1
|
Bonning BC. Pathogen Binding and Entry: Molecular Interactions with the Insect Gut. ANNUAL REVIEW OF ENTOMOLOGY 2025; 70:165-184. [PMID: 39874144 DOI: 10.1146/annurev-ento-030624-014608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
The point of entry for the majority of arthropod pathogens and arthropod-vectored pathogens of plant, animal, and human health importance is the arthropod midgut. Pathogen interaction with the midgut therefore represents a primary target for intervention to prevent pathogen infection and transmission. Despite this key role in pathogen invasion, relatively little is known of the specific molecular interactions between pathogens and the surface of the arthropod gut epithelium, with few pathogen receptors having been definitively identified. This article provides an overview of pathogen molecular interactions in the arthropod midgut, with a focus on gut surface proteins that mediate pathogen entry, and highlights recent methodological advances that facilitate the identification of pathogen receptor proteins.
Collapse
Affiliation(s)
- Bryony C Bonning
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, USA;
| |
Collapse
|
2
|
Hameed A, Rosa C, O’Donnell CA, Rajotte EG. Ecological Interactions among Thrips, Soybean Plants, and Soybean Vein Necrosis Virus in Pennsylvania, USA. Viruses 2023; 15:1766. [PMID: 37632108 PMCID: PMC10458877 DOI: 10.3390/v15081766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Analysis of ecological and evolutionary aspects leading to durability of resistance in soybean cultivars against species Soybean vein necrosis orthotospovirus (SVNV) (Bunyavirales: Tospoviridae) is important for the establishment of integrated pest management (IPM) across the United States, which is a leading exporter of soybeans in the world. SVNV is a seed- and thrips- (vector)-borne plant virus known from the USA and Canada to Egypt. We monitored the resistance of soybean cultivars against SVNV, surveyed thrips species on various crops including soybeans in Pennsylvania, and studied thrips overwintering hibernation behavior under field conditions. Field and lab experiments determined disease incidence and vector abundance in soybean genotypes. The impact of the virus, vector, and their combination on soybean physiology was also evaluated. Seed protein, fiber, oil, and carbohydrate content were analyzed using near infra-red spectroscopy. We found that the variety Channel3917R2x had higher numbers of thrips; hence, it was categorized as preferred, while results showed that no variety was immune to SVNV. We found that thrips infestation alone or in combination with SVNV infection negatively impacted soybean growth and physiological processes.
Collapse
Affiliation(s)
- Asifa Hameed
- Department of Entomology, Pennsylvania State University, State College, PA 16802, USA;
| | - Cristina Rosa
- Plant Pathology and Environmental Microbiology, Pennsylvania State University, State College, PA 16802, USA;
| | - Cheryle A. O’Donnell
- USDA APHIS PPQ National Identification Services National Specialist (Thysanoptera and Psylloidea), Systematic Entomology Laboratory, B-005, Rm 137 BARC-West, 10300 Baltimore Avenue, Beltsville, MD 20705, USA;
| | - Edwin G. Rajotte
- Department of Entomology, Pennsylvania State University, State College, PA 16802, USA;
| |
Collapse
|
3
|
Druciarek T, Lewandowski M, Tzanetakis I. Identification of a Second Vector for Rose Rosette Virus. PLANT DISEASE 2023; 107:2313-2315. [PMID: 36724024 DOI: 10.1094/pdis-11-22-2686-sc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Rose rosette devastates the ornamentals industry in the United States. The disease, caused by rose rosette emaravirus (RRV), is vectored by the eriophyoid mite Phyllocoptes fructiphilus (Acari: Eriophyoidea). In this communication, we investigate two other Phyllocoptes species, P. adalius and P. arcani, for their vector competency and transmission efficiencies in single and multiple mite transfer experiments. P. arcani was identified as a second vector of RRV, a finding of significance for the epidemiology of the disease, as the second vector may be present in plants where P. fructiphilus is absent.
Collapse
Affiliation(s)
- Tobiasz Druciarek
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System Fayetteville, Fayetteville, AR 72701, U.S.A
| | - Mariusz Lewandowski
- Department of Applied Entomology, Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences - SGGW, 02-776 Warsaw, Poland
| | - Ioannis Tzanetakis
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System Fayetteville, Fayetteville, AR 72701, U.S.A
| |
Collapse
|
4
|
Maurastoni M, Han J, Whitfield AE, Rotenberg D. A call to arms: novel strategies for thrips and tospovirus control. CURRENT OPINION IN INSECT SCIENCE 2023; 57:101033. [PMID: 37030512 DOI: 10.1016/j.cois.2023.101033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 05/08/2023]
Abstract
Thrips and the tospoviruses they transmit are some of the most significant threats to food and ornamental crop production globally. Control of the insect and virus is challenging and new strategies are needed. Characterizing the thrips-virus interactome provides new targets for disrupting the transmission cycle. Viral and insect determinants of vector competence are being defined, including the viral attachment protein and its structure as well as thrips proteins that interact with and respond to tospovirus infection. Additional thrips control strategies such as RNA interference need further refinement and field-applicable delivery systems, but they show promise for the knockdown of essential genes for thrips survival and virus transmission. The identification of a toxin that acts to deter thrips oviposition on cotton also presents new opportunities for control of this important pest.
