1
|
Feng J, Wu C, Zhou D, Hu L, Mu K, Yin Z. Insights into incompatible plasmids in multidrug-resistant Raoultella superbugs. BMC Microbiol 2025; 25:55. [PMID: 39885400 PMCID: PMC11783820 DOI: 10.1186/s12866-025-03760-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 01/10/2025] [Indexed: 02/01/2025] Open
Abstract
The emergence of multidrug-resistant (MDR) Raoultella isolates is linked to the acquisition of antibiotic resistance genes (ARGs) with plasmids playing a pivotal role in this process. While plasmid-mediated transmission of ARGs in Raoultella has been extensively reported, limited attention has been given to genetically dissecting the modular structures of plasmids. This study aims to elucidate the genomic features of novel incompatible plasmids in MDR Raoultella by presenting 13 complete plasmid sequences from four isolates, along with an analysis of 16 related plasmids from GenBank. These 29 plasmids were classified into five distinct groups: IncFII single-replicon plasmids, dual-replicon plasmids containing the IncFII replicon, IncHI plasmids, IncR plasmids, and IncX8 plasmids. A new incompatible group, IncFIIp23141-CTXM, was identified, alongside five newly designated Inc groups based on previously determined sequences, namely IncFIIpKPC2_EC14653, IncFIIpCP020359, IncFIIpCP024509, IncFIIpKOX-137, and IncFIIpKDO1. Furthermore, this research marks the first report of four Inc groups of plasmids within Raoultella, namely IncFIIp23141-CTXM plasmid, IncFIIpKPC2_EC14653 plasmid, IncX8 plasmid, and IncFIIpCP020359: IncFIB-7.1 dual-replicon plasmid. Moreover, novel mobile genetic elements, including two unit transposons (Tn6806 and Tn6891), one IS-based transposition unit (Tn6561), and four insertion sequences (ISRor6, ISRor7, ISRor8, and ISRor9) were discovered. Notably, this is the first report of mcr-9 in clinical Raoultella strains. At least 49 ARGs conferring resistance against 11 different categories of antimicrobials were identified on these 13 plasmids. Overall, this research deepens the understanding of incompatible plasmids in Raoultella, serving as a reference for exploring antibiotic resistance profiles and plasmid diversity in MDR Raoultella.
Collapse
Affiliation(s)
- Jiao Feng
- Institute of Biomedical Sciences, The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Shanxi University, Taiyuan, 030006, China
| | - Changxin Wu
- Institute of Biomedical Sciences, The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Shanxi University, Taiyuan, 030006, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Lingfei Hu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Kai Mu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China.
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China.
| |
Collapse
|
2
|
Feng J, Song Z, Dai P, Chen H, Hu D, Yu L, Zhang J, Luo X. Genomic analysis of IMP-8-producing Enterobacter hormaechei with a novel plasmid pK432-IMP. J Glob Antimicrob Resist 2024; 39:250-256. [PMID: 39547574 DOI: 10.1016/j.jgar.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Carbapenem-resistant Enterobacter cloacae (CR-ECC) complex has posed significant challenges to the clinical treatment of infections, and Enterobacter hormaechei (E. hormaechei) is the most commonly identified nosocomial pathogen of CR-ECC. METHODS Carbapenemases were detected by the immunocolloidal gold technique. The minimum inhibitory concentration (MIC) values were determined by VITEK2. The genome sequence of strain K432 was obtained and analysed. RESULTS We isolated the IMP-8-producing E. hormaechei strain K432 from a patient's urine specimen in a Chinese hospital, which exhibited resistance to multiple antibiotics, including ceftazidime, piperacillin/tazobactam, aztreonam, imipenem, meropenem, ciprofloxacin, levofloxacin, minocycline, and trimethoprim/sulfamethoxazole. The genome of strain K432 was composed of the chromosome cK432 (4863 kb) and 3 plasmids: pK432-IMP (45.8 kb), pK432-TEM (75.6 kb), and pK432-NR (4.8 kb). In K432, six drug-resistant genes were detected, including blaACT-7 and fosA on cK432, blaIMP-8, and qnrS1 on pK432-IMP, blaSFO-1, and blaTEM-1 on pK432-TEM. The pK432-IMP belonged to a novel incompatibility group, and pK432-TEM was an incompatibility (Inc) R plasmid. Both of these two plasmids shared similar conserved backbone regions with their reference plasmids, respectively. However, the single accessory regions in these two plasmids were different from their reference plasmids, indicating that new recombination and integration events had occurred in K432. CONCLUSIONS This study provides a comprehensive understanding of the genomic characterization of K432 and identified a novel plasmid for IMP transmission. Further investigation and surveillance are warranted for pK432-IMP-type plasmid. While routine monitoring of MDR E. hormaechei strains is necessary in China.
