese tree shrew (Tupaia belangeri chinesis) is a rising experimental animal and has been used for studying a variety of human diseases, such as metabolic and viral infectious diseases. METHODS In this study, we established an immortalized tree shrew hepatic cell line, ITH6.1, by introducing the simian virus 40 large T antigen gene into primary tree shrew hepatocytes (PTHs). RESULTS The ITH6.1 cell line had a stable cell morphology and proliferation activity. This cell line could be infected by enterovirus 71 (EV71), but not hepatitis C virus (HCV), although the known HCV entry factors, including CD81, SR-BI, CLDN1 and OCLN, were all expressed in the PTHs and ITH6.1 of different passages. Comparison of the transcriptomic features of the PTHs and different passages of the ITH6.1 cells revealed the dynamic gene expression profiles during the transformation. We found that the DNA replication- and cell cycle-related genes were upregulated, whereas the metabolic pathway-related genes were downregulated in early passages of immortalized hepatocytes compared to the PTHs. Furthermore, expression of hepatocytes function-related genes were repressed in ITH6.1 compared to that of PTHs. CONCLUSION We believe these cellular expression alterations might cause the resistance of the ITH6.1 cell to HCV infection. This tree shrew liver cell line may be a good resource for the field. KEY POINTS • A tree shrew hepatic cell line (ITH6.1) was established. • ITH6.1 cells could be infected by EV71, but not HCV. • ITH6.1 had an altered expression profiling compared to the primary hepatocytes.
Collapse
|
19
|
Kemming J, Thimme R, Neumann-Haefelin C. Adaptive Immune Response against Hepatitis C Virus. Int J Mol Sci 2020; 21:ijms21165644. [PMID: 32781731 PMCID: PMC7460648 DOI: 10.3390/ijms21165644] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/18/2022] Open
Abstract
A functional adaptive immune response is the major determinant for clearance of hepatitis C virus (HCV) infection. However, in the majority of patients, this response fails and persistent infection evolves. Here, we dissect the HCV-specific key players of adaptive immunity, namely B cells and T cells, and describe factors that affect infection outcome. Once chronic infection is established, continuous exposure to HCV antigens affects functionality, phenotype, transcriptional program, metabolism, and the epigenetics of the adaptive immune cells. In addition, viral escape mutations contribute to the failure of adaptive antiviral immunity. Direct-acting antivirals (DAA) can mediate HCV clearance in almost all patients with chronic HCV infection, however, defects in adaptive immune cell populations remain, only limited functional memory is obtained and reinfection of cured individuals is possible. Thus, to avoid potential reinfection and achieve global elimination of HCV infections, a prophylactic vaccine is needed. Recent vaccine trials could induce HCV-specific immunity but failed to protect from persistent infection. Thus, lessons from natural protection from persistent infection, DAA-mediated cure, and non-protective vaccination trials might lead the way to successful vaccination strategies in the future.
Collapse
Affiliation(s)
- Janine Kemming
- Department of Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79102 Freiburg im Breisgau, Germany; (J.K.); (R.T.)
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg im Breisgau, Germany
| | - Robert Thimme
- Department of Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79102 Freiburg im Breisgau, Germany; (J.K.); (R.T.)
| | - Christoph Neumann-Haefelin
- Department of Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79102 Freiburg im Breisgau, Germany; (J.K.); (R.T.)
