1
|
Pienaar RD, Herrero S, Cerqueira de Araujo A, Krupa F, Abd-Alla AMM, Herniou EA. High-throughput screening reveals high diversity and widespread distribution of viruses in black soldier flies (Hermetia illucens). J Invertebr Pathol 2025; 211:108322. [PMID: 40157532 DOI: 10.1016/j.jip.2025.108322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/18/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
Virus discovery in mass-reared insects is a growing topic of interest due to outbreak risks and for insect welfare concerns. In the case of black soldier flies (Hermetia illucens, BSF), pioneering bioinformatic studies have uncovered exogenous viruses from the orders Ghabrivirales and Bunyavirales, as well as endogenous viral elements from five virus families. This prompted further virome investigation of BSF metagenomes and metatranscriptomes, including from BSF individuals displaying signs and symptoms of disease. A high-throughput pipeline allowed the simultaneous investigation of 203 next generation sequencing datasets. This revealed the presence of seven viruses belonging to the families Dicistroviridae, Iflaviridae, Rhabdoviridae, Solinviviridae, Inseviridae, Lebotiviridae, and an unclassified Bunyavirales. Here we describe five viruses, which were detected in BSF from multiple origins, outlining the diversity of naturally occurring viruses associated with BSF colonies. As this viral community may also include BSF pathogens, we developed molecular detection tools which could be used for viral surveillance, both in mass-reared and wild populations of BSF.
Collapse
Affiliation(s)
- Robert D Pienaar
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université de Tours 37200 Tours, France; Department of Genetics and University Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100 Burjassot (Valencia), Spain.
| | - Salvador Herrero
- Department of Genetics and University Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100 Burjassot (Valencia), Spain
| | - Alexandra Cerqueira de Araujo
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Franciszek Krupa
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100 1400, Vienna, Austria
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100 1400, Vienna, Austria
| | - Elisabeth A Herniou
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université de Tours 37200 Tours, France
| |
Collapse
|
2
|
Tabein S, Nazarpour D, Hegazy A, Rasekh A, Furlong MJ, Etebari K. Diverse viral communities inhabit the guts of date palm rhinoceros beetles (Oryctes spp.). J Invertebr Pathol 2025; 211:108321. [PMID: 40157533 DOI: 10.1016/j.jip.2025.108321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 03/12/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
Two species of palm tree pests, Oryctes elegans and Oryctes agamemnon (Coleoptera: Scarabaeidae), cause significant damage to date palm trees (Phoenix dactylifera) in many countries in the Middle East. Despite several decades of research and the implementation of numerous control strategies, including mechanical, chemical, regulatory, and biosecurity measures, managing these pests remains challenging. Control of O. rhinoceros in the Pacific using an entomopathogenic virus is a landmark of classical biological control. In this study, we used a transcriptomic approach to examine the virome of populations of two Oryctes species across various regions in southern Iran, with the hope of discovering natural viral pathogens as potential biocontrol agents. Total RNA was extracted from a pool of larval gut samples and sequenced using the Illumina NovaSeq 6000. After analysing the RNA-Seq data, 28 novel virus sequences, including a diverse range of RNA and DNA viruses, were identified. Phylogenetic analyses revealed that these newly discovered viruses are evolutionarily linked with other closely related members in several families, including Partitiviridae, Picobirnaviridae, Totiviridae, Dicistroviridae, Tombusviridae, Nodaviridae, Potyviridae, Endornaviridae, Circoviridae and some unassigned viruses such as Negevirus and Jivivirus. Given the similarity of some of these viruses to plant viruses, and viruses reported from fungi and protists and their unclear host association, we have tentatively named them "Oryctes-associated viruses." This study uncovers the great diversity of viruses in Oryctes species; however, further studies are necessary to determine their natural incidence, geographical distribution, impact on their hosts, and their potential as biological control agents for these significant date palm pests.
Collapse
Affiliation(s)
- Saeid Tabein
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Davood Nazarpour
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Akram Hegazy
- School of The Environment, The University of Queensland, St Lucia, Queensland 4072, Australia; School of Agriculture and Food Sustainability, The University of Queensland, Gatton, Queensland 4343, Australia.
| | - Arash Rasekh
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Michael J Furlong
- School of The Environment, The University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Kayvan Etebari
- School of Agriculture and Food Sustainability, The University of Queensland, Gatton, Queensland 4343, Australia.
| |
Collapse
|
3
|
Xiao J, Yang G, Liu R, Ge D. Identification and Characterization of Four Novel Viruses in Balclutha incisa. INSECTS 2024; 15:772. [PMID: 39452348 PMCID: PMC11508223 DOI: 10.3390/insects15100772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024]
Abstract
Balclutha incisa (Cicadellidae: Deltocephalinae), a leafhopper prevalent in tropical and temperate regions, is notably abundant in grasses and rice. The virome of B. incisa was investigated using deep transcriptome sequencing, leading to the first identification of four viruses belonging to the families Aliusviridae, Iflaviridae, and Totiviridae in B. incisa. These viruses have been provisionally named B. incisa ollusvirus 1 (BiOV1), B. incisa ollusvirus 2 (BiOV2), B. incisa iflavirus 1 (BiIV1), and B. incisa totivirus 1 (BiTV1). The complete genome sequences of these viruses were obtained through rapid amplification of cDNA ends (RACE). BiOV1 has a linear genome of 15,125 nucleotides (nt), while BiOV2 possesses a circular genome of 14,853 nt. The BiIV1 genome, excluding the poly(A) tail, is 10,903 nt in length and encodes a single open reading frame (ORF) for a polyprotein consisting of 3194 amino acids (aa). The BiTV1 genome is 4357 nt long and contains two overlapping ORFs, with the viral RNA-dependent RNA polymerase (RdRp) translated via a -1 ribosomal frameshift. Phylogenetic and sequence identity analyses suggest that all these viruses are novel members of their respective families. This study significantly expands our understanding of the virome associated with B. incisa by reporting and characterizing these novel viruses.