Collapse
Affiliation(s)
- Jiao Feng
- Institutes of Biomedical Sciences, Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan, China
| | - Zhiwei Song
- Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital, Taizhou, China
| | - Piaopiao Dai
- Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital, Taizhou, China
| | - Huimin Chen
- Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital, Taizhou, China
| | - Dakang Hu
- Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital, Taizhou, China
| | - Lianhua Yu
- Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital, Taizhou, China
| | - Jin Zhang
- Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital, Taizhou, China
| | - Xinhua Luo
- Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital, Taizhou, China.
| |
Collapse
|
3
|
Dayie NTKD, Nathan-Mensah FNN, Kotey FCN, Tabi BKA, Kabotso DEK, Odoom A, Hotor P, Dayie AD, Tetteh-Quarcoo PB, Egyir B, Donkor ES. Multidrug-Resistant Bacteria in Aquaculture Systems in Accra, Ghana. ENVIRONMENTAL HEALTH INSIGHTS 2024; 18:11786302241299369. [PMID: 39600552 PMCID: PMC11590155 DOI: 10.1177/11786302241299369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 10/27/2024] [Indexed: 11/29/2024]
Abstract
Background Antibiotic resistance (ABR) poses a critical global health challenge, necessitating its surveillance across both human and animal health sectors. This study evaluated ABR in bacteria harboured in reared inland fishes sold in Accra and the pond water from which they originated. Method The study was cross-sectional, involving fishes and water sampled from 80 ponds. The gastrointestinal organs of the fishes were homogenised and cultured for bacteria, as were the water samples. The bacteria were identified using matrix-assisted laser desorption/ionisation time of flight mass spectrometry (MALDI-TOF-MS). Antimicrobial susceptibility test was done using the Kirby-Bauer method. Multidrug-resistant (MDR) bacteria were selected for further testing. The double disc diffusion method was used to detect extended-spectrum beta-lactamase (ESBL) production in isolates that were resistant to third-generation cephalosporins. Whole genome sequencing was performed on the ESBL-positive isolates using the Illumina Miseq platform. Results In total, 39 different bacterial species, with their individual numbers totalling 391, were isolated. The bacteria were predominantly Escherichia coli (17%), Aeromonas veronii (11%), Citrobacter freundii (8%), Bacillus cereus (5%), and Klebsiella pneumoniae (5%). The overall ABR rates were cefotaxime (32%), gentamicin (1%), ciprofloxacin (4%), chloramphenicol (19%), tetracycline (37%), meropenem (0%), and ertapenem (0%). Overall MDR and ESBL bacteria prevalence were 13.6% and 1.3%, respectively. The sequence types of the ESBL isolates were ST4684 (80%, n = 4) and ST2005 (20%, n = 1), and the serotypes were H34:09 (80%, n = 4) and H7 (20%, n = 1); the ABR genes were blaCTX-M-15, fosA7, and qnrS1. Conclusion The fishes and the pond water were contaminated with a diverse range of bacteria, mainly Escherichia coli and Aeromonas veronii. The ABR, MDR, and ESBL rates were low to moderate. Moreover, the main sequence type and serotype of the ESBL isolates were ST4684 and H34:09, respectively, and the ABR genes were blaCTX-M-15, fosA7, and qnrS1.
