1
|
Wang Y, Wen Z, Yang Y, Hu X, Song Z, Hu H, Song G, You L, Wang J, Liu Y, Cheng X, Zhang X. Transmission of Oyster Mushroom Spherical Virus to Progeny via Basidiospores and Horizontally to a New Host Pleurotus floridanus. Int J Mol Sci 2024; 25:5677. [PMID: 38891868 PMCID: PMC11171830 DOI: 10.3390/ijms25115677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Mycoviruses are usually transmitted horizontally via hyphal anastomosis and vertically through sporulation in natural settings. Oyster mushroom spherical virus (OMSV) is a mycovirus that infects Pleurotus ostreatus, with horizontal transmission via hyphal anastomosis. However, whether OMSV can be vertically transmitted is unclear. This study aimed to investigate the transmission characteristics of OMSV to progeny via basidiospores and horizontally to a new host. A total of 37 single-basidiospore offspring were obtained from OMSV-infected P. ostreatus and Pleurotus pulmonarius for Western blot detection of OMSV. The OMSV-carrying rate among monokaryotic isolates was 19% in P. ostreatus and 44% in P. pulmonarius. Then, OMSV-free and OMSV-infected monokaryotic isolates were selected for hybridization with harvested dikaryotic progeny strains. Western blot analyses of the offspring revealed that the OMSV transmission efficiency was 50% in P. ostreatus and 75% in P. pulmonarius, indicating vertical transmission via sexual basidiospores. Furthermore, we observed the horizontal transfer of OMSV from P. pulmonarius to Pleurotus floridanus. OMSV infection in P. floridanus resulted in significant inhibition of mycelial growth and yield loss. This study was novel in reporting the vertical transmission of OMSV through basidiospores, and its infection and pathogenicity in a new host P. floridanus.
Collapse
Affiliation(s)
- Yifan Wang
- School of Agriculture, Ludong University, Yantai 264025, China; (Y.W.); (H.H.); (G.S.); (L.Y.); (J.W.); (Y.L.); (X.C.)
| | - Zhidong Wen
- Yantai Growth Drivers Conversion Research Institute and Yantai Science and Technology Achievement Transfer and Transformation Demonstration Base, Yantai 264001, China; (Z.W.); (Y.Y.); (X.H.)
| | - Yaoyao Yang
- Yantai Growth Drivers Conversion Research Institute and Yantai Science and Technology Achievement Transfer and Transformation Demonstration Base, Yantai 264001, China; (Z.W.); (Y.Y.); (X.H.)
| | - Xiangting Hu
- Yantai Growth Drivers Conversion Research Institute and Yantai Science and Technology Achievement Transfer and Transformation Demonstration Base, Yantai 264001, China; (Z.W.); (Y.Y.); (X.H.)
| | - Zhizhong Song
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, No. 186 Hongqizhong Road, Yantai 264025, China;
- Department of Plant Science, University of Cambridge, Cambridge CB2 3EA, UK
| | - Haijing Hu
- School of Agriculture, Ludong University, Yantai 264025, China; (Y.W.); (H.H.); (G.S.); (L.Y.); (J.W.); (Y.L.); (X.C.)
| | - Guoyue Song
- School of Agriculture, Ludong University, Yantai 264025, China; (Y.W.); (H.H.); (G.S.); (L.Y.); (J.W.); (Y.L.); (X.C.)
| | - Lunhe You
- School of Agriculture, Ludong University, Yantai 264025, China; (Y.W.); (H.H.); (G.S.); (L.Y.); (J.W.); (Y.L.); (X.C.)
| | - Jianrui Wang
- School of Agriculture, Ludong University, Yantai 264025, China; (Y.W.); (H.H.); (G.S.); (L.Y.); (J.W.); (Y.L.); (X.C.)
| | - Yu Liu
- School of Agriculture, Ludong University, Yantai 264025, China; (Y.W.); (H.H.); (G.S.); (L.Y.); (J.W.); (Y.L.); (X.C.)
| | - Xianhao Cheng
- School of Agriculture, Ludong University, Yantai 264025, China; (Y.W.); (H.H.); (G.S.); (L.Y.); (J.W.); (Y.L.); (X.C.)
| | - Xiaoyan Zhang
- School of Agriculture, Ludong University, Yantai 264025, China; (Y.W.); (H.H.); (G.S.); (L.Y.); (J.W.); (Y.L.); (X.C.)