Collapse
Affiliation(s)
- Jiajing Xiao
- Center for Agroforestry Mega Data Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.X.); (G.Y.)
| | - Guang Yang
- Center for Agroforestry Mega Data Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.X.); (G.Y.)
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Renyi Liu
- Center for Agroforestry Mega Data Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.X.); (G.Y.)
| | - Danfeng Ge
- Center for Agroforestry Mega Data Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.X.); (G.Y.)
| |
Collapse
|
4
|
Yin Y, Wang P, He L, Yang G, Huang B. Discovery and genomic characterization of three double-stranded RNA viruses coinfecting Conidiobolus taihushanensis. Arch Virol 2024; 169:195. [PMID: 39249129 DOI: 10.1007/s00705-024-06129-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/05/2024] [Indexed: 09/10/2024]
Abstract
Conidiobolus sensu lato, a genus within the family Ancylistaceae, encompasses a diverse range of fungal species that are widely distributed in plant debris and soil. In this study, we identified three double-stranded RNA (dsRNA) viruses coinfecting a strain of Conidiobolus taihushanensis. These viruses were identified as Conidiobolus taihushanensis totivirus 1 (CtTV1), Conidiobolus nonsegmented RNA virus 1-2 (CNRV1-2), and Conidiobolus taihushanensis virus 1 (CtV1). Through high-throughput sequencing and RNA-ligase-mediated rapid amplification of cDNA ends (RLM-RACE), we determined their complete genome sequences. The genome of CtTV1 is 6,921 nucleotides in length, containing two open reading frames (ORFs). ORF1 encodes a 1,124-amino-acid capsid protein (CP) with a molecular weight of 125.07 kDa, and ORF2 encodes a 780-amino-acid RNA-dependent RNA polymerase (RdRp) with a molecular weight of 88.05 kDa. CNRV1-2, approximately 3.0 kb in length, also contains two ORFs, which are predicted to encode a 186-amino-acid hypothetical protein (HP) and a 758-amino-acid RdRp. CtV1 has a smaller genome consisting of 3,081 base pairs (bp) with two ORFs: one encoding a 244-amino-acid HP (26.85 kDa) and the other encoding a 707-amino-acid RdRp (80.64 kDa). Phylogenetic analysis based on RdRp sequences revealed that CtTV1 shows the highest similarity to Phytophthora pluvialis RNA virus 1, with 38.79% sequence identity, and clusters with members of the family Orthototiviridae, and it is most closely related to Utsjoki toti-like virus. In contrast, CtV1 formed a unique branch and might represent a new genus. The genome sequence of CNRV1-2 is 99.74% identical to that of the previously described Conidiobolus non-segmented RNA virus 1 (CNRV1). Our findings indicate that CtTV1 and CtV1 are distinct novel viruses, while CNRV1-2 appears to be a variant of CNRV1. This study enhances our understanding of the genetic diversity and evolutionary relationships among mycoviruses associated with C. taihushanensis.
Collapse
Affiliation(s)
- Ying Yin
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Ping Wang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Lili He
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Guogen Yang
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Bo Huang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
5
|
Walt HK, Jordan HR, Meyer F, Hoffmann FG. Detection of Known and Novel Virus Sequences in the Black Soldier Fly and Expression of Host Antiviral Pathways. Viruses 2024; 16:1219. [PMID: 39205193 PMCID: PMC11359925 DOI: 10.3390/v16081219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
The mass rearing of animals in close quarters can be highly conducive to microbe transmission, including pathogens. This has been shown multiple times in the case of important industrial insects such as crickets, silkworms, and honeybees. One industrial insect of increasing importance is the black soldier fly (Diptera: Hermetia illucens), as it can convert organic waste into high-quality protein and fatty acids. Along with this, they take up far less space than traditional protein sources, as millions of black soldier flies can be reared in a relatively small facility. Because of this, there is a growing interest in the pathogens that could impact black soldier fly-rearing efforts. So far, only three black soldier fly-associated viruses have been identified. We used metatranscriptomic sequencing to survey black soldier fly guts, frass, and diet for viruses. We detected sequences from two novel viruses. One, which we name Hermetia illucens sigma-like virus 1, is phylogenetically related to viruses of the genus Sigmavirus, which have been highly studied in Drosophila. The other novel virus, which we name Hermetia illucens inse-like virus 1, is the second double-stranded RNA virus of the order Ghabrivirales described in the black soldier fly, and groups within a new family of insect viruses called the Inseviridae. We also detected two black soldier fly-associated viruses previously identified by our group: BSF nairo-like virus 1 and BSF uncharacterized bunyavirus-like 1. Consistent with our previous study, these two viruses are found primarily in frass samples and occur together more often than expected at random. When analyzing host transcription, we found significant differences in gene expression for eight candidate antiviral genes in the black soldier fly when comparing samples with and without viral sequences. Our results suggest that black soldier fly-virus interactions are ongoing, and they could be of interest to black soldier fly producers.
Collapse
Affiliation(s)
- Hunter K. Walt
- Department of Biochemistry, Nutrition and Health Promotion, Mississippi State University, Mississippi State, MS 39762, USA; (H.K.W.); (F.M.)
| | - Heather R. Jordan
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA;
| | - Florencia Meyer
- Department of Biochemistry, Nutrition and Health Promotion, Mississippi State University, Mississippi State, MS 39762, USA; (H.K.W.); (F.M.)
| | - Federico G. Hoffmann
- Department of Biochemistry, Nutrition and Health Promotion, Mississippi State University, Mississippi State, MS 39762, USA; (H.K.W.); (F.M.)
