1
|
Harmening S, Bogdanow B, Wagner K, Liu F, Messerle M, Borst EM. Interaction of human cytomegalovirus pUL52 with major components of the viral DNA encapsidation network underlines its essential role in genome cleavage-packaging. J Virol 2025; 99:e0220124. [PMID: 40062846 PMCID: PMC11998523 DOI: 10.1128/jvi.02201-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/12/2025] [Indexed: 04/16/2025] Open
Abstract
Cleavage of human cytomegalovirus (HCMV) genomes and their packaging into capsids requires at least seven essential viral proteins, yet it is not completely understood how these proteins cooperate to accomplish this task. Besides the portal protein pUL104 and the terminase subunits pUL51, pUL56, and pUL89, the UL52 protein is also necessary for HCMV genome encapsidation; however, knowledge about pUL52 is scant. In the absence of pUL52, viral concatemers are not cleaved into unit-length genomes and no DNA-filled capsids are observed, yet no viral or cellular proteins interacting with pUL52 have been identified that would explain how pUL52 exerts its essential role in the HCMV infection cycle. In this study, we aimed at a comprehensive definition of pUL52-interacting proteins in infected cells. Using suitable HCMV mutants, we employed three complementary state-of-the-art proteomic approaches, namely biotin ligase-dependent proximity labeling, affinity purification, and cross-linking mass spectrometry. These experiments, combined with thorough validation by immunoblotting, pointed to several viral DNA-associated proteins and key players pivotal for genome encapsidation as interactors of pUL52. The most noticeable direct pUL52 interaction partners were the terminase subunits pUL56 and pUL89 as well as the portal protein pUL104. Hence, we suggest a model of pUL52 function in which pUL52 mediates association of HCMV genomes with the terminase subunits and the capsid portal. Taken together, our data contribute to the understanding of an essential viral process previously recognized as a prominent antiviral target. Disturbing the identified pUL52 interactions may provide a starting point to develop novel antiviral medication. IMPORTANCE Human cytomegalovirus (HCMV) can evoke severe disease in immunocompromised patients and, moreover, is the most frequent viral cause of malformations in newborns. The virus-specific process of genome cleavage and packaging into capsids has emerged as an Achilles heel in the HCMV life cycle, which can be targeted by novel antiviral drugs, yet the mechanism of viral DNA encapsidation is only partially understood. Here, we report that the essential viral cleavage-packaging protein pUL52 interacts with several HCMV proteins known to be crucial for genome packaging, with the most prominent ones being the terminase complex and the portal protein. These data provide insight into the role of pUL52 during HCMV infection and may lay the basis for the development of additional antiviral substances tackling viral DNA packaging.
Collapse
Affiliation(s)
- Sarah Harmening
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Boris Bogdanow
- Research group "Structural Interactomics", Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany
| | - Karen Wagner
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Fan Liu
- Research group "Structural Interactomics", Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Martin Messerle
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Eva Maria Borst
- Institute of Virology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
2
|
Zeng J, Cao D, Yang S, Jaijyan DK, Liu X, Wu S, Cruz-Cosme R, Tang Q, Zhu H. Insights into the Transcriptome of Human Cytomegalovirus: A Comprehensive Review. Viruses 2023; 15:1703. [PMID: 37632045 PMCID: PMC10458407 DOI: 10.3390/v15081703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a widespread pathogen that poses significant risks to immunocompromised individuals. Its genome spans over 230 kbp and potentially encodes over 200 open-reading frames. The HCMV transcriptome consists of various types of RNAs, including messenger RNAs (mRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs), with emerging insights into their biological functions. HCMV mRNAs are involved in crucial viral processes, such as viral replication, transcription, and translation regulation, as well as immune modulation and other effects on host cells. Additionally, four lncRNAs (RNA1.2, RNA2.7, RNA4.9, and RNA5.0) have been identified in HCMV, which play important roles in lytic replication like bypassing acute antiviral responses, promoting cell movement and viral spread, and maintaining HCMV latency. CircRNAs have gained attention for their important and diverse biological functions, including association with different diseases, acting as microRNA sponges, regulating parental gene expression, and serving as translation templates. Remarkably, HCMV encodes miRNAs which play critical roles in silencing human genes and other functions. This review gives an overview of human cytomegalovirus and current research on the HCMV transcriptome during lytic and latent infection.