| |
Collapse
|
2
|
Shi N, Zhu Q, Yang G, Wang P, Huang B. Prevalence and species diversity of dsRNA mycoviruses from Beauveria bassiana strains in the China's Guniujiang nature. Heliyon 2024; 10:e30186. [PMID: 38694113 PMCID: PMC11061733 DOI: 10.1016/j.heliyon.2024.e30186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024] Open
Abstract
We investigated the prevalence and species diversity of dsRNA mycoviruses in Beauveria bassiana isolates from the China's Guniujiang Nature Preserve. Among the 28 isolates analyzed, electropherotyping revealed viral infections in 28.6 % (8 out of 28) of the isolates. Metatranscriptomic identification and RT-PCR confirmed the presence of six putative virus species, including two novel species: Beauveria bassiana victorivirus 2 (BbV-2) and Beauveria bassiana bipartite mycovirus 2 (BbBV-2). Four previously characterized mycoviruses were also identified: Beauveria bassiana polymycovirus 4 (BbPmV4), Beauveria bassiana partitivirus 1 (BbPV-1), Beauveria bassiana bipartite mycovirus 1 (BbBV-1), and Beauveria bassiana chrysovirus 2 (BbCV-2). BbPmV4 was found to be the prevailing mycovirus among the infected isolates, and three isolates showed co-infection with both BbPmV4 and BbBV-2. This study enhances our understanding of fungal viral taxonomy and diversity, providing insights into mycovirus infections in B. bassiana populations in China's Guniujiang Nature Preserve. Furthermore, the study on the diversity of B. bassiana viruses lays the foundation for recognizing fungal viruses as potential enhancers of biocontrol agents.
Collapse
Affiliation(s)
- Najie Shi
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Qiuyan Zhu
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Guogen Yang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Ping Wang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Bo Huang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
3
|
Khan HA, Baig DI, Bhatti MF. An Overview of Mycoviral Curing Strategies Used in Evaluating Fungal Host Fitness. Mol Biotechnol 2023; 65:1547-1564. [PMID: 36841858 PMCID: PMC9963364 DOI: 10.1007/s12033-023-00695-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/11/2023] [Indexed: 02/27/2023]
Abstract
The number of novel mycoviruses is increasing at a high pace due to advancements in sequencing technologies. As a result, an uncountable number of mycoviral sequences are available in public sequence repositories. However, only genomic information is not sufficient to understand the impact of mycoviruses on their host biology. Biological characterization is required to determine the nature of mycoviruses (cryptic, hypervirulent, or hypovirulent) and to search for mycoviruses with biocontrol and therapeutic potential. Currently, no particular selective method is used as the gold standard against these mycoviral infections. Given the importance of curing, we present an overview of procedures used in preparation of isogenic lines, along with their benefits and drawbacks. We concluded that a combination of single-spore isolation and hyphal tipping is the best fit for preparation of isogenic lines. Furthermore, recent bioinformatic approaches should be introduced in the field of mycovirology to predict virus-specific antivirals to get robust results.
Collapse
Affiliation(s)
- Haris Ahmed Khan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, 44000 Pakistan
- Department of Biotechnology, University of Mianwali, Punjab, 42200 Pakistan
| | - Danish Ilyas Baig
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, 44000 Pakistan
| | - Muhammad Faraz Bhatti
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, 44000 Pakistan
| |
Collapse
|
4
|
Khan HA, Mukhtar M, Bhatti MF. Mycovirus-induced hypovirulence in notorious fungi Sclerotinia: a comprehensive review. Braz J Microbiol 2023; 54:1459-1478. [PMID: 37523037 PMCID: PMC10485235 DOI: 10.1007/s42770-023-01073-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023] Open
Abstract
Members of the genus Sclerotinia are notorious plant pathogens with a diverse host range that includes many important crops. A huge number of mycoviruses have been identified in this genus; some of these viruses are reported to have a hypovirulent effect on the fitness of their fungal hosts. These mycoviruses are important to researchers from a biocontrol perspective which was first implemented against fungal diseases in 1990. In this review, we have presented the data of all hypovirulent mycoviruses infecting Sclerotinia sclerotiorum isolates. The data of hypovirulent mycoviruses ranges from 1992 to 2023. Currently, mycoviruses belonging to 17 different families, including (+) ssRNA, (-ssRNA), dsRNA, and ssDNA viruses, have been reported from this genus. Advances in studies had shown a changed expression of certain host genes (responsible for cell cycle regulation, DNA replication, repair pathways, ubiquitin proteolysis, gene silencing, methylation, pathogenesis-related, sclerotial development, carbohydrate metabolism, and oxalic acid biosynthesis) during the course of mycoviral infection, which were termed differentially expressed genes (DEGs). Together, research on fungal viruses and hypovirulence in Sclerotinia species can deepen our understanding of the cellular processes that affect how virulence manifests in these phytopathogenic fungi and increase the potential of mycoviruses as a distinct mode of biological control. Furthermore, the gathered data can also be used for in-silico analysis, which includes finding the signature sites [e.g., hypovirus papain-like protease (HPP) domain, "CCHH" motif, specific stem-loop structures, p29 motif as in CHV1, A-rich sequence, CA-rich sequences as in MoV1, GCU motif as in RnMBV1, Core motifs in hypovirus-associated RNA elements (HAREs) as in CHV1] that are possibly responsible for hypovirulence in mycoviruses.