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| |
Collapse
|
6
|
Yuan JN, Ye ZX, Chen MN, Ren PP, Ning C, Sun ZT, Chen JP, Zhang CX, Li JM, Mao Q. Identification and Characterization of Three Novel Solemo-like Viruses in the White-Backed Planthopper, Sogatella furcifera. INSECTS 2024; 15:394. [PMID: 38921109 PMCID: PMC11203538 DOI: 10.3390/insects15060394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024]
Abstract
Agricultural insects play a crucial role in transmitting plant viruses and host a considerable number of insect-specific viruses (ISVs). Among these insects, the white-backed planthoppers (WBPH; Sogatella furcifera, Hemiptera: Delphacidae) are noteworthy rice pests and are responsible for disseminating the southern rice black-streaked dwarf virus (SRBSDV), a significant rice virus. In this study, we analyzed WBPH transcriptome data from public sources and identified three novel viruses. These newly discovered viruses belong to the plant-associated viral family Solemoviridae and were tentatively named Sogatella furcifera solemo-like virus 1-3 (SFSolV1-3). Among them, SFSolV1 exhibited a prevalent existence in different laboratory populations, and its complete genome sequence was obtained using rapid amplification of cDNA ends (RACE) approaches. To investigate the antiviral RNA interference (RNAi) response in WBPH, we conducted an analysis of virus-derived small interfering RNAs (vsiRNAs). The vsiRNAs of SFSolV1 and -2 exhibited typical patterns associated with the host's siRNA-mediated antiviral immunity, with a preference for 21- and 22-nt vsiRNAs derived equally from both the sense and antisense genomic strands. Furthermore, we examined SFSolV1 infection and distribution in WBPH, revealing a significantly higher viral load of SFSolV1 in nymphs' hemolymph compared to other tissues. Additionally, in adult insects, SFSolV1 exhibited higher abundance in male adults than in female adults.
Collapse
Affiliation(s)
- Jing-Na Yuan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.-N.Y.); (Z.-X.Y.); (M.-N.C.); (P.-P.R.); (C.N.); (Z.-T.S.); (J.-P.C.); (C.-X.Z.); (J.-M.L.)
| | - Zhuang-Xin Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.-N.Y.); (Z.-X.Y.); (M.-N.C.); (P.-P.R.); (C.N.); (Z.-T.S.); (J.-P.C.); (C.-X.Z.); (J.-M.L.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Meng-Nan Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.-N.Y.); (Z.-X.Y.); (M.-N.C.); (P.-P.R.); (C.N.); (Z.-T.S.); (J.-P.C.); (C.-X.Z.); (J.-M.L.)
| | - Peng-Peng Ren
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.-N.Y.); (Z.-X.Y.); (M.-N.C.); (P.-P.R.); (C.N.); (Z.-T.S.); (J.-P.C.); (C.-X.Z.); (J.-M.L.)
| | - Chao Ning
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.-N.Y.); (Z.-X.Y.); (M.-N.C.); (P.-P.R.); (C.N.); (Z.-T.S.); (J.-P.C.); (C.-X.Z.); (J.-M.L.)
| | - Zong-Tao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.-N.Y.); (Z.-X.Y.); (M.-N.C.); (P.-P.R.); (C.N.); (Z.-T.S.); (J.-P.C.); (C.-X.Z.); (J.-M.L.)
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.-N.Y.); (Z.-X.Y.); (M.-N.C.); (P.-P.R.); (C.N.); (Z.-T.S.); (J.-P.C.); (C.-X.Z.); (J.-M.L.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.-N.Y.); (Z.-X.Y.); (M.-N.C.); (P.-P.R.); (C.N.); (Z.-T.S.); (J.-P.C.); (C.-X.Z.); (J.-M.L.)
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.-N.Y.); (Z.-X.Y.); (M.-N.C.); (P.-P.R.); (C.N.); (Z.-T.S.); (J.-P.C.); (C.-X.Z.); (J.-M.L.)
| | - Qianzhuo Mao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.-N.Y.); (Z.-X.Y.); (M.-N.C.); (P.-P.R.); (C.N.); (Z.-T.S.); (J.-P.C.); (C.-X.Z.); (J.-M.L.)
| |
Collapse
|
7
|
Alvarez-Quinto R, Grinstead S, Kinard G, Martin R, Mollov D. Complete genome sequence of vaccinium-associated virus C, a new member of the family Totiviridae from Vaccinium floribundum. Arch Virol 2024; 169:86. [PMID: 38558201 DOI: 10.1007/s00705-024-06008-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 02/15/2024] [Indexed: 04/04/2024]
Abstract
Blueberries (Vaccinium sp.) are a major crop grown in the Pacific Northwest region. Currently, there are at least 17 known viruses that infect blueberry plants, and some of them cause a wide range of symptoms and economic losses. A new virus, vaccinium-associated virus C (VaVC) (family Totiviridae, genus Totivirus) was identified in an imported blueberry accession from the USDA-ARS National Clonal Germplasm Repository in Corvallis, Oregon. The complete genomic sequence of VaVC was determined, but the biological significance of VaVC is unknown and requires further study. Additional Vaccinium sp. accessions should be screened to investigate the incidence of this new virus.