Collapse
Affiliation(s)
- Marlonni Maurastoni
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Jinlong Han
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Anna E Whitfield
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Dorith Rotenberg
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
5
|
Lin F, Chhapekar SS, Vieira CC, Da Silva MP, Rojas A, Lee D, Liu N, Pardo EM, Lee YC, Dong Z, Pinheiro JB, Ploper LD, Rupe J, Chen P, Wang D, Nguyen HT. Breeding for disease resistance in soybean: a global perspective. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3773-3872. [PMID: 35790543 PMCID: PMC9729162 DOI: 10.1007/s00122-022-04101-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 04/11/2022] [Indexed: 05/29/2023]
Abstract
KEY MESSAGE This review provides a comprehensive atlas of QTLs, genes, and alleles conferring resistance to 28 important diseases in all major soybean production regions in the world. Breeding disease-resistant soybean [Glycine max (L.) Merr.] varieties is a common goal for soybean breeding programs to ensure the sustainability and growth of soybean production worldwide. However, due to global climate change, soybean breeders are facing strong challenges to defeat diseases. Marker-assisted selection and genomic selection have been demonstrated to be successful methods in quickly integrating vertical resistance or horizontal resistance into improved soybean varieties, where vertical resistance refers to R genes and major effect QTLs, and horizontal resistance is a combination of major and minor effect genes or QTLs. This review summarized more than 800 resistant loci/alleles and their tightly linked markers for 28 soybean diseases worldwide, caused by nematodes, oomycetes, fungi, bacteria, and viruses. The major breakthroughs in the discovery of disease resistance gene atlas of soybean were also emphasized which include: (1) identification and characterization of vertical resistance genes reside rhg1 and Rhg4 for soybean cyst nematode, and exploration of the underlying regulation mechanisms through copy number variation and (2) map-based cloning and characterization of Rps11 conferring resistance to 80% isolates of Phytophthora sojae across the USA. In this review, we also highlight the validated QTLs in overlapping genomic regions from at least two studies and applied a consistent naming nomenclature for these QTLs. Our review provides a comprehensive summary of important resistant genes/QTLs and can be used as a toolbox for soybean improvement. Finally, the summarized genetic knowledge sheds light on future directions of accelerated soybean breeding and translational genomics studies.
Collapse
Affiliation(s)
- Feng Lin
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824 USA
| | - Sushil Satish Chhapekar
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
| | - Caio Canella Vieira
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
- Fisher Delta Research Center, University of Missouri, Portageville, MO 63873 USA
| | - Marcos Paulo Da Silva
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701 USA
| | - Alejandro Rojas
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701 USA
| | - Dongho Lee
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
- Fisher Delta Research Center, University of Missouri, Portageville, MO 63873 USA
| | - Nianxi Liu
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun,, 130033 Jilin China
| | - Esteban Mariano Pardo
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA) [Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)], Av. William Cross 3150, C.P. T4101XAC, Las Talitas, Tucumán, Argentina
| | - Yi-Chen Lee
- Fisher Delta Research Center, University of Missouri, Portageville, MO 63873 USA
| | - Zhimin Dong
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun,, 130033 Jilin China
| | - Jose Baldin Pinheiro
- Departamento de Genética, Escola Superior de Agricultura “Luiz de Queiroz” (ESALQ/USP), PO Box 9, Piracicaba, SP 13418-900 Brazil
| | - Leonardo Daniel Ploper
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA) [Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)], Av. William Cross 3150, C.P. T4101XAC, Las Talitas, Tucumán, Argentina
| | - John Rupe
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701 USA
| | - Pengyin Chen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
- Fisher Delta Research Center, University of Missouri, Portageville, MO 63873 USA
| | - Dechun Wang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824 USA
| | - Henry T. Nguyen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
| |
Collapse
|
6
|
Kormelink R, Verchot J, Tao X, Desbiez C. The Bunyavirales: The Plant-Infecting Counterparts. Viruses 2021; 13:842. [PMID: 34066457 PMCID: PMC8148189 DOI: 10.3390/v13050842] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 12/18/2022] Open
Abstract
Negative-strand (-) RNA viruses (NSVs) comprise a large and diverse group of viruses that are generally divided in those with non-segmented and those with segmented genomes. Whereas most NSVs infect animals and humans, the smaller group of the plant-infecting counterparts is expanding, with many causing devastating diseases worldwide, affecting a large number of major bulk and high-value food crops. In 2018, the taxonomy of segmented NSVs faced a major reorganization with the establishment of the order Bunyavirales. This article overviews the major plant viruses that are part of the order, i.e., orthospoviruses (Tospoviridae), tenuiviruses (Phenuiviridae), and emaraviruses (Fimoviridae), and provides updates on the more recent ongoing research. Features shared with the animal-infecting counterparts are mentioned, however, special attention is given to their adaptation to plant hosts and vector transmission, including intra/intercellular trafficking and viral counter defense to antiviral RNAi.
Collapse
Affiliation(s)
- Richard Kormelink
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jeanmarie Verchot
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA;
| | - Xiaorong Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China;
| | | |
Collapse
|