1
|
Jiang H, Joshi A, Gan T, Janowski AB, Fujii C, Bricker TL, Darling TL, Harastani HH, Seehra K, Chen H, Tahan S, Jung A, Febles B, Blatter JA, Handley SA, Parikh BA, Wang D, Boon ACM. The Highly Conserved Stem-Loop II Motif Is Dispensable for SARS-CoV-2. J Virol 2023; 97:e0063523. [PMID: 37223945 PMCID: PMC10308922 DOI: 10.1128/jvi.00635-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/25/2023] Open
Abstract
The stem-loop II motif (s2m) is an RNA structural element that is found in the 3' untranslated region (UTR) of many RNA viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Though the motif was discovered over 25 years ago, its functional significance is unknown. In order to understand the importance of s2m, we created viruses with deletions or mutations of the s2m by reverse genetics and also evaluated a clinical isolate harboring a unique s2m deletion. Deletion or mutation of the s2m had no effect on growth in vitro or on growth and viral fitness in Syrian hamsters in vivo. We also compared the secondary structure of the 3' UTR of wild-type and s2m deletion viruses using selective 2'-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) and dimethyl sulfate mutational profiling and sequencing (DMS-MaPseq). These experiments demonstrate that the s2m forms an independent structure and that its deletion does not alter the overall remaining 3'-UTR RNA structure. Together, these findings suggest that s2m is dispensable for SARS-CoV-2. IMPORTANCE RNA viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), contain functional structures to support virus replication, translation, and evasion of the host antiviral immune response. The 3' untranslated region of early isolates of SARS-CoV-2 contained a stem-loop II motif (s2m), which is an RNA structural element that is found in many RNA viruses. This motif was discovered over 25 years ago, but its functional significance is unknown. We created SARS-CoV-2 with deletions or mutations of the s2m and determined the effect of these changes on viral growth in tissue culture and in rodent models of infection. Deletion or mutation of the s2m element had no effect on growth in vitro or on growth and viral fitness in Syrian hamsters in vivo. We also observed no impact of the deletion on other known RNA structures in the same region of the genome. These experiments demonstrate that s2m is dispensable for SARS-CoV-2.
Collapse
Affiliation(s)
- Hongbing Jiang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Astha Joshi
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tianyu Gan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrew B. Janowski
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Chika Fujii
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Traci L. Bricker
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tamarand L. Darling
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Houda H. Harastani
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kuljeet Seehra
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hongwei Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Stephen Tahan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ana Jung
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Binita Febles
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joshua A. Blatter
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Scott A. Handley
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Bijal A. Parikh
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - David Wang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Adrianus C. M. Boon
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Jiang H, Joshi A, Gan T, Janowski AB, Fujii C, Bricker TL, Darling TL, Harastani HH, Seehra K, Chen H, Tahan S, Jung A, Febles B, Blatter JA, Handley SA, Parikh BA, Wang D, Boon ACM. The highly conserved stem-loop II motif is dispensable for SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.15.532878. [PMID: 36993345 PMCID: PMC10055069 DOI: 10.1101/2023.03.15.532878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The stem-loop II motif (s2m) is a RNA structural element that is found in the 3' untranslated region (UTR) of many RNA viruses including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Though the motif was discovered over twenty-five years ago, its functional significance is unknown. In order to understand the importance of s2m, we created viruses with deletions or mutations of the s2m by reverse genetics and also evaluated a clinical isolate harboring a unique s2m deletion. Deletion or mutation of the s2m had no effect on growth in vitro , or growth and viral fitness in Syrian hamsters in vivo . We also compared the secondary structure of the 3' UTR of wild type and s2m deletion viruses using SHAPE-MaP and DMS-MaPseq. These experiments demonstrate that the s2m forms an independent structure and that its deletion does not alter the overall remaining 3'UTR RNA structure. Together, these findings suggest that s2m is dispensable for SARS-CoV-2. IMPORTANCE RNA viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contain functional structures to support virus replication, translation and evasion of the host antiviral immune response. The 3' untranslated region of early isolates of SARS-CoV-2 contained a stem-loop II motif (s2m), which is a RNA structural element that is found in many RNA viruses. This motif was discovered over twenty-five years ago, but its functional significance is unknown. We created SARS-CoV-2 with deletions or mutations of the s2m and determined the effect of these changes on viral growth in tissue culture and in rodent models of infection. Deletion or mutation of the s2m element had no effect on growth in vitro , or growth and viral fitness in Syrian hamsters in vivo . We also observed no impact of the deletion on other known RNA structures in the same region of the genome. These experiments demonstrate that the s2m is dispensable for SARS-CoV-2.