- Correspondence: ; Tel.: +49-761-270-32800
| |
Collapse
|
20
|
Gu W, Wang W, Tong P, Liu C, Jia J, Lu C, Han Y, Sun X, Kuang D, Li N, Dai J. Comparative genomic analysis of Proteus spp. isolated from tree shrews indicated unexpectedly high genetic diversity. PLoS One 2020; 15:e0229125. [PMID: 32084183 PMCID: PMC7034874 DOI: 10.1371/journal.pone.0229125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 01/30/2020] [Indexed: 12/11/2022] Open
Abstract
Proteus spp. are commensal gastrointestinal bacteria in many hosts, but information regarding the mutual relationships between these bacteria and their hosts is limited. The tree shrew is an alternative laboratory animal widely used for human disease research. However, little is known about the relationship between Proteus spp. and tree shrews. In this study, the complete genome sequencing method was used to analyse the characteristics of Proteus spp. isolated from tree shrews, and comparative genomic analysis was performed to reveal their relationships. The results showed that 36 Proteus spp. bacteria were isolated, including 34 Proteus mirabilis strains and two Proteus vulgaris strains. The effective rate of sequencing was 93.53%±2.73%, with an average GC content of 39.94%±0.25%. Briefly, 3682.89±90.37, 2771.36±36.01 and 2832.06±42.49 genes were annotated in the NCBI non-redundant nucleotide database (NR), SwissProt database and KEGG database, respectively. The high proportions of macrolide-, vancomycin-, bacitracin-, and tetracycline-resistance profiles of the strains were annotated in the Antibiotic Resistance Genes Database (ARDB). Flagella, lipooligosaccharides, type 1 fimbriae and P fimbriae were the most abundantly annotated virulence factors in the Virulence Factor Database (VFDB). SNP variants indicated high proportions of base transitions (Ts), homozygous mutations (Hom) and non-synonymous mutations (Non-Syn) in Proteus spp. (P<0.05). Phylogenetic analysis of Proteus spp. and other references revealed high genetic diversity for strains isolated from tree shrews, and host specificity of Proteus spp. bacteria was not found. Overall, this study provided important information on characteristics of genome for Proteus spp. isolated from tree shrews.
Collapse
Affiliation(s)
- Wenpeng Gu
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
- Department of Acute Infectious Diseases Control and Prevention, Yunnan Provincial Center for Disease Control and Prevention, Kunming, China
| | - Wenguang Wang
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - Pinfen Tong
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - Chenxiu Liu
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - Jie Jia
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - Caixia Lu
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - Yuanyuan Han
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - Xiaomei Sun
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - Dexuan Kuang
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - Na Li
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - Jiejie Dai
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
- * E-mail:
| |
Collapse
|
21
|
Xu S, Li X, Yang J, Wang Z, Jia Y, Han L, Wang L, Zhu Q. Comparative Pathogenicity and Transmissibility of Pandemic H1N1, Avian H5N1, and Human H7N9 Influenza Viruses in Tree Shrews. Front Microbiol 2019; 10:2955. [PMID: 31921093 PMCID: PMC6933948 DOI: 10.3389/fmicb.2019.02955] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/09/2019] [Indexed: 12/14/2022] Open
Abstract
Influenza A viruses (IAVs) continuously challenge the poultry industry and human health. Studies of IAVs are still hampered by the availability of suitable animal models. Chinese tree shrews (Tupaia belangeri chinensis) are closely related to primates physiologically and genetically, which make them a potential animal model for human diseases. In this study, we comprehensively evaluated infectivity and transmissibility in Chinese tree shrews by using pandemic H1N1 (A/Sichuan/1/2009, pdmH1N1), avian-origin H5N1 (A/Chicken/Gansu/2/2012, H5N1) and early human-origin H7N9 (A/Suzhou/SZ19/2014, H7N9) IAVs. We found that these viruses replicated efficiently in primary tree shrew cells and tree shrews without prior adaption. Pathological lesions in the lungs of the infected tree shrews were severe on day 3 post-inoculation, although clinic symptoms were self-limiting. The pdmH1N1 and H7N9 viruses, but not the H5N1 virus, transmitted among tree shrews by direct contact. Interestingly, we also observed that unadapted H7N9 virus could transmit from tree shrews to naïve guinea pigs. Virus-inoculated tree shrews generated a strong humoral immune response and were protected from challenge with homologous virus. Taken together, our findings suggest the Chinese tree shrew would be a useful mammalian model to study the pathogenesis and transmission of IAVs.