Collapse
Affiliation(s)
- Nicholas T. K. D. Dayie
- Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, Accra, Ghana
| | | | - Fleischer C. N. Kotey
- Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, Accra, Ghana
| | - Blessing Kofi Adu Tabi
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Daniel E. K. Kabotso
- Department of Basic Sciences, School of Basic and Biomedical Sciences, College of Health Sciences, University of Health and Allied Sciences, Ho, Ghana
| | - Alex Odoom
- Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, Accra, Ghana
| | - Prince Hotor
- Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, Accra, Ghana
| | - Alberta D. Dayie
- Department of Chemistry, School of Physical Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Ghana
| | | | - Beverly Egyir
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Eric S. Donkor
- Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, Accra, Ghana
| |
Collapse
|
4
|
Nakayama T, Jinnai M, Miyaji K, Saito M, Ohata N, Yamaguchi T, Tran Nguyen Minh D, Nguyen Hoang O, LE Thi H, Ngo Thanh P, Hoang Hoai P, Nguyen DO P, Dang VAN C, Kumeda Y, Hase A. High qnrS retention of ESBL-producing and mcr-harbouring colistin-resistant Escherichia coli in Vietnamese food products. JOURNAL OF MICROORGANISM CONTROL 2024; 29:121-126. [PMID: 39343582 DOI: 10.4265/jmc.29.3_121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Plasmid-mediated antibiotic-resistant bacteria's transmission is fatal and a major threat to public health. This study aimed to clarify the presence of plasmid-mediated quinolone resistance(PMQR)genes in extended-spectrum β-lactamase(ESBL)-producing or/and mcr-harbouring colistin(COL)-resistant Escherichia coli(ESBL-COL-EC)isolates from Vietnamese and Japanese chicken meat. Resistance towards ciprofloxacin(CIP)was examined in 308 ESBL-COL-EC isolates; CIP-resistant ESBL-COL-EC isolates were examined for the PMQR gene. Approximately, 71.1% and 38.1% of ESBL-COL-EC and ESBLproducing E. coli isolates from Vietnamese and Japanese chicken meat were CIP-resistant, respectively. Multiplex PCR led PMQR detection showed that 35.2% of CIP-resistant ESBL-COL-EC isolates from Vietnamese food contained PMQR gene, whereas CIP-resistant ESBL-COL-EC isolates from Japanese chicken meat did not. Conjugation assays showed that the transmission of qnrS gene carried by E. coli to Salmonella. In conclusion, ESBL-COL-EC isolates from Vietnamese food are associated with a high frequency of fluoroquinolone resistance and a high distribution of the qnrS gene.
Collapse
Affiliation(s)
- Tatsuya Nakayama
- Graduate School of Integrated Sciences for Life, Hiroshima University
| | - Michio Jinnai
- Department of Microbiology, Kanagawa Prefectural Institute of Public Health
| | - Kairi Miyaji
- Graduate School of Integrated Sciences for Life, Hiroshima University
| | - Machika Saito
- Graduate School of Integrated Sciences for Life, Hiroshima University
| | - Natsuki Ohata
- Graduate School of Integrated Sciences for Life, Hiroshima University
| | | | | | | | - Hien LE Thi
- Institute of Public Health, Ho Chi Minh City
| | | | | | | | | | - Yuko Kumeda
- Research Center of Microorganism Control, Osaka Metropolitan University
| | - Atsushi Hase
- Faculty of Contemporary Human Life Science, Tezukayama University
| |
Collapse
|
5
|
Simner PJ, Bergman Y, Fan Y, Jacobs EB, Ramakrishnan S, Lu J, Lewis S, Hanlon A, Tamma PD, Schatz MC, Timp W, Carroll KC. Multicentre genetic diversity study of carbapenem-resistant Enterobacterales: predominance of untypeable pUVA-like blaKPC bearing plasmids. JAC Antimicrob Resist 2023; 5:dlad061. [PMID: 37251303 PMCID: PMC10214462 DOI: 10.1093/jacamr/dlad061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 04/27/2023] [Indexed: 05/31/2023] Open
Abstract