Collapse
Affiliation(s)
- Robert Alvarez-Quinto
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97333, USA
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Samuel Grinstead
- USDA-ARS, National Germplasm Resources Laboratory, Beltsville, MD, 20705, USA
| | - Gary Kinard
- USDA-ARS, National Germplasm Resources Laboratory, Beltsville, MD, 20705, USA
| | - Robert Martin
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97333, USA
| | - Dimitre Mollov
- USDA-ARS, Horticultural Crops Disease and Pest Management Research Unit, Corvallis, OR, 97330, USA.
| |
Collapse
|
8
|
Long GY, Yang XB, Wang Z, Zeng QH, Yang H, Jin DC. Wing expansion functional analysis of ion transport peptide gene in Sogatella furcifera (Horváth) (Hemiptera: Delphacidae). Comp Biochem Physiol B Biochem Mol Biol 2024; 271:110946. [PMID: 38266956 DOI: 10.1016/j.cbpb.2024.110946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 01/20/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
Ion transport peptide (ITP), a superfamily of arthropod neuropeptides, serves a crucial role in regulating various physiological processes such as diuresis, ecdysis behavior, and wing expansion. However, the molecular characteristics, expression profile, and role of ITP in Sogatella furcifera are poorly understood. To elucidate the characteristics and biological function of ITP in S. furcifera, we employed reverse transcription-polymerase chain reaction (RT-PCR) and RNA interference (RNAi) methods. The identified SfITP gene encodes 117 amino acids. The expression of SfITP gradually increased followed the formation of 3-day-old of 5th instar nymph, peaking initially at 40 min after eclosion, and reaching another peak 24 h after eclosion, with particularly high expression levels in thorax and wing tissues. Notably, SfITP RNAi in 3rd instar nymphs of S. furcifera significantly inhibited the transcript levels of SfITP, resulting in 55% mortality and 78% wing deformity. These findings suggests that SfITP is involved in the regulation of wing expansion in S. furcifera, providing insights into the regulation of insect wing expansion and contributing to the molecular understanding of this process.
Collapse
Affiliation(s)
- Gui-Yun Long
- School of Chinese Ethnic Medicine, Guizhou Minzu University, Key Laboratory of Guizhou Ethnic Medicine Resource Development and Utilization in Guizhou Minzu University, State Ethnic Affairs Commission, Guiyang 550025, China; Institute of Entomology, Guizhou University, Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions and Scientific Observation and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang 550025, China
| | - Xi-Bin Yang
- Institute of Entomology, Guizhou University, Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions and Scientific Observation and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang 550025, China; Plant Protection and Quarantine Station, Department of Agriculture and Rural Affairs of Guizhou Province, Guiyang 550001, People's Republic of China
| | - Zhao Wang
- College of Environment and Life Sciences, Kaili University, Kaili 556011, China
| | - Qing-Hui Zeng
- Institute of Entomology, Guizhou University, Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions and Scientific Observation and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang 550025, China
| | - Hong Yang
- Institute of Entomology, Guizhou University, Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions and Scientific Observation and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang 550025, China.
| | - Dao-Chao Jin
- Institute of Entomology, Guizhou University, Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions and Scientific Observation and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang 550025, China.
| |
Collapse
|
9
|
Huang HJ, Li YY, Ye ZX, Li LL, Hu QL, He YJ, Qi YH, Zhang Y, Li T, Lu G, Mao QZ, Zhuo JC, Lu JB, Xu ZT, Sun ZT, Yan F, Chen JP, Zhang CX, Li JM. Co-option of a non-retroviral endogenous viral element in planthoppers. Nat Commun 2023; 14:7264. [PMID: 37945658 PMCID: PMC10636211 DOI: 10.1038/s41467-023-43186-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
Non-retroviral endogenous viral elements (nrEVEs) are widely dispersed throughout the genomes of eukaryotes. Although nrEVEs are known to be involved in host antiviral immunity, it remains an open question whether they can be domesticated as functional proteins to serve cellular innovations in arthropods. In this study, we found that endogenous toti-like viral elements (ToEVEs) are ubiquitously integrated into the genomes of three planthopper species, with highly variable distributions and polymorphism levels in planthopper populations. Three ToEVEs display exon‒intron structures and active transcription, suggesting that they might have been domesticated by planthoppers. CRISPR/Cas9 experiments revealed that one ToEVE in Nilaparvata lugens, NlToEVE14, has been co-opted by its host and plays essential roles in planthopper development and fecundity. Large-scale analysis of ToEVEs in arthropod genomes indicated that the number of arthropod nrEVEs is currently underestimated and that they may contribute to the functional diversity of arthropod genes.
Collapse
Affiliation(s)
- Hai-Jian Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yi-Yuan Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Zhuang-Xin Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Li-Li Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Qing-Ling Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yu-Juan He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yu-Hua Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yan Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Ting Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Gang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Qian-Zhuo Mao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Ji-Chong Zhuo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jia-Bao Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Zhong-Tian Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Zong-Tao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
10
|
Barnes M, Price DC. Endogenous Viral Elements in Ixodid Tick Genomes. Viruses 2023; 15:2201. [PMID: 38005880 PMCID: PMC10675110 DOI: 10.3390/v15112201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
The documentation of endogenous viral elements (EVEs; virus-derived genetic material integrated into the genome of a nonviral host) has offered insights into how arthropods respond to viral infection via RNA interference pathways. Small non-coding RNAs derived from EVE loci serve to direct RNAi pathways in limiting replication and infection from cognate viruses, thus benefiting the host's fitness and, potentially, vectorial capacity. Here we use informatic approaches to analyze nine available genome sequences of hard ticks (Acari: Ixodidae; Rhipicephalus sanguineus, R. microplus, R. annulatus, Ixodes ricinus, I. persulcatus, I. scapularis, Hyalomma asiaticum, Haemaphysalis longicornis, and Dermacentor silvarum) to identify endogenous viral elements and to illustrate the shared ancestry of all elements identified. Our results highlight a broad diversity of viral taxa as having given rise to 1234 identified EVEs in ticks, with Mononegavirales (specifically Rhabdoviridae) well-represented in this subset of hard ticks. Further investigation revealed extensive adintovirus integrations in several Ixodes species, the prevalence of Bunyavirales EVEs (notably not observed in mosquitoes), and the presence of several elements similar to known emerging human and veterinary pathogens. These results will inform subsequent work on current and past associations with tick species with regard to the viruses from which their "viral fossils" are derived and may serve as a reference for quality control of various tick-omics data that may suffer from misidentification of EVEs as viral genetic material.