Collapse
Affiliation(s)
- Shuai Xu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xuyong Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jiayun Yang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhengxiang Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yane Jia
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Lu Han
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Liang Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qiyun Zhu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
22
|
Feng Y, Xia W, Ji K, Lai Y, Feng Q, Chen H, Huang Z, Yi X, Tang A. Hemogram study of an artificially feeding tree shrew (Tupaia belangeri chinensis). Exp Anim 2019; 69:80-91. [PMID: 31527336 PMCID: PMC7004801 DOI: 10.1538/expanim.19-0079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Systematic classification and determination of various cells in normal peripheral blood of artificially feeding Tupaia belangeri chinensis of different ages and genders and evaluation of the effectiveness of an automatic blood cell classification counter for measuring tree shrew blood cells. Child, young and adult tree shrews (forty for each group) were randomly selected, half male and half female. After the animals were stable, the peripheral blood of each group was collected through the femoral vein, and the morphology of various blood cells of the tree shrew was observed and classified by the manual microscopic counting method and by an automatic blood cell classification counter. The Reference intervals of the normal peripheral blood cell absolute count, cell diameter and white blood cell percentage in tree shrews of different ages and genders has been calculated. White blood cell count and neutrophil relative count increased with age, while lymphocyte relative count decreased. The white blood cell count, neutrophil relative count, and lymphocyte relative count in the child group, as well as lymphocyte relative count in the young group, significantly differed according to gender (P<0.05), and the differences in other indicators were not significant. The Bland-Altman plot and the Passing-Bablok scattergram showed that the change trend of each indicator was consistent but exhibited large systematic differences between methods. Differences in peripheral blood cells exist among different age groups and different genders. An automatic blood cell classification counter is not suitable for the absolute count of blood cells in the tree shrew.
Collapse
Affiliation(s)
- Yiwei Feng
- First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning 530000, P.R.China
| | - Wei Xia
- First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning 530000, P.R.China
| | - Ketong Ji
- First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning 530000, P.R.China
| | - Yongjing Lai
- First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning 530000, P.R.China
| | - Qingyuan Feng
- First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning 530000, P.R.China
| | - Honglin Chen
- First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning 530000, P.R.China
| | - Zongjian Huang
- First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning 530000, P.R.China
| | - Xiang Yi
- First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning 530000, P.R.China
| | - Anzhou Tang
- First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning 530000, P.R.China
| |
Collapse
|
23
|
Gu W, Tong P, Liu C, Wang W, Lu C, Han Y, Sun X, Kuang DX, Li N, Dai J. The characteristics of gut microbiota and commensal Enterobacteriaceae isolates in tree shrew (Tupaia belangeri). BMC Microbiol 2019; 19:203. [PMID: 31477004 PMCID: PMC6721287 DOI: 10.1186/s12866-019-1581-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Tree shrew is a novel laboratory animal with specific characters for human disease researches in recent years. However, little is known about its characteristics of gut microbial community and intestinal commensal bacteria. In this study, 16S rRNA sequencing method was used to illustrate the gut microbiota structure and commensal Enterobacteriaceae bacteria were isolated to demonstrate their features. RESULTS The results showed Epsilonbacteraeota (30%), Proteobacteria (25%), Firmicutes (19%), Fusobacteria (13%), and Bacteroidetes (8%) were the most abundant phyla in the gut of tree shrew. Campylobacteria, Campylobacterales, Helicobacteraceae and Helicobacter were the predominant abundance for class, order, family and genus levels respectively. The alpha diversity analysis showed statistical significance (P < 0.05) for operational taxonomic units (OTUs), the richness estimates, and diversity indices for age groups of tree shrew. Beta diversity revealed the significant difference (P < 0.05) between age groups, which showed high abundance of Epsilonbacteraeota and Spirochaetes in infant group, Proteobacteria in young group, Fusobacteria in middle group, and Firmicutes in senile group. The diversity of microbial community was increased followed by the aging process of this animal. 16S rRNA gene functional prediction indicated that highly hot spots for infectious diseases, and neurodegenerative diseases in low age group of tree shrew (infant and young). The most isolated commensal Enterobacteriaceae bacteria from tree shrew were Proteus spp. (67%) and Escherichia coli (25%). Among these strains, the antibiotic resistant isolates were commonly found, and pulsed-field gel electrophoresis (PFGE) results of Proteus spp. indicated a high degree of similarity between isolates in the same age group, which was not observed for other bacteria. CONCLUSIONS In general, this study made understandings of the gut community structure and diversity of tree shrew.