Objectives Carbapenem-resistant Enterobacterales (CRE) are an urgent public health threat. A better understanding of the molecular epidemiology and transmission dynamics of CRE is necessary to limit their dissemination within healthcare settings. We sought to investigate the mechanisms of resistance and spread of CRE within multiple hospitals in Maryland. Methods From 2016 to 2018, all CRE were collected from any specimen source from The Johns Hopkins Medical Institutions. The isolates were further characterized using both phenotypic and genotypic approaches, including short- and/or long-read WGS. Results From 2016 to 2018, 302 of 40 908 (0.7%) unique Enterobacterales isolates were identified as CRE. Of CRE, 142 (47%) were carbapenemase-producing CRE with KPC (80.3%) predominating among various genera. Significant genetic diversity was identified among all CRE with high-risk clones serving as major drivers of clonal clusters. Further, we found the predominance of pUVA-like plasmids, with a subset harbouring resistance genes to environmental cleaning agents, involved in intergenus dissemination of blaKPC genes. Conclusions Our findings provide valuable data to understand the transmission dynamics of all CRE within the greater Maryland region. These data can help guide targeted interventions to limit CRE transmission in healthcare facilities.
Collapse
Affiliation(s)
| | - Yehudit Bergman
- Department of Pathology, Division of Medical Microbiology, Johns Hopkins University School of Medicine, 600 N Wolfe Street, Meyer B1-125, Baltimore, MD, USA
| | - Yunfan Fan
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Emily B Jacobs
- Department of Pathology, Division of Medical Microbiology, Johns Hopkins University School of Medicine, 600 N Wolfe Street, Meyer B1-125, Baltimore, MD, USA
| | | | - Jennifer Lu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Center for Computations Biology, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Shawna Lewis
- Department of Pathology, Division of Medical Microbiology, Johns Hopkins University School of Medicine, 600 N Wolfe Street, Meyer B1-125, Baltimore, MD, USA
| | - Ann Hanlon
- Department of Pathology, Division of Medical Microbiology, Johns Hopkins University School of Medicine, 600 N Wolfe Street, Meyer B1-125, Baltimore, MD, USA
| | - Pranita D Tamma
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael C Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Winston Timp
- Department of Medicine, Division of Infectious Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Center for Computations Biology, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Karen C Carroll
- Department of Pathology, Division of Medical Microbiology, Johns Hopkins University School of Medicine, 600 N Wolfe Street, Meyer B1-125, Baltimore, MD, USA
| |
Collapse
|
6
|
Gupta S, Graham DW, Sreekrishnan TR, Ahammad SZ. Heavy metal and antibiotic resistance in four Indian and UK rivers with different levels and types of water pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159059. [PMID: 36174689 DOI: 10.1016/j.scitotenv.2022.159059] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/04/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Heavy metal pollution can enhance the level of antibiotic resistance, posing concerns to ecosystem and public health. Here, we investigated heavy metal concentrations, heavy metal resistant bacteria and antibiotic resistant bacteria and their corresponding resistant genes, and integrons in four different river environments, i.e., low heavy metals and low wastewater, high heavy metals and low wastewater, low heavy metals and high wastewater, and high heavy metals and high wastewater levels. Heavy metals were found to show positive and significant correlations with heavy metal resistance and antibiotic resistance and integrons (r > 0.60, p < 0.05), indicating that heavy metal selective pressure can cause heavy metal and antibiotic resistance to be transmitted simultaneously via integrons, which can result in the development of multi-resistant bacteria in the heavy metal-polluted environments. Moreover, there were significant associations between heavy metal resistance and antibiotic resistance (r > 0.60, p < 0.05), demonstrating heavy metal and antibiotic resistance are connected via a same or related mechanism. Class 1 integrons were found to have strong correlations with heavy metals and heavy metal resistance and antibiotic resistance (r > 0.60, p < 0.05), indicating a higher occurrence of antibiotic resistance co-selection in the heavy metal-polluted environments.
