1
|
Fan ZH, Xu Y, Luo W, He XC, Zheng TT, Zhang JJ, Xu XY, Qin QW, Lee XZ. Molecular cloning and characterization of CD63 in common carp infected with koi herpesvirus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 121:104102. [PMID: 33862099 DOI: 10.1016/j.dci.2021.104102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
CD63 is a member of the four-transmembrane-domain protein superfamily and is the first characterized tetraspanin protein. In the present study, we cloned the common carp (Cyprinus Carpio) CD63 (ccCD63) sequence and found that the ccCD63 ORF contained 711 bp and encoded a protein of 236 amino acids. Homology analysis revealed that the complete ccCD63 sequence had 84.08% amino acid similarity to CD63 of Sinocyclocheilus anshuiensis. Subcellular localization analysis revealed that ccCD63 was localized in the cytoplasm. Quantitative real-time PCR (qRT-PCR) analysis indicated that ccCD63 was expressed in the gill, intestine, liver, spleen, brain and kidney, with higher expression in spleen and brain tissues than in the other examined tissues. After koi herpesvirus (KHV) infection, these tissues exhibited various expression levels of ccCD63. The expression level was the lowest in the liver and highest in the brain; the expression level in the brain was 8.7-fold higher than that in the liver. Furthermore, knockdown of ccCD63 promoted KHV infection. Moreover, ccCD63 was correlated with the regulation of RIG-I/MAVS/TRAF3/TBK1/IRF3 and may be involved in the antiviral response through the RIG-I viral recognition signalling pathway in a TRAF3/TBK1-dependent manner. Taken together, our results suggested that ccCD63 upregulated the interaction of KHV with the host immune system and suppressed the dissemination of KHV.
Collapse
Affiliation(s)
- Z H Fan
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Y Xu
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - W Luo
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - X C He
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - T T Zheng
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - J J Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - X Y Xu
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Q W Qin
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - X Z Lee
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Tetraspanins: useful multifunction proteins for the possible design and development of small-molecule therapeutic tools. Drug Discov Today 2020; 26:56-68. [PMID: 33137483 DOI: 10.1016/j.drudis.2020.10.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/21/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023]
Abstract
Tetraspanins constitute a well-conserved superfamily of four-span small membrane proteins (TM4SF), with >30 members in humans, with important roles in numerous mechanisms of cell biology. Moreover, tetraspanins associate with either specific partner proteins or another tetraspanin, generating a network of interactions involved in cell and membrane compartmentalization and having a role in cellular development, proliferation, activation, motility, and membrane fusions. Therefore, tetraspanins are considered regulators of cellular signaling and are often depicted as 'molecular facilitators'. In view of these many physiological functions, it is likely that these molecules are important actors in pathological processes. In this review, we present the main characteristics of this superfamily, providing a more detailed description of some significant representatives and discuss their relevance as potential targets for the design and development of small-molecule therapeutics in different pathologies.
Collapse
|