Collapse
Affiliation(s)
- Wenpeng Gu
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Zhao zong Road 66, Kunming, 650118, China.,Department of Acute Infectious Diseases Control and Prevention, Yunnan Provincial Centre for Disease Control and Prevention, Kunming, 650022, China
| | - Pinfen Tong
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Zhao zong Road 66, Kunming, 650118, China
| | - Chenxiu Liu
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Zhao zong Road 66, Kunming, 650118, China
| | - Wenguang Wang
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Zhao zong Road 66, Kunming, 650118, China
| | - Caixia Lu
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Zhao zong Road 66, Kunming, 650118, China
| | - Yuanyuan Han
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Zhao zong Road 66, Kunming, 650118, China
| | - Xiaomei Sun
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Zhao zong Road 66, Kunming, 650118, China
| | - De Xuan Kuang
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Zhao zong Road 66, Kunming, 650118, China
| | - Na Li
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Zhao zong Road 66, Kunming, 650118, China
| | - Jiejie Dai
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Zhao zong Road 66, Kunming, 650118, China.
| |
Collapse
|
24
|
Lu C, Sun X, Li N, Wang W, Kuang D, Tong P, Han Y, Dai J. CircRNAs in the tree shrew ( Tupaia belangeri) brain during postnatal development and aging. Aging (Albany NY) 2019; 10:833-852. [PMID: 29723158 PMCID: PMC5940110 DOI: 10.18632/aging.101437] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/23/2018] [Indexed: 12/13/2022]
Abstract
Circular RNAs (circRNAs) are a novel type of non-coding RNA expressed across different species and tissues. At present, little is known about the expression and function of circRNAs in the tree shrew brain. In this study, we used RNA-seq to identify 35,007 circRNAs in hippocampus and cerebellum samples from infant (aged 47-52 days), young (aged 15-18 months), and old (aged 78-86 months) tree shrews. We observed no significant changes in the total circRNA expression profiles in different brain regions over time. However, circRNA tended to be downregulated in the cerebellum over time. Real-time RT-PCR analysis verified the presence of circRNAs. KEGG analysis indicated the occurrence of ubiquitin-mediated proteolysis, the MAPK signaling pathway, phosphatidylinositol signaling system, long-term depression, the rap1 signaling pathway, and long-term potentiation in both brain regions. We also observed that 29,087 (83.1%) tree shrew circRNAs shared homology with human circRNAs. The competing endogenous RNA networks suggested novel_circRNA_007362 potential functions as a 24-miRNAs sponge to regulate UBE4B expression. Thus, we obtained comprehensive circRNA expression profiles in the tree shrew brain during postnatal development and aging, which might help to elucidate the functions of circRNAs during brain aging and in age-related diseases.