Collapse
Affiliation(s)
- Hongbing Jiang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Astha Joshi
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tianyu Gan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrew B Janowski
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Chika Fujii
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Traci L Bricker
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tamarand L Darling
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Houda H. Harastani
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kuljeet Seehra
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hongwei Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Stephen Tahan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ana Jung
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Binita Febles
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joshua A Blatter
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Scott A Handley
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Bijal A Parikh
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - David Wang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Address correspondence to: Adrianus Boon (), Washington University School of Medicine, 660 Euclid Avenue, Campus Box 8051, St Louis MO 63110 USA. or David Wang (), Washington University School of Medicine, 425 S Euclid Avenue, Campus Box 8230, St Louis MO 63110 USA
| | - Adrianus CM Boon
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Lead contact
- Address correspondence to: Adrianus Boon (), Washington University School of Medicine, 660 Euclid Avenue, Campus Box 8051, St Louis MO 63110 USA. or David Wang (), Washington University School of Medicine, 425 S Euclid Avenue, Campus Box 8230, St Louis MO 63110 USA
| |
Collapse
|
3
|
Kensinger AH, Makowski JA, Pellegrene KA, Imperatore JA, Cunningham CL, Frye CJ, Lackey PE, Mihailescu MR, Evanseck JD. Structural, Dynamical, and Entropic Differences between SARS-CoV and SARS-CoV-2 s2m Elements Using Molecular Dynamics Simulations. ACS PHYSICAL CHEMISTRY AU 2023; 3:30-43. [PMID: 36711027 PMCID: PMC9578647 DOI: 10.1021/acsphyschemau.2c00032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/05/2022]
Abstract
The functional role of the highly conserved stem-loop II motif (s2m) in SARS-CoV and SARS-CoV-2 in the viral lifecycle remains enigmatic and an intense area of research. Structure and dynamics of the s2m are key to establishing a structure-function connection, yet a full set of atomistic resolution coordinates is not available for SARS-CoV-2 s2m. Our work constructs three-dimensional coordinates consistent with NMR solution phase data for SARS-CoV-2 s2m and provides a comparative analysis with its counterpart SARS-CoV s2m. We employed initial coordinates based on PDB ID 1XJR for SARS-CoV s2m and two models for SARS-CoV-2 s2m: one based on 1XJR in which we introduced the mutations present in SARS-CoV-2 s2m and the second based on the available SARS-CoV-2 NMR NOE data supplemented with knowledge-based methods. For each of the three systems, 3.5 μs molecular dynamics simulations were used to sample the structure and dynamics, and principal component analysis (PCA) reduced the ensembles to hierarchal conformational substates for detailed analysis. Dilute solution simulations of SARS-CoV s2m demonstrate that the GNRA-like terminal pentaloop is rigidly defined by base stacking uniquely positioned for possible kissing dimer formation. However, the SARS-CoV-2 s2m simulation did not retain the reported crystallographic SARS-CoV motifs and the terminal loop expands to a highly dynamic "nonaloop." Increased flexibility and structural disorganization are observed for the larger terminal loop, where an entropic penalty is computed to explain the experimentally observed reduction in kissing complex formation. Overall, both SARS-CoV and SARS-CoV-2 s2m elements have a similarly pronounced L-shape due to different motif interactions. Our study establishes the atomistic three-dimensional structure and uncovers dynamic differences that arise from s2m sequence changes, which sets the stage for the interrogation of different mechanistic pathways of suspected biological function.