Collapse
Affiliation(s)
- Janine Zeng
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Di Cao
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Shaomin Yang
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Dabbu Kumar Jaijyan
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Xiaolian Liu
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Songbin Wu
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Ruth Cruz-Cosme
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Hua Zhu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| |
Collapse
|
3
|
First clinical description of letermovir resistance mutation in cytomegalovirus UL51 gene and potential impact on the terminase complex structure. Antiviral Res 2022; 204:105361. [PMID: 35690130 DOI: 10.1016/j.antiviral.2022.105361] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Letermovir (LMV) is a human cytomegalovirus (HCMV) terminase inhibitor indicated as prophylaxis for HCMV-positive stem-cell recipients. Its mechanism of action involves at least the viral terminase proteins pUL56, pUL89 and pUL51. Despite its efficiency, resistance mutations were characterized in vitro and in vivo, largely focused on pUL56. To date, mutations in pUL51 in clinical resistance remain to be demonstrated. METHODS The pUL51 natural polymorphism was described by sequencing 54 LMV-naive strains and was compared to UL51 HCMV genes from 16 patients non-responding to LMV therapy (prophylaxis or curative). Recombinant viruses were built by «en-passant» mutagenesis to measure the impact of the new mutations on antiviral activity and viral growth. Structure prediction was performed by homology modeling. The pUL51 final-model was analyzed and aligned with the atomic coordinates of the monomeric HSV-1 terminase complex (PDB:6M5R). RESULTS Among the 16 strains from treated-patients with LMV, 4 never described substitutions in pUL51 (D12E, 17del, A95V, V113L) were highlighted. These substitutions had no impact on viral fitness. Only UL51-A95V conferred 13.8-fold increased LMV resistance level by itself (IC50 = 29.246 ± 0.788). CONCLUSION As an isolated mutation in pUL51 in a clinical isolate can lead to LMV resistance, genotyping for resistance should involve sequencing of the pUL51, pUL56 and pUL89 genes. With terminase modelling, we make the hypothesis that LMV could bind to domains were UL56-L257I and UL51-A95V mutations were localized.
Collapse
|
4
|
Muller C, Alain S, Baumert TF, Ligat G, Hantz S. Structures and Divergent Mechanisms in Capsid Maturation and Stabilization Following Genome Packaging of Human Cytomegalovirus and Herpesviruses. Life (Basel) 2021; 11:life11020150. [PMID: 33669389 PMCID: PMC7920273 DOI: 10.3390/life11020150] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 01/13/2023] Open
Abstract
Herpesviruses are the causative agents of several diseases. Infections are generally mild or asymptomatic in immunocompetent individuals. In contrast, herpesvirus infections continue to contribute to significant morbidity and mortality in immunocompromised patients. Few drugs are available for the treatment of human herpesvirus infections, mainly targeting the viral DNA polymerase. Moreover, no successful therapeutic options are available for the Epstein–Barr virus or human herpesvirus 8. Most licensed drugs share the same mechanism of action of targeting the viral polymerase and thus blocking DNA polymerization. Resistances to antiviral drugs have been observed for human cytomegalovirus, herpes simplex virus and varicella-zoster virus. A new terminase inhibitor, letermovir, recently proved effective against human cytomegalovirus. However, the letermovir has no significant activity against other herpesviruses. New antivirals targeting other replication steps, such as capsid maturation or DNA packaging, and inducing fewer adverse effects are therefore needed. Targeting capsid assembly or DNA packaging provides additional options for the development of new drugs. In this review, we summarize recent findings on capsid assembly and DNA packaging. We also described what is known about the structure and function of capsid and terminase proteins to identify novels targets for the development of new therapeutic options.
Collapse
Affiliation(s)
- Clotilde Muller
- INSERM, CHU Limoges, University of Limoges, RESINFIT, U1092, 87000 Limoges, France; (C.M.); (S.A.)
| | - Sophie Alain
- INSERM, CHU Limoges, University of Limoges, RESINFIT, U1092, 87000 Limoges, France; (C.M.); (S.A.)
- CHU Limoges, Laboratoire de Bactériologie-Virologie-Hygiène, National Reference Center for Herpesviruses (NRCHV), 87000 Limoges, France
| | - Thomas F. Baumert
- Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, 67000 Strasbourg, France;
- Institut Hospitalo-Universitaire, Pôle Hépato-Digestif, Nouvel Hôpital Civil, 67000 Strasbourg, France
| | - Gaëtan Ligat
- Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, 67000 Strasbourg, France;
- Correspondence: (G.L.); (S.H.)
| | - Sébastien Hantz
- INSERM, CHU Limoges, University of Limoges, RESINFIT, U1092, 87000 Limoges, France; (C.M.); (S.A.)