Collapse
Affiliation(s)
- CaiXia Lu
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China.,Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - XiaoMei Sun
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China.,Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - Na Li
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - WenGuang Wang
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - DeXuan Kuang
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - PinFen Tong
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - YuanYuan Han
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - JieJie Dai
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China.,Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| |
Collapse
|
25
|
Zhang L, Shen ZL, Feng Y, Li DQ, Zhang NN, Deng YQ, Qi XP, Sun XM, Dai JJ, Yang CG, Yang ZF, Qin CF, Xia XS. Infectivity of Zika virus on primary cells support tree shrew as animal model. Emerg Microbes Infect 2019; 8:232-241. [PMID: 30866776 PMCID: PMC6455147 DOI: 10.1080/22221751.2018.1559707] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus that caused the public health emergency. Recently, we have proved a novel small animal tree shrew was susceptive to ZIKV infection and presented the most common rash symptoms as ZIKV patients. Here we further cultured the primary cells from different tissues of this animal to determine the tissue tropism of ZIKV infection in vitro. The results showed that the primary cells from tree shrew kidney, lung, liver, skin and aorta were permissive to ZIKV infection and could support viral replication by the detection of viral specific RNA intra- and extra-cells. In comparing, the skin fibroblast and vascular endothelial cells were highly permissive to ZIKV infection with high releasing of active virus particles in supernatants proved by its infectivity in established neonatal mouse model. The expressions of ZIKV envelop and nonstructural protein-1, and the effects and strong immune response of primary tree shrew cells were also detected followed by ZIKV infection. These findings provide powerful in vitro cell-level evidence to support tree shrew as animal model of ZIKV infection and may help to explain the rash manifestations in vivo.
Collapse
Affiliation(s)
- Li Zhang
- a Faculty of Environmental Science and Engineering , Kunming University of Science and Technology , Kunming , People's Republic of China.,b Faculty of Life Science and Technology, Yunnan Provincial Center for Molecular Medicine , Kunming University of Science and Technology , Kunming , People's Republic of China
| | - Zhi-Li Shen
- b Faculty of Life Science and Technology, Yunnan Provincial Center for Molecular Medicine , Kunming University of Science and Technology , Kunming , People's Republic of China
| | - Yue Feng
- b Faculty of Life Science and Technology, Yunnan Provincial Center for Molecular Medicine , Kunming University of Science and Technology , Kunming , People's Republic of China
| | - Dao-Qun Li
- b Faculty of Life Science and Technology, Yunnan Provincial Center for Molecular Medicine , Kunming University of Science and Technology , Kunming , People's Republic of China
| | - Na-Na Zhang
- c State Key Laboratory of Pathogen and Biosecurity , Beijing Institute of Microbiology and Epidemiology , Beijing , People's Republic of China
| | - Yong-Qiang Deng
- c State Key Laboratory of Pathogen and Biosecurity , Beijing Institute of Microbiology and Epidemiology , Beijing , People's Republic of China
| | - Xiao-Peng Qi
- d Key Laboratory of Animal Models and Human Disease Mechanisms , Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming , People's Republic of China
| | - Xiao-Mei Sun
- e Center of Tree Shrew Germplasm Resources , Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Jie-Jie Dai
- e Center of Tree Shrew Germplasm Resources , Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Chun-Guang Yang
- f State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease , First Affiliated Hospital of Guagnzhou Medical University , Guangzhou , People's Republic of China
| | - Zi-Feng Yang
- f State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease , First Affiliated Hospital of Guagnzhou Medical University , Guangzhou , People's Republic of China
| | - Cheng-Feng Qin
- c State Key Laboratory of Pathogen and Biosecurity , Beijing Institute of Microbiology and Epidemiology , Beijing , People's Republic of China
| | - Xue-Shan Xia
- b Faculty of Life Science and Technology, Yunnan Provincial Center for Molecular Medicine , Kunming University of Science and Technology , Kunming , People's Republic of China
| |
Collapse
|
26
|
Bamford CGG, McLauchlan J. Comparative host genomics: how has human evolution affected our immune defence against hepatitis C virus? Future Virol 2019. [DOI: 10.2217/fvl-2019-0017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Connor GG Bamford
- MRC – University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow, G61 1QH, UK
| | - John McLauchlan
- MRC – University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow, G61 1QH, UK
| |
Collapse
|
27
|