Collapse
Affiliation(s)
| | - Dana C. Price
- Center for Vector Biology, Department of Entomology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA;
| |
Collapse
|
11
|
Qi YH, Ye ZX, Zhang CX, Chen JP, Li JM. Diversity of RNA viruses in agricultural insects. Comput Struct Biotechnol J 2023; 21:4312-4321. [PMID: 37711182 PMCID: PMC10497914 DOI: 10.1016/j.csbj.2023.08.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023] Open
Abstract
Recent advancements in next-generation sequencing (NGS) technology and bioinformatics tools have revealed a vast array of viral diversity in insects, particularly RNA viruses. However, our current understanding of insect RNA viruses has primarily focused on hematophagous insects due to their medical importance, while research on the viromes of agriculturally relevant insects remains limited. This comprehensive review aims to address the gap by providing an overview of the diversity of RNA viruses in agricultural pests and beneficial insects within the agricultural ecosystem. Based on the NCBI Virus Database, over eight hundred RNA viruses belonging to 39 viral families have been reported in more than three hundred agricultural insect species. These viruses are predominantly found in the insect orders of Hymenoptera, Hemiptera, Thysanoptera, Lepidoptera, Diptera, Coleoptera, and Orthoptera. These findings have significantly enriched our understanding of RNA viral diversity in agricultural insects. While further virome investigations are necessary to expand our knowledge to more insect species, it is crucial to explore the biological roles of these identified RNA viruses within insects in future studies. This review also highlights the limitations and challenges for the effective virus discovery through NGS and their potential solutions, which might facilitate for the development of innovative bioinformatic tools in the future.
Collapse
Affiliation(s)
- Yu-Hua Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Zhuang-Xin Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
12
|
Abstract
The virus family Totiviridae had originally been considered to include only viruses which infected fungal and protist hosts, but since 2006 a growing number of viruses found in invertebrates and fish have been shown to cluster phylogenetically within this family. These Totiviridae-like, or toti-like, viruses do not appear to belong within any existing genera of Totiviridae, and whilst a number of new genus names have been suggested, none has yet been universally accepted. Within this growing number of toti-like viruses from animal hosts, there exists emerging viral threats particularly to aquaculture, namely Infectious myonecrosis virus in whiteleg shrimp and Piscine myocarditis virus (PMCV) in Atlantic salmon (Salmo salar). PMCV in particular continues to be an issue in salmon aquaculture as a number of questions remain unanswered about how the virus is transmitted and the route of entry into host fish. Using a phylogenetic approach, this study shows how PMCV and the other fish toti-like viruses probably have deeper origins in an arthropod host. Based on this, it is hypothesized that sea lice could be acting as a vector for PMCV, as seen with other RNA viruses in Atlantic salmon aquaculture and in the toti-like Cucurbit yellows-associated virus which is spread by the greenhouse whitefly Trialeurodes vaporariorum.
Collapse
Affiliation(s)
- Andrew J Tighe
- Marine Institute, Oranmore, Co. Galway H91 R673, Ireland
- Area 52 Research Group, School of Biology and Environmental Science/Earth Institute, University College Dublin, Dublin 4, Ireland
| | - Neil M Ruane
- Marine Institute, Oranmore, Co. Galway H91 R673, Ireland
| | - Jens Carlsson
- Area 52 Research Group, School of Biology and Environmental Science/Earth Institute, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
13
|
Virome of Giant Panda-Infesting Ticks Reveals Novel Bunyaviruses and Other Viruses That Are Genetically Close to Those from Giant Pandas. Microbiol Spectr 2022; 10:e0203422. [PMID: 35916407 PMCID: PMC9430136 DOI: 10.1128/spectrum.02034-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Tick infestations have been reported as one of the factors threatening the health of giant pandas, but studies of viral pathogens carried by ticks feeding on the blood of giant pandas are limited. To assess whether blood-sucking ticks of giant pandas can carry viral pathogens and if so, whether the viruses in ticks are associated with those previously detected in giant panda hosts, we determined the viromes of ticks detached from giant pandas in a field stocking area in Sichuan Province, southwest China. Using viral metagenomics we identified 32 viral species in ticks, half of which (including anellovirus [n = 9], circovirus [n = 3], and gemycircularvirus [n = 4]) showed homology to viruses carried by giant pandas and their associated host species (such as red pandas and mosquitoes) in the same living domain. Remarkably, several viruses in this study phylogenetically assigned as bunyavirus, hepe-like virus, and circovirus were detected with relatively high abundance, but whether these newly identified tick-associated viruses can replicate in ticks and then transmit to host animals during a blood meal will require further investigation. These findings further expand our understanding of the role of giant panda-infesting ticks in the local ecosystem, especially related to viral acquisition and transmission, and lay a foundation to assess the risk for giant panda exposure to tick-borne viruses. IMPORTANCE Ticks rank only second to mosquitoes as blood-feeding arthropods, capable of spreading pathogens (including viruses, bacteria, and parasites) to hosts during a blood meal. To better understand the relationship between viruses carried by ticks and viruses that have been reported in giant pandas, it is necessary to analyze the viromes of giant panda-parasitic blood-sucking ticks. This study collected 421 ticks on the body surface of giant pandas in Sichuan Province, China. We characterized the extensive genetic diversity of viruses harbored by these ticks and reported frequent communication of viruses between giant pandas and their ticks. While most of the virome discovered here are nonpathogenic viruses from giant pandas and potentially tick-specific viruses, we revealed some possible tick-borne viruses, represented by novel bunyaviruses. This research contributes to the literature because currently there are few studies on the virome of giant panda-infesting ticks.
