1
|
Effect of serial in vivo passages on the adaptation of H1N1 avian influenza virus to pigs. J Vet Res 2022; 66:9-19. [PMID: 35582490 PMCID: PMC8959685 DOI: 10.2478/jvetres-2022-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/02/2022] [Indexed: 11/26/2022] Open
Abstract
Introduction The lack of proofreading activity of the viral polymerase and the segmented nature of the influenza A virus (IAV) genome are responsible for the genetic diversity of IAVs and for their ability to adapt to a new host. We tried to adapt avian IAV (avIAV) to the pig by serial passages in vivo and assessed the occurrence of point mutations and their influence on viral fitness in the pig’s body. Material and Methods A total of 25 in vivo avIAV passages of the A/duck/Bavaria/77 strain were performed by inoculation of 50 piglets, and after predetermined numbers of passages 20 uninoculated piglets were exposed to the virus through contact with inoculated animals. Clinical signs of swine influenza were assessed daily. Nasal swabs and lung tissue were used to detect IAV RNA by real-time RT-PCR and isolates from selected passages were sequenced. Results Apart from a rise in rectal temperature and a sporadic cough, no typical clinical signs were observed in infected pigs. The original strain required 20 passages to improve its replication ability noticeably. A total of 29 amino-acid substitutions were identified. Eighteen of them were detected in the first sequenced isolate, of which 16 were also in all other analysed strains. Additional mutations were detected with more passages. One substitution, threonine (T) 135 to serine (S) in neuraminidase (NA), was only detected in an IAV isolate from a contact-exposed piglet. Conclusion Passaging 25 times allowed us to obtain a partially swine-adapted IAV. The improvement in isolate replication ability was most likely related to S654 to glycine (G) substitution in the basic protein (PB) 1 as well as to aspartic acid (D) 701 to asparagine (N) and arginine (R) 477 to G in PB2, glutamic acid (E) 204 to D and G239E in haemagglutinin and T135S in NA.
Collapse
|
2
|
Tepper V, Nykvist M, Gillman A, Skog E, Wille M, Lindström HS, Tang C, Lindberg RH, Lundkvist Å, Järhult JD. Influenza A/H4N2 mallard infection experiments further indicate zanamivir as less prone to induce environmental resistance development than oseltamivir. J Gen Virol 2019; 101:816-824. [PMID: 31855133 DOI: 10.1099/jgv.0.001369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Neuraminidase inhibitors (NAIs) are the gold standard treatment for influenza A virus (IAV). Oseltamivir is mostly used, followed by zanamivir (ZA). NAIs are not readily degraded in conventional wastewater treatment plants and can be detected in aquatic environments. Waterfowl are natural IAV hosts and replicating IAVs could thus be exposed to NAIs in the environment and develop resistance. Avian IAVs form the genetic basis for new human IAVs, and a resistant IAV with pandemic potential poses a serious public health threat, as NAIs constitute a pandemic preparedness cornerstone. Resistance development in waterfowl IAVs exposed to NAIs in the water environment has previously been investigated in an in vivo mallard model and resistance development was demonstrated in several avian IAVs after the exposure of infected ducks to oseltamivir, and in an H1N1 IAV after exposure to ZA. The N1 and N2 types of IAVs have different characteristics and resistance mutations, and so the present study investigated the exposure of an N2-type IAV (H4N2) in infected mallards to 1, 10 and 100 µg l-1 of ZA in the water environment. Two neuraminidase substitutions emerged, H274N (ZA IC50 increased 5.5-fold) and E119G (ZA IC50 increased 110-fold) at 10 and 100 µg l-1 of ZA, respectively. Reversion towards wild-type was observed for both substitutions in experiments with removed drug pressure, indicating reduced fitness of both resistant viruses. These results corroborate previous findings that the development of resistance to ZA in the environment seems less likely to occur than the development of resistance to oseltamivir, adding information that is useful in planning for prudent drug use and pandemic preparedness.