Chen L, Gu W, Liu C, Wang W, Li N, Chen Y, Lu C, Sun X, Han Y, Kuang D, Tong P, Dai J. Characteristics of the tree shrew gut virome. PLoS One 2019; 14:e0212774. [PMID: 30807598 PMCID: PMC6391014 DOI: 10.1371/journal.pone.0212774] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 02/08/2019] [Indexed: 12/15/2022] Open
Abstract
The tree shrew (Tupaia belangeri) has been proposed as an alternative laboratory animal to primates in biomedical research in recent years. However, characteristics of the tree shrew gut virome remain unclear. In this study, the metagenomic analysis method was used to identify the features of gut virome from fecal samples of this animal. Results showed that 5.80% of sequence reads in the libraries exhibited significant similarity to sequences deposited in the viral reference database (NCBI non-redundant nucleotide databases, viral protein databases and ACLAME database), and these reads were further classified into three major orders: Caudovirales (58.0%), Picornavirales (16.0%), and Herpesvirales (6.0%). Siphoviridae (46.0%), Myoviridae (45.0%), and Podoviridae (8.0%) comprised most Caudovirales. Picornaviridae (99.9%) and Herpesviridae (99.0%) were the primary families of Picornavirales and Herpesvirales, respectively. According to the host types and nucleic acid classifications, all of the related viruses in this study were divided into bacterial phage (61.83%), animal-specific virus (34.50%), plant-specific virus (0.09%), insect-specific virus (0.08%) and other viruses (3.50%). The dsDNA virus accounted for 51.13% of the total, followed by ssRNA (33.51%) and ssDNA virus (15.36%). This study provides an initial understanding of the community structure of the gut virome of tree shrew and a baseline for future tree shrew virus investigation.
Collapse
Affiliation(s)
- Linxia Chen
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
- Department of Pathogenic Biology, School of Basic Medical Science, Gannan Medical University, Ganzhou, China
| | - Wenpeng Gu
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
- Department of Acute Infectious Diseases Control and Prevention, Yunnan Provincial Centre for Disease Control and Prevention, Kunming, China
| | - Chenxiu Liu
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - Wenguang Wang
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - Na Li
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - Yang Chen
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and System Biology, TNLIST/Department of Automation, Tsinghua University, Beijing, China
| | - Caixia Lu
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - Xiaomei Sun
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - Yuanyuan Han
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - Dexuan Kuang
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - Pinfen Tong
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - Jiejie Dai
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
- * E-mail:
| |
Collapse
|
28
|
Burm R, Collignon L, Mesalam AA, Meuleman P. Animal Models to Study Hepatitis C Virus Infection. Front Immunol 2018; 9:1032. [PMID: 29867998 PMCID: PMC5960670 DOI: 10.3389/fimmu.2018.01032] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/25/2018] [Indexed: 12/18/2022] Open
Abstract
With more than 71 million chronically infected people, the hepatitis C virus (HCV) is a major global health concern. Although new direct acting antivirals have significantly improved the rate of HCV cure, high therapy cost, potential emergence of drug-resistant viral variants, and unavailability of a protective vaccine represent challenges for complete HCV eradication. Relevant animal models are required, and additional development remains necessary, to effectively study HCV biology, virus–host interactions and for the evaluation of new antiviral approaches and prophylactic vaccines. The chimpanzee, the only non-human primate susceptible to experimental HCV infection, has been used extensively to study HCV infection, particularly to analyze the innate and adaptive immune response upon infection. However, financial, practical, and especially ethical constraints have urged the exploration of alternative small animal models. These include different types of transgenic mice, immunodeficient mice of which the liver is engrafted with human hepatocytes (humanized mice) and, more recently, immunocompetent rodents that are susceptible to infection with viruses that are closely related to HCV. In this review, we provide an overview of the currently available animal models that have proven valuable for the study of HCV, and discuss their main benefits and weaknesses.
Collapse
Affiliation(s)
- Rani Burm
- Laboratory of Liver Infectious Diseases, Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium
| | - Laura Collignon
- Laboratory of Liver Infectious Diseases, Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium
| | - Ahmed Atef Mesalam
- Laboratory of Liver Infectious Diseases, Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium.,Therapeutic Chemistry Department, National Research Centre (NRC), Cairo, Egypt
| | - Philip Meuleman
- Laboratory of Liver Infectious Diseases, Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium
| |
Collapse
|