Collapse
|
14
|
Long GY, Yang JP, Jin DC, Yang H, Zhou C, Wang Z, Yang XB. Silencing of Decapentaplegic (Dpp) gene inhibited the wing expansion in the white-backed planthopper, Sogatella furcifera (Horváth) (Hemiptera: Delphacidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 110:e21879. [PMID: 35247285 DOI: 10.1002/arch.21879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/21/2021] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
The Decapentaplegic gene controls wing patterning and spreading by regulating downstream genes in many insect species. However, the molecular characteristics, expression, and biological function of Dpp in Sogatella furcifera remain poorly understood. In this study, we cloned the Dpp gene from S. furcifera and examined its expression levels in different development stages, wing typed adults, and tissues. Then, the function of SfDpp gene was analyzed using an RNA interference (RNAi)-based approach. The results showed that the full-length complementary DNA of the SfDpp gene consists of 1034 bp and contains a 954-bp open reading frame encoding 317 amino acids. SfDpp has a transforming growth factor-β (TGF-β) propeptide superfamily domain and a TGF-β superfamily domain, typical of members of the TGF-β superfamily. Quantitative real-time polymerase chain reaction showed that the expression of SfDpp reached its highest expression level 40 min after eclosion. RNAi-based gene silencing inhibited transcript levels of the corresponding messenger RNA in S. furcifera nymphs injected with double-stranded RNA of SfDpp and resulted in death of 29.17% and 26.67% of 4th and 5th instar nymphs, respectively. The wing deformity rate of the adults was 74.12% and 3.41% after SfDpp gene silencing in 4th and 5th instar nymphs, respectively. Examining wing development-associated genes showed that two target genes of Dpp (Vestigial and Spalt) were both dramatically downregulated after SfDpp was silenced. Our results demonstrate that downregulated SfDpp in early development causes wing expansion failure in S. furcifera. Thus, Dpp may be a target gene for restricting the migration of rice-damaging planthoppers.
Collapse
Affiliation(s)
- Gui-Yun Long
- Institute of Entomology, Guizhou University; Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, and Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, China
| | - Jia-Peng Yang
- Institute of Entomology, Guizhou University; Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, and Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, China
| | - Dao-Chao Jin
- Institute of Entomology, Guizhou University; Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, and Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, China
| | - Hong Yang
- Institute of Entomology, Guizhou University; Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, and Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, China
- College of Tobacco Science of Guizhou University, Guiyang, China
| | - Cao Zhou
- Institute of Entomology, Guizhou University; Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, and Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, China
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Zhao Wang
- Institute of Entomology, Guizhou University; Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, and Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, China
- College of Environment and Life Sciences, Kaili University, Kaili, China
| | - Xi-Bin Yang
- Institute of Entomology, Guizhou University; Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, and Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, China
| |
Collapse
|
15
|
New insights from the virome of Halyomorpha halys (Stål, 1855). Virus Res 2022; 316:198802. [DOI: 10.1016/j.virusres.2022.198802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 11/20/2022]
|
16
|
Etebari K, Lenancker P, Powell KS, Furlong MJ. Transcriptomics Reveal Several Novel Viruses from Canegrubs (Coleoptera: Scarabaeidae) in Central Queensland, Australia. Viruses 2022; 14:649. [PMID: 35337056 PMCID: PMC8949096 DOI: 10.3390/v14030649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/08/2022] [Accepted: 03/17/2022] [Indexed: 12/21/2022] Open
Abstract
Canegrubs (Coleoptera: Scarabaeidae) are major pests of sugarcane crops in Australia, but despite long-term and intensive research, no commercially viable biological control agents have been identified. We used the RNA-Seq approach to explore the viriomes of three different species of canegrubs from central Queensland, Australia to identify potential candidates for biological control. We identified six novel RNA viruses, characterized their genomes, and inferred their evolutionary relationships with other closely related viruses. These novel viruses showed similarity to other known members from picornaviruses, benyviruses, sobemoviruses, totiviruses, and reoviruses. The abundance of viral reads varied in these libraries; for example, Dermolepida albohirtum picorna-like virus (9696 nt) was built from 83,894 assembled reads while only 1350 reads mapped to Lepidiota negatoria beny-like virus (6371 nt). Future studies are essential to determine their natural incidence in different life stages of the host, biodiversity, geographical distributions, and potential as biological control agents for these important pests of sugarcane.
Collapse
Affiliation(s)
- Kayvan Etebari
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Pauline Lenancker
- Sugar Research Australia, 71378 Bruce Highway, Gordonvale, QLD 4865, Australia; (P.L.); (K.S.P.)
| | - Kevin S. Powell
- Sugar Research Australia, 71378 Bruce Highway, Gordonvale, QLD 4865, Australia; (P.L.); (K.S.P.)