Collapse
Affiliation(s)
- Haris Ahmed Khan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, 44000, Pakistan.
- Department of Biotechnology, University of Mianwali, Mianwali, Punjab, 42200, Pakistan.
| | - Mamuna Mukhtar
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, 44000, Pakistan
| | - Muhammad Faraz Bhatti
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, 44000, Pakistan
| |
Collapse
|
5
|
Khan HA, Nerva L, Bhatti MF. The good, the bad and the cryptic: The multifaceted roles of mycoviruses and their potential applications for a sustainable agriculture. Virology 2023; 585:259-269. [PMID: 37453341 DOI: 10.1016/j.virol.2023.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
Mycoviruses are natural inhabitants of fungi and have been identified in almost all fungal taxonomic groups. Mycoviruses that infect phytopathogenic fungi are now becoming a hot research area due to their potential for the biocontrol of important plant pathogens. But, before considering a mycovirus for biocontrol, we should be fully aware of the effects it induces in a fungal host and its interactions with other viruses, fungal strains and even the host plants. Mycoviral infections are generally associated with different effects, ranging from hypovirulence to hypervirulence, but they can often be cryptic (latent infections). The cryptic lifestyle has been associated to many mycoviruses, but thanks to growing knowledge we are now aware that it is often associated to axenic conditions while the real effects can be observed only in nature. Other mycoviruses either promote (hypervirulence) or (hypovirulence) fungal pathogenicity by a strong impact on the fungal physiology or by blocking the production of toxins or effectors. Finally, indirect effects of mycoviral infections can also be provided to the plant that hosts the fungal isolate, highlighting not only their potential as direct biocontrol agents but also as priming agents for plant resilience to biotic and abiotic stresses. This review provides a broad overview of mycoviral interactions both with their hosts and with other mycoviruses, highlighting the most interesting examples. In contrast to what has been observed to date, we believe that the collective availability of these data will not only improve our understanding of mycoviruses, but also increase our confidence in considering them as alternative measures against fungal diseases to improve the sustainable production of food and feed commodities.
Collapse
Affiliation(s)
- Haris Ahmed Khan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, 44000, Islamabad, Pakistan; Department of Biotechnology, University of Mianwali, Punjab, 42200, Pakistan
| | - Luca Nerva
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile, 31015, Conegliano, (TV), Italy.