Collapse
Affiliation(s)
- Adam H. Kensinger
- Department
of Chemistry and Biochemistry and Center for Computational Sciences, Duquesne University, Pittsburgh, Pennsylvania15282, United States
| | - Joseph A. Makowski
- Department
of Chemistry and Biochemistry and Center for Computational Sciences, Duquesne University, Pittsburgh, Pennsylvania15282, United States
| | - Kendy A. Pellegrene
- Department
of Chemistry and Biochemistry and Center for Computational Sciences, Duquesne University, Pittsburgh, Pennsylvania15282, United States
| | - Joshua A. Imperatore
- Department
of Chemistry and Biochemistry and Center for Computational Sciences, Duquesne University, Pittsburgh, Pennsylvania15282, United States
| | - Caylee L. Cunningham
- Department
of Chemistry and Biochemistry and Center for Computational Sciences, Duquesne University, Pittsburgh, Pennsylvania15282, United States
| | - Caleb J. Frye
- Department
of Chemistry and Biochemistry and Center for Computational Sciences, Duquesne University, Pittsburgh, Pennsylvania15282, United States
| | - Patrick E. Lackey
- Department
of Biochemistry and Chemistry, Westminster
College, New Wilmington, Pennsylvania16172, United States
| | - Mihaela Rita Mihailescu
- Department
of Chemistry and Biochemistry and Center for Computational Sciences, Duquesne University, Pittsburgh, Pennsylvania15282, United States
| | - Jeffrey D. Evanseck
- Department
of Chemistry and Biochemistry and Center for Computational Sciences, Duquesne University, Pittsburgh, Pennsylvania15282, United States
| |
Collapse
|
4
|
Colson P, Delerce J, Marion-Paris E, Lagier JC, Levasseur A, Fournier PE, La Scola B, Raoult D. A 21L/BA.2-21K/BA.1 "MixOmicron" SARS-CoV-2 hybrid undetected by qPCR that screen for variant in routine diagnosis. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 105:105360. [PMID: 36070806 PMCID: PMC9444252 DOI: 10.1016/j.meegid.2022.105360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 01/05/2023]
Abstract
Among the multiple SARS-CoV-2 variants identified since summer 2020, several have co-circulated, creating opportunities for coinfections and potentially genetic recombinations that are common in coronaviruses. Viral recombinants are indeed beginning to be reported more frequently. Here, we describe a new SARS-CoV-2 recombinant genome that is mostly that of a Omicron 21L/BA.2 variant but with a 3' tip originating from a Omicron 21K/BA.1 variant. Two such genomes were obtained in our institute from adults sampled in February 2022 in university hospitals of Marseille, southern France, by next-generation sequencing carried out with the Illumina or Nanopore technologies. The recombination site was located between nucleotides 26,858-27,382. In the two genomic assemblies, mean sequencing depth at mutation-harboring positions was 271 and 1362 reads and mean prevalence of the majoritary nucleotide was 99.3 ± 2.2% and 98.8 ± 1.6%, respectively. Phylogeny generated trees with slightly different topologies according to whether genomes analyzed were depleted or not of the 3' tip. This 3' terminal end brought in the Omicron 21L/BA.2 genome a short transposable element of 41 nucleotides named S2m that is present in most SARS-CoV-2 except a few variants among which the Omicron 21L/BA.2 variant and may be involved in virulence. Importantly, this recombinant is not detected by currently used qPCR that screen for variants in routine diagnosis. The present observation emphasizes the need to survey closely the genetic pathways of SARS-CoV-2 variability by whole genome sequencing, and it could contribute to gain a better understanding of factors that lead to observed differences between epidemic potentials of the different variants.