Collapse
Affiliation(s)
- Viktoria Tepper
- Institute of Environmental Engineering, ETH Zürich, Switzerland.,Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Marie Nykvist
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Anna Gillman
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Erik Skog
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Michelle Wille
- Present address: WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.,Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Hanna Söderström Lindström
- Department of Public Health and Clinical Medicine, Occupational and Environmental Medicine, Umeå University, Umeå, Sweden
| | - Chaojun Tang
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | | - Åke Lundkvist
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Josef D Järhult
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Lin Z, Li Y, Gong G, Xia Y, Wang C, Chen Y, Hua L, Zhong J, Tang Y, Liu X, Zhu B. Restriction of H1N1 influenza virus infection by selenium nanoparticles loaded with ribavirin via resisting caspase-3 apoptotic pathway. Int J Nanomedicine 2018; 13:5787-5797. [PMID: 30310281 PMCID: PMC6165773 DOI: 10.2147/ijn.s177658] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
INTRODUCTION Ribavirin (RBV) is a broad-spectrum antiviral drug. Selenium nanoparticles (SeNPs) attract much attention in the biomedical field and are used as carriers of drugs in current research studies. In this study, SeNPs were decorated by RBV, and the novel nanoparticle system was well characterized. Madin-Darby Canine Kidney cells were infected with H1N1 influenza virus before treatment with RBV, SeNPs, and SeNPs loaded with RBV (Se@RBV). METHODS AND RESULTS MTT assay showed that Se@RBV nanoparticles protect cells during H1N1 infection in vitro. Se@RBV depressed virus titer in the culture supernatant. Intracellular localization detection revealed that Se@RBV accumulated in lysosome and escaped to cytoplasm as time elapsed. Furthermore, activation of caspase-3 was resisted by Se@RBV. Expressions of proteins related to caspase-3, including cleaved poly-ADP-ribose polymerase, caspase-8, and Bax, were downregulated evidently after treatment with Se@RBV compared with the untreated infection group. In addition, phosphorylations of phosphorylated 38 (p38), JNK, and phosphorylated 53 (p53) were inhibited as well. In vivo experiments indicated that Se@RBV was found to prevent lung injury in H1N1-infected mice through hematoxylin and eosin staining. Tunel test of lung tissues present that DNA damage reached a high level but reduced substantially when treated with Se@RBV. Immunohistochemical test revealed an identical result with the in vitro experiment that activations of caspase-3 and proteins on the apoptosis pathway were restrained by Se@RBV treatment. CONCLUSION Taken together, this study elaborates that Se@RBV is a novel promising agent against H1N1 influenza virus infection.
Collapse
Affiliation(s)
- Zhengfang Lin
- Department of Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China, ;
| | - Yinghua Li
- Department of Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China, ;
| | - Guifang Gong
- Department of Obstetrics Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yu Xia
- Department of Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China, ;
| | - Changbing Wang
- Department of Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China, ;
| | - Yi Chen
- Department of Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China, ;
| | - Liang Hua
- Department of Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China, ;
| | - Jiayu Zhong
- Department of Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China, ;
| | - Ying Tang
- Department of Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China, ;
| | - Xiaomin Liu
- Department of Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China, ;
| | - Bing Zhu
- Department of Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China, ;
| |
Collapse
|
5
|
Tu V, Abed Y, Fage C, Baz M, Boivin G. Impact of R152K and R368K neuraminidase catalytic substitutions on in vitro properties and virulence of recombinant A(H1N1)pdm09 viruses. Antiviral Res 2018; 154:110-115. [PMID: 29674164 DOI: 10.1016/j.antiviral.2018.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/04/2018] [Accepted: 04/13/2018] [Indexed: 11/18/2022]
Abstract
Neuraminidase (NA) mutations conferring resistance to NA inhibitors (NAIs) are expected to occur at framework or catalytic residues of the NA enzyme. Numerous clinical and in vitro reports already described NAI-resistant A(H1N1)pdm09 variants harboring various framework NA substitutions. By contrast, variants with NA catalytic changes remain poorly documented. Herein, we investigated the effect of R152K and R368K NA catalytic mutations on the NA enzyme properties, in vitro replicative capacity and virulence of A(H1N1)pdm09 recombinant viruses. In NA inhibition assays, the R152K and R368K substitutions resulted in reduced inhibition [10- to 100-fold increases in IC50 vs the wild-type (WT)] or highly reduced inhibition (>100-fold increases in IC50) to at least 3 approved NAIs (oseltamivir, zanamivir, peramivir and laninamivir). Such resistance phenotype correlated with a significant reduction of affinity observed for the mutants in enzyme kinetics experiments [increased Km from 20 ± 1.77 for the WT to 200.8 ± 10.54 and 565.2 ± 135 μM (P < 0.01) for the R152K and R368K mutants, respectively]. The R152K and R368K variants grew at comparable or even higher titers than the WT in both MDCK and ST6GalI-MDCK cells. In experimentally-infected C57BL/6 mice, the recombinant WT and the R152K and R368K variants induced important signs of infection (weight loss) and resulted in mortality rates of 87.5%, 37.5% and 100%, respectively. The lung viral titers were comparable between the three infected groups. While the NA mutations were stable, an N154I substitution was detected in the HA2 protein of the R152K and R368K variants after in vitro passages as well as in lungs of infected mice. Due to the multi-drug resistance phenotypes and conserved fitness, the emergence of NA catalytic mutations accompanied with potential compensatory HA changes should be carefully monitored in A(H1N1)pdm09 viruses.
Collapse
Affiliation(s)
- Véronique Tu
- CHUQ-CHUL and Laval University, Québec City, Québec, Canada
| | - Yacine Abed
- CHUQ-CHUL and Laval University, Québec City, Québec, Canada
| | - Clément Fage
- CHUQ-CHUL and Laval University, Québec City, Québec, Canada
| | - Mariana Baz
- CHUQ-CHUL and Laval University, Québec City, Québec, Canada
| | - Guy Boivin
- CHUQ-CHUL and Laval University, Québec City, Québec, Canada.
| |
Collapse
|