| | - Michael J. Furlong
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia;
| |
Collapse
|
17
|
Zhao M, Xu L, Bowers H, Schott EJ. Characterization of Two Novel Toti-Like Viruses Co-infecting the Atlantic Blue Crab, Callinectes sapidus, in Its Northern Range of the United States. Front Microbiol 2022; 13:855750. [PMID: 35369474 PMCID: PMC8973213 DOI: 10.3389/fmicb.2022.855750] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/14/2022] [Indexed: 11/23/2022] Open
Abstract
The advancement of high throughput sequencing has greatly facilitated the exploration of viruses that infect marine hosts. For example, a number of putative virus genomes belonging to the Totiviridae family have been described in crustacean hosts. However, there has been no characterization of the most newly discovered putative viruses beyond description of their genomes. In this study, two novel double-stranded RNA (dsRNA) virus genomes were discovered in the Atlantic blue crab (Callinectes sapidus) and further investigated. Sequencing of both virus genomes revealed that they each encode RNA dependent RNA polymerase proteins (RdRps) with similarities to toti-like viruses. The viruses were tentatively named Callinectes sapidus toti-like virus 1 (CsTLV1) and Callinectes sapidus toti-like virus 2 (CsTLV2). Both genomes have typical elements required for −1 ribosomal frameshifting, which may induce the expression of an encoded ORF1–ORF2 (gag-pol) fusion protein. Phylogenetic analyses of CsTLV1 and CsTLV2 RdRp amino acid sequences suggested that they are members of two new genera in the family Totiviridae. The CsTLV1 and CsTLV2 genomes were detected in muscle, gill, and hepatopancreas of blue crabs by real-time reverse transcription quantitative PCR (RT-qPCR). The presence of ~40 nm totivirus-like viral particles in all three tissues was verified by transmission electron microscopy, and pathology associated with CsTLV1 and CsTLV2 infections were observed by histology. PCR assays showed the prevalence and geographic range of these viruses, to be restricted to the northeast United States sites sampled. The two virus genomes co-occurred in almost all cases, with the CsTLV2 genome being found on its own in 8.5% cases, and the CsTLV1 genome not yet found on its own. To our knowledge, this is the first report of toti-like viruses in C. sapidus. The information reported here provides the knowledge and tools to investigate transmission and potential pathogenicity of these viruses.
Collapse
Affiliation(s)
- Mingli Zhao
- Institute of Marine and Environmental Technology, University of Maryland, Baltimore County, MD, United States
| | - Lan Xu
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland, Baltimore County, MD, United States
| | - Holly Bowers
- Moss Landing Marine Laboratory, San Jose State University, San Jose, CA, United States
| | - Eric J. Schott
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Cambridge, MD, United States
- *Correspondence: Eric J. Schott,
| |
Collapse
|
18
|
Metatranscriptomic Sequencing Suggests the Presence of Novel RNA Viruses in Rice Transmitted by Brown Planthopper. Viruses 2021; 13:v13122464. [PMID: 34960733 PMCID: PMC8708968 DOI: 10.3390/v13122464] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
Viral pathogens are a major threat to stable crop production. Using a backcross strategy, we find that integrating a dominant brown planthopper (BPH) resistance gene Bph3 into a high-yield and BPH-susceptible indica rice variety significantly enhances BPH resistance. However, when Bph3-carrying backcross lines are infested with BPH, these BPH-resistant lines exhibit sterile characteristics, displaying panicle enclosure and failure of seed production at their mature stage. As we suspected, BPH-mediated viral infections could cause the observed sterile symptoms, and we characterized rice-infecting viruses using deep metatranscriptomic sequencing. Our analyses revealed eight novel virus species and five known viruses, including a highly divergent virus clustered within a currently unclassified family. Additionally, we characterized rice plant antiviral responses using small RNA sequencing. The results revealed abundant virus-derived small interfering RNAs in sterile rice plants, providing evidence for Dicer-like and Argonaute-mediated immune responses in rice plants. Together, our results provide insights into the diversity of viruses in rice plants, and our findings suggest that multiple virus infections occur in rice plants.
Collapse
|
19
|
Marucci G, Zullino I, Bertuccini L, Camerini S, Cecchetti S, Pietrantoni A, Casella M, Vatta P, Greenwood AD, Fiorillo A, Lalle M. Re-Discovery of Giardiavirus: Genomic and Functional Analysis of Viruses from Giardia duodenalis Isolates. Biomedicines 2021; 9:654. [PMID: 34201207 PMCID: PMC8230311 DOI: 10.3390/biomedicines9060654] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/29/2022] Open
Abstract
Giardiasis, caused by the protozoan parasite Giardia duodenalis, is an intestinal diarrheal disease affecting almost one billion people worldwide. A small endosymbiotic dsRNA viruses, G. lamblia virus (GLV), genus Giardiavirus, family Totiviridae, might inhabit human and animal isolates of G. duodenalis. Three GLV genomes have been sequenced so far, and only one was intensively studied; moreover, a positive correlation between GLV and parasite virulence is yet to be proved. To understand the biological significance of GLV infection in Giardia, the characterization of several GLV strains from naturally infected G. duodenalis isolates is necessary. Here we report high-throughput sequencing of four GLVs strains, from Giardia isolates of human and animal origin. We also report on a new, unclassified viral sequence (designed GdRV-2), unrelated to Giardiavirus, encoding and expressing for a single large protein with an RdRp domain homologous to Totiviridae and Botybirnaviridae. The result of our sequencing and proteomic analyses challenge the current knowledge on GLV and strongly suggest that viral capsid protein translation unusually starts with a proline and that translation of the RNA-dependent RNA polymerase (RdRp) occurs via a +1/-2 ribosomal frameshift mechanism. Nucleotide polymorphism, confirmed by mass-spectrometry analysis, was also observed among and between GLV strains. Phylogenetic analysis indicated the occurrence of at least two GLV subtypes which display different phenotypes and transmissibility in experimental infections of a GLV naïve Giardia isolate.