Collapse
Affiliation(s)
- Philippe Colson
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France; Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), 27 boulevard Jean Moulin, 13005 Marseille, France; Assistance Publique-Hôpitaux de Marseille (AP-HM), 264 rue Saint-Pierre, 13005 Marseille, France.
| | - Jeremy Delerce
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France
| | - Elise Marion-Paris
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Hôpital Timone, Service de médecine du travail, 264 rue Saint-Pierre, 13005 Marseille, France
| | - Jean-Christophe Lagier
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France; Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), 27 boulevard Jean Moulin, 13005 Marseille, France; Assistance Publique-Hôpitaux de Marseille (AP-HM), 264 rue Saint-Pierre, 13005 Marseille, France
| | - Anthony Levasseur
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France; Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), 27 boulevard Jean Moulin, 13005 Marseille, France
| | - Pierre-Edouard Fournier
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France; Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), 27 boulevard Jean Moulin, 13005 Marseille, France; Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD), Vecteurs - Infections Tropicales et Méditerranéennes (VITROME), 27 boulevard Jean Moulin, 13005 Marseille, France
| | - Bernard La Scola
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France; Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), 27 boulevard Jean Moulin, 13005 Marseille, France; Assistance Publique-Hôpitaux de Marseille (AP-HM), 264 rue Saint-Pierre, 13005 Marseille, France
| | - Didier Raoult
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France; Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), 27 boulevard Jean Moulin, 13005 Marseille, France
| |
Collapse
|
5
|
Shen Q, Zhuang Z, Lu J, Qian L, Li G, Kanton AG, Yang S, Wang X, Wang H, Yin J, Zhang W. Genome Analysis of Goose-Origin Astroviruses Causing Fatal Gout in Shanghai, China Reveals One of Them Belonging to a Novel Type Is a Recombinant Strain. Front Vet Sci 2022; 9:878441. [PMID: 35782540 PMCID: PMC9247502 DOI: 10.3389/fvets.2022.878441] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/29/2022] [Indexed: 11/23/2022] Open
Abstract
Since 2014, a goose-origin astroviruses disease, which is characterized by urate precipitation in viscera, has rapidly spread to major commercial goose provinces leading to huge economic losses in the poultry industry of China. In March 2020, a goose farm locates in Shanghai, China, where there was no goose astroviruses (GAstVs) infection reported before, experienced an outbreak of gout disease in geese. The etiological investigation was carried out by virus metagenomics and bacterial culture and two GAstVs strains, designated as CHSH01 and CHSH02, were determined. Their complete genomes were measured to 7,154 and 7,330 nt in length, excludingthe poly(A) tail, respectively, and had different genomic features and classifications. CHSH01 shared a very low sequence identity with other strains in terms of not only the complete genome but also different ORFs. Phylogenetic analysis showed CHSH02 belonged to GAstV-2, which was the predominant species in the geese with gout in China according to the previous study. Meanwhile, CHSH01 strain displayed low identity with other AstVs, and phylogenetic and recombination analysis suggested that CHSH01 belonging to a novel type was a recombinant strain, one parent strain of which was an AstV determined from a bar-headed goose (a kind of migrant bird). Moreover, the primary epidemiological investigation showed that the two strains were prevalent in the same goose farm and co-infection occurred. These findings arise the potential cross-species transmission of CHSH01 between domestic and wild fowl.
Collapse
Affiliation(s)
- Quan Shen
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zi Zhuang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Juan Lu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Lingling Qian
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Guangquan Li
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Aaron Gia Kanton
- Department of Orthopedics, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shixing Yang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xiaochun Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Huiying Wang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
- *Correspondence: Huiying Wang
| | - Jun Yin
- Nanjing Customs District, Nanjing, China
- Jun Yin
| | - Wen Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
- Wen Zhang
| |
Collapse
|
6
|
Burel E, Colson P, Lagier JC, Levasseur A, Bedotto M, Lavrard-Meyer P, Fournier PE, La Scola B, Raoult D. Sequential Appearance and Isolation of a SARS-CoV-2 Recombinant between Two Major SARS-CoV-2 Variants in a Chronically Infected Immunocompromised Patient. Viruses 2022; 14:1266. [PMID: 35746737 PMCID: PMC9227898 DOI: 10.3390/v14061266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 02/05/2023] Open
Abstract
Genetic recombination is a major evolutionary mechanism among RNA viruses, and it is common in coronaviruses, including those infecting humans. A few SARS-CoV-2 recombinants have been reported to date whose genome harbored combinations of mutations from different mutants or variants, but only a single patient's sample was analyzed, and the virus was not isolated. Here, we report the gradual emergence of a hybrid genome of B.1.160 and Alpha variants in a lymphoma patient chronically infected for 14 months, and we isolated the recombinant virus. The hybrid genome was obtained by next-generation sequencing, and the recombination sites were confirmed by PCR. This consisted of a parental B.1.160 backbone interspersed with two fragments, including the spike gene, from an Alpha variant. An analysis of seven sequential samples from the patient decoded the recombination steps, including the initial infection with a B.1.160 variant, then a concurrent infection with this variant and an Alpha variant, the generation of hybrid genomes, and eventually the emergence of a predominant recombinant virus isolated at the end of the patient's follow-up. This case exemplifies the recombination process of SARS-CoV-2 in real life, and it calls for intensifying the genomic surveillance in patients coinfected with different SARS-CoV-2 variants, and more generally with several RNA viruses, as this may lead to the appearance of new viruses.