Collapse
Affiliation(s)
- Sonia Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - David W Graham
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - T R Sreekrishnan
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Shaikh Ziauddin Ahammad
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
7
|
Neffe L, Abendroth L, Bautsch W, Häussler S, Tomasch J. High plasmidome diversity of extended-spectrum beta-lactam-resistant Escherichia coli isolates collected during one year in one community hospital. Genomics 2022; 114:110368. [PMID: 35447310 DOI: 10.1016/j.ygeno.2022.110368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/04/2022] [Accepted: 04/09/2022] [Indexed: 01/14/2023]
Abstract
Plasmid-encoded antibiotic resistance encompasses many classes of currently used antibiotics. In globally distributed Escherichia coli lineages plasmids, which spread via horizontal gene transfer, are responsible for the dissemination of genes encoding extended-spectrum β-lactamases (ESBL). In this study, we combined 2nd and 3rd generation sequencing techniques to reconstruct the plasmidome of overall 97 clinical ESBL-E. coli isolates. Our results highlight the enormous plasmid diversity in respect to size, replicon-type and genetic content. Furthermore, we emphasize the diverse plasmid distribution patterns among the clinical isolates and the high intra- and extracellular mobility potential of resistance conferring genes. While the majority of resistance conferring genes were located on large plasmids of known replicon type, small cryptic plasmids seem to be underestimated resistance gene vectors. Our results contribute to a better understanding of the dissemination of resistance-conferring genes through horizontal gene transfer as well as clonal spread.
Collapse
Affiliation(s)
- Lisa Neffe
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lisa Abendroth
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Susanne Häussler
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany; Institute for Molecular Bacteriology, Twincore, Centre for Clinical and Experimental Infection Research, Hannover, Germany; Department of Clinical Microbiology, Copenhagen University Hospital - Rigshospitalet, 2100 Copenhagen, Denmark; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30265 Hannover, Germany.
| | - Jürgen Tomasch
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
8
|
Xu Y, Jing Y, Hu L, Cheng Q, Gao H, Zhang Z, Yang H, Zhao Y, Zhou D, Yin Z, Dai E. IncFIB-4.1 and IncFIB-4.2 Single-Replicon Plasmids: Small Backbones with Large Accessory Regions. Infect Drug Resist 2022; 15:1191-1203. [PMID: 35345473 PMCID: PMC8957301 DOI: 10.2147/idr.s332949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 02/09/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose To establish a typing scheme for IncFIB replicon and to dissect genomic features of IncFIB-4.1/4.2 single-replicon plasmids. Methods A total of 146 representative fully sequenced IncFIB-replicon-containing plasmids were selected to construct a phylogenetic tree of repBIncFIB sequences. A collection of nine IncFIB-4.1/4.2 single-replicon plasmids from China were fully sequenced here and compared with the first sequenced IncFIB-4.1/4.2 single-replicon plasmids from GenBank to dissect their genomic diversity. Results In this study, a repB sequence-based scheme was proposed for grouping IncFIB replicon into seven primary types and further into 70 subtypes. A collection of nine IncFIB-4.1/4.2 single-replicon plasmids were fully sequenced here and compared with the first sequenced IncFIB-4.1/4.2 single-replicon plasmids from GenBank. These 11 plasmids had small backbones and shared only three key backbone markers repB together with its iterons, parABC, and stbD. Each plasmid contained one large accessory region (LAR) inserted into the backbone, and these 11 LARs had significantly distinct profiles of mobile genetic elements (MGEs) and resistance/metabolism gene loci. Antibiotic resistance regions (ARRs; the antibiotic resistance gene-containing genetic elements) were found in seven of these 11 LARs. Besides resistance genes, ARRs carried unit or composite transposons, integrons, and putative resistance units. IncFIB-4.1/4.2 single-replicon plasmids were important vectors of drug resistance genes. This was the first report of three novel MGEs: In1776, Tn6755, and Tn6857. Conclusion Data presented here provided a deeper insight into diversity and evolution of IncFIB replicon and IncFIB-4.1/4.2 single-replicon plasmids.