- CHU Limoges, Laboratoire de Bactériologie-Virologie-Hygiène, National Reference Center for Herpesviruses (NRCHV), 87000 Limoges, France
- Correspondence: (G.L.); (S.H.)
| |
Collapse
|
5
|
Ligat G, Muller C, Alain S, Hantz S. [The terminase complex, a relevant target for the treatment of HCMV infection]. Med Sci (Paris) 2020; 36:367-375. [PMID: 32356713 DOI: 10.1051/medsci/2020063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Human cytomegalovirus (HCMV) is an important ubiquitous opportunistic pathogen that belongs to the betaherpesviridae. Primary HCMV infection is generally asymptomatic in immunocompetent individuals. In contrast, HCMV infection causes serious disease in immunocompromised patients and is the leading cause of congenital viral infection. Although they are effective, the use of conventional molecules is limited by the emergence of resistance and by their toxicity. New antivirals targeting other replication steps and inducing fewer adverse effects are therefore needed. During HCMV replication, DNA packaging is performed by the terminase complex, which cleaves DNA to package the virus genome into the capsid. With no counterpart in mammalian cells, these terminase proteins are ideal targets for highly specific antivirals. A new terminase inhibitor, letermovir, recently proved effective against HCMV in phase III clinical trials. However, its mechanism of action is unclear and it has no significant activity against other herpesvirus or non-human CMV.
Collapse
Affiliation(s)
- Gaëtan Ligat
- Univ. Limoges, Inserm, CHU Limoges, RESINFIT, U1092, 87000 Limoges, France - CHU Limoges, Laboratoire de bactériologie-virologie-hygiène, Centre national de référence des Herpèsvirus (NRCHV), 87000 Limoges, France - Adresse actuelle : Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, France
| | - Clotilde Muller
- Univ. Limoges, Inserm, CHU Limoges, RESINFIT, U1092, 87000 Limoges, France - CHU Limoges, Laboratoire de bactériologie-virologie-hygiène, Centre national de référence des Herpèsvirus (NRCHV), 87000 Limoges, France
| | - Sophie Alain
- Univ. Limoges, Inserm, CHU Limoges, RESINFIT, U1092, 87000 Limoges, France - CHU Limoges, Laboratoire de bactériologie-virologie-hygiène, Centre national de référence des Herpèsvirus (NRCHV), 87000 Limoges, France
| | - Sébastien Hantz
- Univ. Limoges, Inserm, CHU Limoges, RESINFIT, U1092, 87000 Limoges, France - CHU Limoges, Laboratoire de bactériologie-virologie-hygiène, Centre national de référence des Herpèsvirus (NRCHV), 87000 Limoges, France
| |
Collapse
|
6
|
FRET-based assay using a three-way junction DNA substrate to identify inhibitors of human cytomegalovirus pUL89 endonuclease activity. Eur J Pharm Sci 2019; 127:29-37. [DOI: 10.1016/j.ejps.2018.10.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 02/06/2023]
|
7
|
Gentry BG, Bogner E, Drach JC. Targeting the terminase: An important step forward in the treatment and prophylaxis of human cytomegalovirus infections. Antiviral Res 2018; 161:116-124. [PMID: 30472161 DOI: 10.1016/j.antiviral.2018.11.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/07/2018] [Accepted: 11/13/2018] [Indexed: 10/27/2022]
Abstract
A key step in the replication of human cytomegalovirus (HCMV) in the host cell is the generation and packaging of unit-length genomes into preformed capsids. Enzymes required for this process are so-called terminases, first described for double-stranded DNA bacteriophages. The HCMV terminase consists of the two subunits, the ATPase pUL56 and the nuclease pUL89, and a potential third component pUL51. The terminase subunits are essential for virus replication and are highly conserved throughout the Herpesviridae family. Together with the portal protein pUL104 they form a powerful biological nanomotor. It has been shown for tailed dsDNA bacteriophages that DNA translocation into preformed capsid needs an extraordinary amount of energy. The HCMV terminase subunit pUL56 provides the required ATP hydrolyzing activity. The necessary nuclease activity to cleave the concatemers into unit-length genomes is mediated by the terminase subunit pUL89. Whether this cleavage is mediated by site-specific duplex nicking has not been demonstrated, however, it is required for packaging. Binding to the portal is a prerequisite for DNA translocation. To date, it is a common view that during translocation the terminase moves along some domains of the DNA by a binding and release mechanism. These critical structures have proven to be outstanding targets for drugs to treat HCMV infections because corresponding structures do not exist in mammalian cells. Herein we examine the HCMV terminase as a target for drugs and review several inhibitors discovered by both lead-directed medicinal chemistry and by target-specific design. In addition to producing clinically active compounds the research also has furthered the understanding of the role and function of the terminase itself.
Collapse
Affiliation(s)
- Brian G Gentry
- Drake University College of Pharmacy and Health Sciences, 2507 University Ave., Des Moines, 50311, IA, USA.
| | - Elke Bogner
- Institute of Virology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| | - John C Drach
- University of Michigan School of Dentistry, 1101 N. University Ave., Ann Arbor, 48109, MI, USA.
| |
Collapse
|