1
|
Chen S, Harris M. Mutational analysis reveals a novel role for hepatitis C virus NS5A domain I in cyclophilin-dependent genome replication. J Gen Virol 2023; 104:10.1099/jgv.0.001886. [PMID: 37672027 PMCID: PMC7615712 DOI: 10.1099/jgv.0.001886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023] Open
Abstract
The hepatitis C virus (HCV) NS5A protein is comprised of three domains (D1-3). Previously, we observed that two alanine substitutions in D1 (V67A, P145A) abrogated replication of a genotype 2a isolate (JFH-1) sub-genomic replicon (SGR) in Huh7 cells, but this phenotype was partially restored in Huh7.5 cells. Here we demonstrate that five additional residues, surface-exposed and proximal to V67 or P145, exhibited the same phenotype. In contrast, the analogous mutants in a genotype 3a isolate (DBN3a) SGR exhibited different phenotypes in each cell line, consistent with fundamental differences in the functions of genotypes 2 and 3 NS5A. The difference between Huh7 and Huh7.5 cells was reminiscent of the observation that cyclophilin inhibitors are more potent against HCV replication in the former and suggested a role for D1 in cyclophilin dependence. Consistent with this, all JFH-1 and DBN3a mutants exhibited increased sensitivity to cyclosporin A treatment compared to wild-type. Silencing of cyclophilin A (CypA) in Huh7 cells inhibited replication of both JFH-1 and DBN3a. However, in Huh7.5 cells CypA silencing did not inhibit JFH-1 wild-type, but abrogated replication of all the JFH-1 mutants, and both DBN3a wild-type and all mutants. CypB silencing in Huh7 cells had no effect on DBN3a, but abrogated replication of JFH-1. CypB silencing in Huh7.5 cells had no effect on either SGR. Lastly, we confirmed that JFH-1 NS5A D1 interacted with CypA in vitro. These data demonstrate both a direct involvement of NS5A D1 in cyclophilin-dependent genome replication and functional differences between genotype 2 and 3 NS5A.
Collapse
Affiliation(s)
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
2
|
Pham LV, Pedersen MS, Fahnøe U, Fernandez-Antunez C, Humes D, Schønning K, Ramirez S, Bukh J. HCV genome-wide analysis for development of efficient culture systems and unravelling of antiviral resistance in genotype 4. Gut 2022; 71:627-642. [PMID: 33833066 PMCID: PMC8862099 DOI: 10.1136/gutjnl-2020-323585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/17/2021] [Accepted: 02/03/2021] [Indexed: 01/14/2023]
Abstract
OBJECTIVE HCV-genotype 4 infections are a major cause of liver diseases in the Middle East/Africa with certain subtypes associated with increased risk of direct-acting antiviral (DAA) treatment failures. We aimed at developing infectious genotype 4 cell culture systems to understand the evolutionary genetic landscapes of antiviral resistance, which can help preserve the future efficacy of DAA-based therapy. DESIGN HCV recombinants were tested in liver-derived cells. Long-term coculture with DAAs served to induce antiviral-resistance phenotypes. Next-generation sequencing (NGS) of the entire HCV-coding sequence identified mutation networks. Resistance-associated substitutions (RAS) were studied using reverse-genetics. RESULT The in-vivo infectious ED43(4a) clone was adapted in Huh7.5 cells, using substitutions identified in ED43(Core-NS5A)/JFH1-chimeric viruses combined with selected NS5B-changes. NGS, and linkage analysis, permitted identification of multiple genetic branches emerging during culture adaptation, one of which had 31 substitutions leading to robust replication/propagation. Treatment of culture-adapted ED43 with nine clinically relevant protease-DAA, NS5A-DAA and NS5B-DAA led to complex dynamics of drug-target-specific RAS with coselection of genome-wide substitutions. Approved DAA combinations were efficient against the original virus, but not against variants with RAS in corresponding drug targets. However, retreatment with glecaprevir/pibrentasvir remained efficient against NS5A inhibitor and sofosbuvir resistant variants. Recombinants with specific RAS at NS3-156, NS5A-28, 30, 31 and 93 and NS5B-282 were viable, but NS3-A156M and NS5A-L30Δ (deletion) led to attenuated phenotypes. CONCLUSION Rapidly emerging complex evolutionary landscapes of mutations define the persistence of HCV-RASs conferring resistance levels leading to treatment failure in genotype 4. The high barrier to resistance of glecaprevir/pibrentasvir could prevent persistence and propagation of antiviral resistance.