Collapse
Affiliation(s)
- Yanan Xu
- Department of Clinical Laboratory Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050011, People’s Republic of China
| | - Ying Jing
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People’s Republic of China
| | - Lingfei Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People’s Republic of China
| | - Qiaoxiang Cheng
- Department of Clinical Laboratory Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050011, People’s Republic of China
| | - Huixia Gao
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, Hebei, 050021, People’s Republic of China
| | - Zhi Zhang
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, Hebei, 050021, People’s Republic of China
| | - Huiying Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People’s Republic of China
| | - Yuee Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People’s Republic of China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People’s Republic of China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People’s Republic of China
| | - Erhei Dai
- Department of Clinical Laboratory Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050011, People’s Republic of China
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, Hebei, 050021, People’s Republic of China
- Correspondence: Erhei Dai; Zhe Yin, Tel +86-311-85814612; +86-10-66948557, Email ;
| |
Collapse
|
9
|
Cho GS, Stein M, Fiedler G, Igbinosa EO, Koll LP, Brinks E, Rathje J, Neve H, Franz CMAP. Polyphasic study of antibiotic-resistant enterobacteria isolated from fresh produce in Germany and description of Enterobacter vonholyi sp. nov. isolated from marjoram and Enterobacter dykesii sp. nov. isolated from mung bean sprout. Syst Appl Microbiol 2020; 44:126174. [PMID: 33370657 DOI: 10.1016/j.syapm.2020.126174] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 11/29/2022]
Abstract
Forty-two antibiotic-resistant enterobacteria strains were isolated from fresh produce obtained from the northern German retail market. A polyphasic characterization based on both phenotypic and genotypic methods was used to identify predominant strains as Citrobacter (C.) gillenii, C. portucalensis, Enterobacter (En.) ludwigii, Escherichia (E.) coli and Klebsiella (K.) pneumoniae. 38.1% of the enterobacteria strains were resistant to tetracycline, while 23.8% and 9.5% of strains were resistant to streptomycin and chloramphenicol, respectively. A high percentage of Klebsiella (100%), Enterobacter (57.1%) and Citrobacter (42.9%) strains were also resistant to ampicillin, with some strains showing multiple resistances. For unequivocal species identification, the genomes of thirty strains were sequenced. Multilocus sequence analysis, average nucleotide identity and digital DNA-DNA hybridization showed that Enterobacter strains E1 and E13 were clearly clustered apart from Enterobacter species type strains below the species delineation cutoff values. Thus, strains E1T (=DSM 111347T, LMG 31875T) represents a novel species proposed as Enterobacter dykesii sp. nov., while strain E13T (=DSM 110788T, LMG 31764T) represent a novel species proposed as Enterobacter vonholyi sp. nov. Strains often possessed different serine β-lactamase genes, tet(A) and tet(D) tetracycline resistance genes and other acquired antibiotic resistance genes. Typical plasmid replicon types were determined. This study thus accurately identified the enterobacteria from fresh produce as species belonging to the genera Citrobacter, Enterobacter, Escherichia and Klebsiella, but also showed that these can carry potentially transferable antibiotic resistance genes and may thus contribute to the spread of these via the food route.