Collapse
Affiliation(s)
- Emilie Burel
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; (E.B.); (P.C.); (J.-C.L.); (A.L.); (M.B.); (P.L.-M.); (P.-E.F.)
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche Pour le Développement (IRD), Aix-Marseille University, 27 Boulevard Jean Moulin, 13005 Marseille, France
| | - Philippe Colson
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; (E.B.); (P.C.); (J.-C.L.); (A.L.); (M.B.); (P.L.-M.); (P.-E.F.)
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche Pour le Développement (IRD), Aix-Marseille University, 27 Boulevard Jean Moulin, 13005 Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), 264 rue Saint-Pierre, 13005 Marseille, France
| | - Jean-Christophe Lagier
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; (E.B.); (P.C.); (J.-C.L.); (A.L.); (M.B.); (P.L.-M.); (P.-E.F.)
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche Pour le Développement (IRD), Aix-Marseille University, 27 Boulevard Jean Moulin, 13005 Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), 264 rue Saint-Pierre, 13005 Marseille, France
| | - Anthony Levasseur
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; (E.B.); (P.C.); (J.-C.L.); (A.L.); (M.B.); (P.L.-M.); (P.-E.F.)
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche Pour le Développement (IRD), Aix-Marseille University, 27 Boulevard Jean Moulin, 13005 Marseille, France
| | - Marielle Bedotto
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; (E.B.); (P.C.); (J.-C.L.); (A.L.); (M.B.); (P.L.-M.); (P.-E.F.)
| | - Philippe Lavrard-Meyer
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; (E.B.); (P.C.); (J.-C.L.); (A.L.); (M.B.); (P.L.-M.); (P.-E.F.)
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche Pour le Développement (IRD), Aix-Marseille University, 27 Boulevard Jean Moulin, 13005 Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), 264 rue Saint-Pierre, 13005 Marseille, France
| | - Pierre-Edouard Fournier
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; (E.B.); (P.C.); (J.-C.L.); (A.L.); (M.B.); (P.L.-M.); (P.-E.F.)
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche Pour le Développement (IRD), Aix-Marseille University, 27 Boulevard Jean Moulin, 13005 Marseille, France
- Vecteurs-Infections Tropicales et Méditerranéennes (VITROME), Institut de Recherche Pour le Développement (IRD), Aix-Marseille University, 27 Boulevard Jean Moulin, 13005 Marseille, France
| | - Bernard La Scola
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; (E.B.); (P.C.); (J.-C.L.); (A.L.); (M.B.); (P.L.-M.); (P.-E.F.)
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche Pour le Développement (IRD), Aix-Marseille University, 27 Boulevard Jean Moulin, 13005 Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), 264 rue Saint-Pierre, 13005 Marseille, France
| | - Didier Raoult
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; (E.B.); (P.C.); (J.-C.L.); (A.L.); (M.B.); (P.L.-M.); (P.-E.F.)