Collapse
Affiliation(s)
- Gianluca Marucci
- Unit of Foodborne and Neglected Parasitic Disease, Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (G.M.); (I.Z.); (P.V.)
| | - Ilaria Zullino
- Unit of Foodborne and Neglected Parasitic Disease, Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (G.M.); (I.Z.); (P.V.)
| | - Lucia Bertuccini
- Core Facilities, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (L.B.); (S.C.); (S.C.); (A.P.); (M.C.)
| | - Serena Camerini
- Core Facilities, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (L.B.); (S.C.); (S.C.); (A.P.); (M.C.)
| | - Serena Cecchetti
- Core Facilities, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (L.B.); (S.C.); (S.C.); (A.P.); (M.C.)
| | - Agostina Pietrantoni
- Core Facilities, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (L.B.); (S.C.); (S.C.); (A.P.); (M.C.)
| | - Marialuisa Casella
- Core Facilities, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (L.B.); (S.C.); (S.C.); (A.P.); (M.C.)
| | - Paolo Vatta
- Unit of Foodborne and Neglected Parasitic Disease, Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (G.M.); (I.Z.); (P.V.)
| | - Alex D. Greenwood
- Leibniz Institute for Zoo and Wildlife Research, 10315 Berlin, Germany;
- Department of Veterinary Medicine, Freie Universität Berlin, 14195 Berlin, Germany
| | - Annarita Fiorillo
- Department of Biochemical Science “A. Rossi-Fanelli”, Sapienza University, 00185 Rome, Italy;
| | - Marco Lalle
- Unit of Foodborne and Neglected Parasitic Disease, Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (G.M.); (I.Z.); (P.V.)
| |
Collapse
|
20
|
A novel totivirus isolated from the phytopathogenic fungus Rhodosporidiobolus odoratus strain GZ2017. Arch Virol 2020; 165:1911-1914. [PMID: 32488617 DOI: 10.1007/s00705-020-04684-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/26/2020] [Indexed: 10/24/2022]
Abstract
To our knowledge, there have been no reports of mycoviruses infecting Rhodosporidiobolus odoratus. Here, we describe the sequence of a novel mycovirus isolated from R. odoratus, which was designated "Rhodosporidiobolus odoratus RNA virus 1" (RoRV1). Sequence analysis revealed that RoRV1 has two discontinuous open reading frames (ORFs), ORF1 and ORF2, potentially encoding a hypothetical protein and an RNA-dependent RNA polymerase (RdRp), respectively. Phylogenetic analysis based on RdRp sequences clearly placed RoRV1 in the genus Totivirus, family Totiviridae. The fungus also contains two additional, smaller dsRNAs, which might represent RoRV1 satellite RNAs.
Collapse
|
21
|
Liu JJ, Xiang Y, Sniezko RA, Schoettle AW, Williams H, Zamany A. Characterization of Cronartium ribicola dsRNAs reveals novel members of the family Totiviridae and viral association with fungal virulence. Virol J 2019; 16:118. [PMID: 31623644 PMCID: PMC6796417 DOI: 10.1186/s12985-019-1226-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/23/2019] [Indexed: 01/13/2023] Open
Abstract
Background Mycoviruses were recently discovered in the white pine blister rust (WPBR) fungus Cronartium ribicola (J.C. Fisch.). Detection and characterization of their double stranded RNA (dsRNA) would facilitate understanding of pathogen virulence and disease pathogenesis in WPBR systems. Methods Full-length cDNAs were cloned from the dsRNAs purified from viral-infected C. ribicola, and their cDNA sequences were determined by DNA sequencing. Evolutionary relationships of the dsRNAs with related mycoviruses were determined by phylogenetic analysis. Dynamic distributions of the viral RNAs within samples of their fungal host C. ribicola were investigated by measurement of viral genome prevalence and viral gene expression. Results In this study we identified and characterized five novel dsRNAs from C. ribicola, designated as Cronartium ribicola totivirus 1–5 (CrTV1 to CrTV5). These dsRNA sequences encode capsid protein and RNA-dependent RNA polymerase with significant homologies to dsRNA viruses of the family Totiviridae. Phylogenetic analysis showed that the CrTVs were grouped into two distinct clades. CrTV2 through CrTV5 clustered within the genus Totivirus. CrTV1 along with a few un-assigned dsRNAs constituted a distinct phyletic clade that is genetically distant from presently known genera in the Totiviridae family, indicating that CrTV1 represents a novel genus in the Totiviridae family. The CrTVs were prevalent in fungal samples obtained from infected western white pine, whitebark pine, and limber pines. Viral RNAs were generally expressed at higher levels during in planta mycelium growth than in aeciospores and urediniospores. CrTV4 was significantly associated with C. ribicola virulent pathotype and specific C. ribicola host tree species, suggesting dsRNAs as potential tools for dissection of pathogenic mechanisms of C. ribicola and diagnosis of C. ribicola pathotypes. Conclusion Phylogenetic and expression analyses of viruses in the WPBR pathogen, C. ribicola, have enchanced our understanding of virus diversity in the family Totiviridae, and provided a potential strategy to utilize pathotype-associated mycoviruses to control fungal forest diseases.
Collapse
Affiliation(s)
- Jun-Jun Liu
- Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, Victoria, BC, V8Z 1M5, Canada.
| | - Yu Xiang
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, V0H 1Z0, Canada
| | - Richard A Sniezko
- Dorena Genetic Resource Center, USDA Forest Service, Cottage Grove, Oregon, 97424, USA
| | - Anna W Schoettle
- USDA Forest Service, Rocky Mountain Research Station, 240 West Prospect Road, Fort Collins, CO, 80526, USA
| | - Holly Williams
- Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, Victoria, BC, V8Z 1M5, Canada
| | - Arezoo Zamany
- Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, Victoria, BC, V8Z 1M5, Canada
| |
Collapse
|
22
|
Liu W, Hajano JUD, Wang X. New insights on the transmission mechanism of tenuiviruses by their vector insects. Curr Opin Virol 2018; 33:13-17. [DOI: 10.1016/j.coviro.2018.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/19/2018] [Accepted: 07/06/2018] [Indexed: 01/08/2023]
|