Collapse
Affiliation(s)
- Gyu-Sung Cho
- Department of Microbiology and Biotechnology, Max Rubner-Institut Kiel, Hermann-Weigmann-Str. 1, 24103 Kiel, Germany
| | - Maria Stein
- Department of Microbiology and Biotechnology, Max Rubner-Institut Kiel, Hermann-Weigmann-Str. 1, 24103 Kiel, Germany
| | - Gregor Fiedler
- Department of Microbiology and Biotechnology, Max Rubner-Institut Kiel, Hermann-Weigmann-Str. 1, 24103 Kiel, Germany
| | - Etinosa O Igbinosa
- Department of Microbiology and Biotechnology, Max Rubner-Institut Kiel, Hermann-Weigmann-Str. 1, 24103 Kiel, Germany; Department of Microbiology, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
| | - Linnéa Philine Koll
- Department of Microbiology and Biotechnology, Max Rubner-Institut Kiel, Hermann-Weigmann-Str. 1, 24103 Kiel, Germany
| | - Erik Brinks
- Department of Microbiology and Biotechnology, Max Rubner-Institut Kiel, Hermann-Weigmann-Str. 1, 24103 Kiel, Germany
| | - Jana Rathje
- Department of Microbiology and Biotechnology, Max Rubner-Institut Kiel, Hermann-Weigmann-Str. 1, 24103 Kiel, Germany
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner-Institut Kiel, Hermann-Weigmann-Str. 1, 24103 Kiel, Germany
| | - Charles M A P Franz
- Department of Microbiology and Biotechnology, Max Rubner-Institut Kiel, Hermann-Weigmann-Str. 1, 24103 Kiel, Germany.
| |
Collapse
|
10
|
Abe R, Akeda Y, Sakamoto N, Kumwenda G, Sugawara Y, Yamamoto N, Kawahara R, Tomono K, Fujino Y, Hamada S. Genomic characterisation of a novel plasmid carrying bla IMP-6 of carbapenem-resistant Klebsiella pneumoniae isolated in Osaka, Japan. J Glob Antimicrob Resist 2020; 21:195-199. [PMID: 31627024 DOI: 10.1016/j.jgar.2019.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/04/2019] [Accepted: 10/04/2019] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES To analyse plasmids carrying blaIMP-6 in Klebsiella pneumoniae isolates obtained from multicentre carbapenem-resistant Enterobacteriaceae surveillance. METHODS Plasmids harbouring blaIMP-6 were characterised by the whole-genome sequencing of four Klebsiella pneumoniae isolates carrying blaIMP-6, and compared with the pKPI-6 plasmid, which is widespread in western Japan, through pulsed-field gel electrophoresis, Southern blotting, bacterial conjugation, and qPCR. RESULTS Whole-genome sequencing analysis revealed that three of the four isolates carried approximately 50 kbp plasmids similar to the pKPI-6 plasmid; however, one isolate carried a 250 kbp plasmid harbouring blaIMP-6 (pE196_IMP6). So far, all of the reported plasmids carrying blaIMP-6 were similar to the pKPI-6 plasmid, and this plasmid was a novel blaIMP6-carrier. The size and transferability of this plasmid was confirmed by Southern hybridisation and conjugation experiments. It was demonstrated that the generation of plasmid pE196_IMP6 was due to an intramolecular transposition mediated by IS26, and a homologous recombination between plasmids pKPI-6 and pE013 that was obtained from another carbapenem-resistant Enterobacteriaceae isolate in this analysis. As a result of co-integration with pE013, pE196_IMP6 acquired six additional pairs of type II toxin-antitoxin systems that pKPI-6 does not carry. Transcription of all of the toxin-antitoxin systems were confirmed in an isolate carrying pE196_IMP6 by qPCR. CONCLUSIONS This study detected a novel plasmid carrying blaIMP-6, and revealed the origin of this plasmid. Toxin-antitoxin system acquisition could enable pE196_IMP6 maintenance persistently through successions, even without selection pressure by the clinical usage of antimicrobials, generating broad dissemination and longer carbapenem-resistant Enterobacteriaceae colonisation duration in patients.