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche Pour le Développement (IRD), Aix-Marseille University, 27 Boulevard Jean Moulin, 13005 Marseille, France
| |
Collapse
|
7
|
Janowski AB, Jiang H, Fujii C, Owen MC, Bricker TL, Darling TL, Harastani HH, Seehra K, Tahan S, Jung A, Febles B, Blatter JA, Handley SA, Parikh BA, Lulla V, Boon AC, Wang D. The highly conserved stem-loop II motif is important for the lifecycle of astroviruses but dispensable for SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.04.30.486882. [PMID: 35547847 PMCID: PMC9094099 DOI: 10.1101/2022.04.30.486882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The stem-loop II motif (s2m) is an RNA element present in viruses from divergent viral families, including astroviruses and coronaviruses, but its functional significance is unknown. We created deletions or substitutions of the s2m in astrovirus VA1 (VA1), classic human astrovirus 1 (HAstV1) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). For VA1, recombinant virus could not be rescued upon partial deletion of the s2m or substitutions of G-C base pairs. Compensatory substitutions that restored the G-C base-pair enabled recovery of VA1. For HAstV1, a partial deletion of the s2m resulted in decreased viral titers compared to wild-type virus, and reduced activity in a replicon system. In contrast, deletion or mutation of the SARS-CoV-2 s2m had no effect on the ability to rescue the virus, growth in vitro , or growth in Syrian hamsters. Our study demonstrates the importance of the s2m is virus-dependent.
Collapse
|
8
|
Imperatore JA, Cunningham CL, Pellegrene KA, Brinson R, Marino J, Evanseck J, Mihailescu M. Highly conserved s2m element of SARS-CoV-2 dimerizes via a kissing complex and interacts with host miRNA-1307-3p. Nucleic Acids Res 2021; 50:1017-1032. [PMID: 34908151 PMCID: PMC8789046 DOI: 10.1093/nar/gkab1226] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 01/14/2023] Open
Abstract
The ongoing COVID-19 pandemic highlights the necessity for a more fundamental understanding of the coronavirus life cycle. The causative agent of the disease, SARS-CoV-2, is being studied extensively from a structural standpoint in order to gain insight into key molecular mechanisms required for its survival. Contained within the untranslated regions of the SARS-CoV-2 genome are various conserved stem-loop elements that are believed to function in RNA replication, viral protein translation, and discontinuous transcription. While the majority of these regions are variable in sequence, a 41-nucleotide s2m element within the genome 3' untranslated region is highly conserved among coronaviruses and three other viral families. In this study, we demonstrate that the SARS-CoV-2 s2m element dimerizes by forming an intermediate homodimeric kissing complex structure that is subsequently converted to a thermodynamically stable duplex conformation. This process is aided by the viral nucleocapsid protein, potentially indicating a role in mediating genome dimerization. Furthermore, we demonstrate that the s2m element interacts with multiple copies of host cellular microRNA (miRNA) 1307-3p. Taken together, our results highlight the potential significance of the dimer structures formed by the s2m element in key biological processes and implicate the motif as a possible therapeutic drug target for COVID-19 and other coronavirus-related diseases.
Collapse
Affiliation(s)
- Joshua A Imperatore
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282, USA
| | - Caylee L Cunningham
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282, USA
| | - Kendy A Pellegrene
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282, USA
| | - Robert G Brinson
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, MD 20850, USA
| | - John P Marino
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, MD 20850, USA
| | - Jeffrey D Evanseck
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282, USA
| | | |
Collapse
|
9
|
No species-level losses of s2m suggests critical role in replication of SARS-related coronaviruses. Sci Rep 2021; 11:16145. [PMID: 34373516 PMCID: PMC8352927 DOI: 10.1038/s41598-021-95496-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/20/2021] [Indexed: 11/15/2022] Open
Abstract
The genetic element s2m has been acquired through horizontal transfer by many distantly related viruses, including the SARS-related coronaviruses. Here we show that s2m is evolutionarily conserved in these viruses. Though several lineages of severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) devoid of the element can be found, these variants seem to have been short lived, indicating that they were less evolutionary fit than their s2m-containing counterparts. On a species-level, however, there do not appear to be any losses and this pattern strongly suggests that the s2m element is essential to virus replication in SARS-CoV-2 and related viruses. Further experiments are needed to elucidate the function of s2m.