| | - Muhammad Faraz Bhatti
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, 44000, Islamabad, Pakistan
| |
Collapse
|
6
|
Huang H, Hua X, Pang X, Zhang Z, Ren J, Cheng J, Fu Y, Xiao X, Lin Y, Chen T, Li B, Liu H, Jiang D, Xie J. Discovery and Characterization of Putative Glycoprotein-Encoding Mycoviruses in the Bunyavirales. J Virol 2023; 97:e0138122. [PMID: 36625579 PMCID: PMC9888262 DOI: 10.1128/jvi.01381-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/16/2022] [Indexed: 01/11/2023] Open
Abstract
Although segmented negative-sense RNA viruses (SNSRVs) have been frequently discovered in various fungi, most SNSRVs reported only the large segments. In this study, we investigated the diversity of the mycoviruses in the phytopathogenic fungus Fusarium asiaticum using the metatranscriptomic technique. We identified 17 fungal single-stranded RNA (ssRNA) viruses including nine viruses within Mitoviridae, one each in Narnaviridae, Botourmiaviridae, Hypoviridae, Fusariviridae, and Narliviridae, two in Mymonaviridae, and one trisegmented virus temporarily named Fusarium asiaticum mycobunyavirus 1 (FaMBV1). The FaMBV1 genome comprises three RNA segments, large (L), medium (M), and small (S) with 6,468, 2,639, and 1,420 nucleotides, respectively. These L, M, and S segments putatively encode the L protein, glycoprotein, and nucleocapsid, respectively. Phylogenetic analysis based on the L protein showed that FaMBV1 is phylogenetically clustered with Alternaria tenuissima negative-stranded RNA virus 2 (AtNSRV2) and Sclerotinia sclerotiorum negative-stranded RNA virus 5 (SsNSRV5) but distantly related to the members of the family Phenuiviridae. FaMBV1 could be vertically transmitted by asexual spores with lower efficiency (16.7%, 2/42). Comparison between FaMBV1-free and -infected fungal strains revealed that FaMBV1 has little effect on hyphal growth, pathogenicity, and conidium production, and its M segment is dispensable for viral replication and lost during subculture and asexual conidiation. The M and S segments of AtNSRV2 and SsNSRV5 were found using bioinformatics methods, indicating that the two fungal NSRVs harbor trisegmented genomes. Our results provide a new example of the existence and evolution of the segmented negative-sense RNA viruses in fungi. IMPORTANCE Fungal segmented negative-sense RNA viruses (SNSRVs) have been frequently found. Only the large segment encoding RNA-dependent RNA polymerase (RdRp) has been reported in most fungal SNSRVs, except for a few fungal SNSRVs reported to encode nucleocapsids, nonstructural proteins, or movement proteins. Virome analysis of the Fusarium spp. that cause Fusarium head blight discovered a novel virus, Fusarium asiaticum mycobunyavirus 1 (FaMBV1), representing a novel lineage of the family Phenuiviridae. FaMBV1 harbors a trisegmented genome that putatively encodes RdRp, glycoproteins, and nucleocapsids. The putative glycoprotein was first described in fungal SNSRVs and shared homology with glycoprotein of animal phenuivirus but was dispensable for its replication in F. asiaticum. Two other trisegmented fungal SNSRVs that also encode glycoproteins were discovered, implying that three-segment bunyavirus infections may be common in fungi. These findings provide new insights into the ecology and evolution of SNSRVs, particularly those infecting fungi.
Collapse
Affiliation(s)
- Huang Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Xiangmin Hua
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Xidan Pang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Zhongmei Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Jingyi Ren
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Xianyang, Shaanxi, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yanping Fu
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xueqiong Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yang Lin
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Tao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Bo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Xianyang, Shaanxi, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| |
Collapse
|
7
|
Kondo H, Botella L, Suzuki N. Mycovirus Diversity and Evolution Revealed/Inferred from Recent Studies. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:307-336. [PMID: 35609970 DOI: 10.1146/annurev-phyto-021621-122122] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
High-throughput virome analyses with various fungi, from cultured or uncultured sources, have led to the discovery of diverse viruses with unique genome structures and even neo-lifestyles. Examples in the former category include splipalmiviruses and ambiviruses. Splipalmiviruses, related to yeast narnaviruses, have multiple positive-sense (+) single-stranded (ss) RNA genomic segments that separately encode the RNA-dependent RNA polymerase motifs, the hallmark of RNA viruses (members of the kingdom Orthornavirae). Ambiviruses appear to have an undivided ssRNA genome of 3∼5 kb with two large open reading frames (ORFs) separated by intergenic regions. Another narna-like virus group has two fully overlapping ORFs on both strands of a genomic segment that span more than 90% of the genome size. New virus lifestyles exhibited by mycoviruses include the yado-kari/yado-nushi nature characterized by the partnership between the (+)ssRNA yadokarivirus and an unrelated dsRNA virus (donor of the capsid for the former) and the hadaka nature of capsidless 10-11 segmented (+)ssRNA accessible by RNase in infected mycelial homogenates. Furthermore, dsRNA polymycoviruses with phylogenetic affinity to (+)ssRNA animal caliciviruses have been shown to be infectious as dsRNA-protein complexes or deproteinized naked dsRNA. Many previous phylogenetic gaps have been filled by recently discovered fungal and other viruses, which haveprovided interesting evolutionary insights. Phylogenetic analyses and the discovery of natural and experimental cross-kingdom infections suggest that horizontal virus transfer may have occurred and continue to occur between fungi and other kingdoms.