Collapse
Affiliation(s)
- Long V. Pham
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin Schou Pedersen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Department of Clinical Microbiology, Hvidovre Hospital, Hvidovre, Denmark
| | - Ulrik Fahnøe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carlota Fernandez-Antunez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Daryl Humes
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Schønning
- Department of Clinical Microbiology, Hvidovre Hospital, Hvidovre, Denmark,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Santseharay Ramirez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Leumi S, El Kassas M, Zhong J. Hepatitis C virus genotype 4: A poorly characterized endemic genotype. J Med Virol 2021; 93:6079-6088. [PMID: 34185316 DOI: 10.1002/jmv.27165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 06/26/2021] [Indexed: 12/16/2022]
Abstract
Globally, 13% of all hepatitis C virus (HCV) infections are caused by genotype 4 (GT4), which consists of 17 subtypes with various levels of susceptibility to anti-HCV therapy. This genotype is endemic in the Middle East and Africa and has considerably spread to Europe lately. The molecular features of HCV-GT4 infection, as well as its appropriate therapeutics, are poorly characterized as it has not been the subject of widespread basic research. As such, in this review, we aim to gather the current state of knowledge of this genotype with a particular emphasis on its heterogeneity, sequence signatures, resistance-associated substitutions, and available in vivo and in vitro models used for its study. We urge developing more cell-culture models based on different GT4 subtypes to better understand the virology and therapeutic response of this particular genotype. This review may raise more awareness about this genotype and trigger more basic research work to develop its research tools. This will be critical to design better therapeutics and help to provide adequate guidelines for physicians working with HCV-GT4 patients.
Collapse
Affiliation(s)
- Steve Leumi
- Unit of Viral Hepatitis, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mohamed El Kassas
- Department of Endemic Medicine, Faculty of Medicine, Helwan University, Cairo, Egypt
| | - Jin Zhong
- Unit of Viral Hepatitis, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Li J, Zhou Q, Rong L, Rong D, Yang Y, Hao J, Zhang Z, Ma L, Rao G, Zhou Y, Xiao F, Li C, Wang H, Li YP. Development of cell culture infectious clones for hepatitis C virus genotype 1b and transcription analysis of 1b-infected hepatoma cells. Antiviral Res 2021; 193:105136. [PMID: 34252495 DOI: 10.1016/j.antiviral.2021.105136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/16/2021] [Accepted: 07/06/2021] [Indexed: 01/05/2023]
Abstract
Globally, hepatitis C virus (HCV) genotype 1b is the most prevalent, and its infection has been found to associate with a higher risk of hepatocellular carcinoma (HCC) than other genotype viruses. However, an efficient infectious HCV genotype 1b culture system is unavailable, which has largely hampered the study of this important genotype virus. In this study, by using a systematic approach combining the sequences of infectious 1a TNcc clone and adaptive mutations, we succeeded in culture adaption of two full-length 1b clones for the reference strain Con1 and a clinical isolate A6, and designated as Con1cc and A6cc, respectively. Con1cc and A6cc replicated efficiently in hepatoma Huh7.5.1 cells, released HCV infectivity titers of 104.1 and 103.72 focus forming units per milliliter, respectively, and maintained the engineered mutations after passages. Both viruses responded to sofosbuvir and velpatasvir in a dose-dependent manner. With culture infectious 1b clones, we characterized the transcriptomes of 1b Con1cc-infected cells, in comparison with 2a-infected and uninfected cells. In conclusion, we have developed two infectious clones for genotype 1b and shown a novel strategy for culture adaptation of HCV isolates by using a genetically close backbone sequence. Furthermore, this study provides transcriptional landscape of HCV 1b-infected hepatoma cells facilitating the study of genotype 1b infection.
Collapse
Affiliation(s)
- Jinqian Li
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing Zhou
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Liang Rong
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Dade Rong
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yang Yang
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiawei Hao
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhenzhen Zhang
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ling Ma
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Guirong Rao
- Key Laboratory of Liver Diseases, Center of Infectious Diseases, PLA 458 Hospital, Guangzhou, 510602, China
| | - Yuanping Zhou
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Fei Xiao
- Department of Infectious Disease, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Chengyao Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Haihe Wang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yi-Ping Li
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China; Department of Infectious Disease, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China.
| |
Collapse
|