Collapse
|
10
|
Farkas C, Mella A, Turgeon M, Haigh JJ. A Novel SARS-CoV-2 Viral Sequence Bioinformatic Pipeline Has Found Genetic Evidence That the Viral 3' Untranslated Region (UTR) Is Evolving and Generating Increased Viral Diversity. Front Microbiol 2021; 12:665041. [PMID: 34234758 PMCID: PMC8256173 DOI: 10.3389/fmicb.2021.665041] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/28/2021] [Indexed: 12/27/2022] Open
Abstract
An unprecedented amount of SARS-CoV-2 sequencing has been performed, however, novel bioinformatic tools to cope with and process these large datasets is needed. Here, we have devised a bioinformatic pipeline that inputs SARS-CoV-2 genome sequencing in FASTA/FASTQ format and outputs a single Variant Calling Format file that can be processed to obtain variant annotations and perform downstream population genetic testing. As proof of concept, we have analyzed over 229,000 SARS-CoV-2 viral sequences up until November 30, 2020. We have identified over 39,000 variants worldwide with increased polymorphisms, spanning the ORF3a gene as well as the 3' untranslated (UTR) regions, specifically in the conserved stem loop region of SARS-CoV-2 which is accumulating greater observed viral diversity relative to chance variation. Our analysis pipeline has also discovered the existence of SARS-CoV-2 hypermutation with low frequency (less than in 2% of genomes) likely arising through host immune responses and not due to sequencing errors. Among annotated non-sense variants with a population frequency over 1%, recurrent inactivation of the ORF8 gene was found. This was found to be present in the newly identified B.1.1.7 SARS-CoV-2 lineage that originated in the United Kingdom. Almost all VOC-containing genomes possess one stop codon in ORF8 gene (Q27∗), however, 13% of these genomes also contains another stop codon (K68∗), suggesting that ORF8 loss does not interfere with SARS-CoV-2 spread and may play a role in its increased virulence. We have developed this computational pipeline to assist researchers in the rapid analysis and characterization of SARS-CoV-2 variation.
Collapse
Affiliation(s)
- Carlos Farkas
- Research Institute in Oncology and Hematology (RIOH), CancerCare Manitoba, Winnipeg, MB, Canada
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Andy Mella
- Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile
- Instituto de Ciencias Naturales, Universidad de las Américas, Santiago, Chile
| | - Maxime Turgeon
- Department of Statistics, University of Manitoba, Winnipeg, MB, Canada
- Department of Computer Science, University of Manitoba, Winnipeg, MB, Canada
| | - Jody J. Haigh
- Research Institute in Oncology and Hematology (RIOH), CancerCare Manitoba, Winnipeg, MB, Canada
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
11
|
Dimonaco NJ, Salavati M, Shih BB. Computational Analysis of SARS-CoV-2 and SARS-Like Coronavirus Diversity in Human, Bat and Pangolin Populations. Viruses 2020; 13:E49. [PMID: 33396801 PMCID: PMC7823979 DOI: 10.3390/v13010049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022] Open
Abstract
In 2019, a novel coronavirus, SARS-CoV-2/nCoV-19, emerged in Wuhan, China, and has been responsible for the current COVID-19 pandemic. The evolutionary origins of the virus remain elusive and understanding its complex mutational signatures could guide vaccine design and development. As part of the international "CoronaHack" in April 2020, we employed a collection of contemporary methodologies to compare the genomic sequences of coronaviruses isolated from human (SARS-CoV-2; n = 163), bat (bat-CoV; n = 215) and pangolin (pangolin-CoV; n = 7) available in public repositories. We have also noted the pangolin-CoV isolate MP789 to bare stronger resemblance to SARS-CoV-2 than other pangolin-CoV. Following de novo gene annotation prediction, analyses of gene-gene similarity network, codon usage bias and variant discovery were undertaken. Strong host-associated divergences were noted in ORF3a, ORF6, ORF7a, ORF8 and S, and in codon usage bias profiles. Last, we have characterised several high impact variants (in-frame insertion/deletion or stop gain) in bat-CoV and pangolin-CoV populations, some of which are found in the same amino acid position and may be highlighting loci of potential functional relevance.
Collapse
Affiliation(s)
- Nicholas J. Dimonaco
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Wales SY3 3FL, UK
| | - Mazdak Salavati
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Barbara B. Shih
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| |
Collapse
|