Collapse
Affiliation(s)
- Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan;
| | - Leticia Botella
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University, Brno, Czech Republic
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan;
| |
Collapse
|
8
|
Molecular characterization of a novel victorivirus isolated from Botryosphaeria dothidea, the causal agent of longan leaf spot disease. Arch Virol 2022; 167:2417-2422. [PMID: 35962824 DOI: 10.1007/s00705-022-05573-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/03/2022] [Indexed: 11/02/2022]
Abstract
Mycoviruses are widespread in all major taxonomic groups of filamentous fungi. Previous research has indicated that mycoviruses are associated with the phytopathogenic fungus Botryosphaeria dothidea. In this study, three distinct double-stranded RNA viruses were detected in B. dothidea strain YCLYY11 isolated from a leaf spot of longan (Dimocarpus longana). The results of BLAST analysis revealed that the predicted amino acid sequences of those viruses were similar to those of Botryosphaeria dothidea chrysovirus 1, Botryosphaeria dothidea partitivirus 1, and an apparent novel victorivirus. Sequencing and analysis of the complete genome of the novel victorivirus indicated it is 5218 bp in length and contains two open reading frames (ORFs) that overlap at the tetranucleotide AUGA. BLASTp analysis of the proteins encoded by ORF1 and ORF2 showed that they were most similar to the coat protein and RNA-dependent RNA polymerase of Sphaeropsis sapinea RNA virus 2 (81.37% and 74.09% identical, respectively). A phylogenetic tree showed that the novel virus clustered together with victoriviruses and was separate from members of the other four genera of the family Totiviridae. Based on its genome structure and the results of phylogenetic analysis, we propose that this novel victorivirus should be named "Botryosphaeria dothidea victorivirus 3". This is also the first report of these three mycoviruses coinfecting a strain of B. dothidea.
Collapse
|
9
|
Khan HA, Sato Y, Kondo H, Jamal A, Bhatti MF, Suzuki N. A novel victorivirus from the phytopathogenic fungus Neofusicoccum parvum. Arch Virol 2022; 167:923-929. [PMID: 35112205 DOI: 10.1007/s00705-021-05304-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/04/2021] [Indexed: 11/02/2022]
Abstract
Neofusicoccum parvum is an important plant-pathogenic ascomycetous fungus that causes trunk diseases in a variety of plants. A limited number of reports on mycoviruses from this fungus are available. Here, we report the characterization of a novel victorivirus, Neofusicoccum parvum victorivirus 3 (NpVV3). An agarose gel dsRNA profile of a Pakistani strain of N. parvum, NFN, showed a band of ~5 kbp that was not detectable in Japanese strains of N. parvum. Taking a high-throughput and Sanger sequencing approach, the complete genome sequence of NpVV3 was determined to be 5226 bp in length with two open reading frames (ORF1 and ORF2) that encode a capsid protein (CP) and an RNA-dependent RNA polymerase (RdRP). The RdRP appears to be translated by a stop/restart mechanism facilitated by the junction sequence AUGucUGA, as is found in some other victoriviruses. BLASTp searches showed that NpVV3 CP and RdRP share the highest amino acid sequence identity (80.5% and 72.4%, respectively) with the corresponding proteins of NpVV1 isolated from a French strain of N. parvum. However, NpVV3 was found to be different from NpVV1 in its terminal sequences and the stop/restart facilitator sequence. NpVV3 particles ~35 nm in diameter were partially purified and used to infect an antiviral-RNA-silencing-deficient strain (∆dcl2) of an experimental ascomycetous fungal host, Cryphonectria parasitica. NpVV3 showed symptomless infection in the new host strain.
Collapse
Affiliation(s)
- Haris Ahmed Khan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, 44000, Pakistan.,Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Yukiyo Sato
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Atif Jamal
- Crop Diseases Research Institute, National Agricultural Research Centre, Islamabad, Pakistan
| | - Muhammad Faraz Bhatti
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, 44000, Pakistan
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan.
| |
Collapse
|