Collapse
Affiliation(s)
- Ryuichiro Abe
- Thailand-Japan Research Collaboration Centre on Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Japan; Department of Anaesthesiology and Intensive Care Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yukihiro Akeda
- Thailand-Japan Research Collaboration Centre on Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Japan; Division of Infection Control and Prevention, Osaka University Hospital, Osaka University, Suita, Japan.
| | - Noriko Sakamoto
- Thailand-Japan Research Collaboration Centre on Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Geoffrey Kumwenda
- Thailand-Japan Research Collaboration Centre on Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Yo Sugawara
- Thailand-Japan Research Collaboration Centre on Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Norihisa Yamamoto
- Thailand-Japan Research Collaboration Centre on Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Japan; Division of Infection Control and Prevention, Osaka University Hospital, Osaka University, Suita, Japan
| | - Ryuji Kawahara
- Department of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Kazunori Tomono
- Division of Infection Control and Prevention, Osaka University Hospital, Osaka University, Suita, Japan
| | - Yuji Fujino
- Department of Anaesthesiology and Intensive Care Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Shigeyuki Hamada
- Thailand-Japan Research Collaboration Centre on Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| |
Collapse
|
11
|
Adator EH, Walker M, Narvaez-Bravo C, Zaheer R, Goji N, Cook SR, Tymensen L, Hannon SJ, Church D, Booker CW, Amoako K, Nadon CA, Read R, McAllister TA. Whole Genome Sequencing Differentiates Presumptive Extended Spectrum Beta-Lactamase Producing Escherichia coli along Segments of the One Health Continuum. Microorganisms 2020; 8:microorganisms8030448. [PMID: 32235751 PMCID: PMC7143971 DOI: 10.3390/microorganisms8030448] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial resistance (AMR) has important implications for the continued use of antibiotics to control infectious diseases in both beef cattle and humans. AMR along the One Health continuum of the beef production system is largely unknown. Here, whole genomes of presumptive extended-spectrum β-lactamase E. coli (ESBL-EC) from cattle feces (n = 40), feedlot catch basins (n = 42), surrounding streams (n = 21), a beef processing plant (n = 4), municipal sewage (n = 30), and clinical patients (n = 25) are described. ESBL-EC were isolated from ceftriaxone selective plates and subcultured on ampicillin selective plates. Agreement of genotype-phenotype prediction of AMR ranged from 93.2% for ampicillin to 100% for neomycin, trimethoprim/sulfamethoxazole, and enrofloxacin resistance. Overall, β-lactam (100%; blaEC, blaTEM-1, blaSHV, blaOXA, blaCTX-M-), tetracycline (90.1%; tet(A), tet(B)) and folate synthesis (sul2) antimicrobial resistance genes (ARGs) were most prevalent. The ARGs tet(C), tet(M), tet(32),blaCTX-M-1, blaCTX-M-14, blaOXA-1, dfrA18, dfrA19, catB3, and catB4 were exclusive to human sources, while blaTEM-150, blaSHV-11–12,dfrA12, cmlA1, and cmlA5 were exclusive to beef cattle sources. Frequently encountered virulence factors across all sources included adhesion and type II and III secretion systems, while IncFIB(AP001918) and IncFII plasmids were also common. Specificity and prevalence of ARGs between cattle-sourced and human-sourced presumptive ESBL-EC likely reflect differences in antimicrobial use in cattle and humans. Comparative genomics revealed phylogenetically distinct clusters for isolates from human vs. cattle sources, implying that human infections caused by ESBL-EC in this region might not originate from beef production sources.
Collapse
Affiliation(s)
- Emelia H. Adator
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (E.H.A.); (C.N.-B.)
| | - Matthew Walker
- National Microbiology Laboratory, Winnipeg, MB R3E 3R2, Canada; (M.W.); (C.A.N.)
| | - Claudia Narvaez-Bravo
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (E.H.A.); (C.N.-B.)
| | - Rahat Zaheer
- Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada;
| | - Noriko Goji
- Canadian Food Inspection Agency, National Center for Animal Disease, Lethbridge Laboratory, Lethbridge, AB T1J 3Z4, Canada; (N.G.); (K.A.)
| | - Shaun R. Cook
- Alberta Agriculture and Forestry, Lethbridge, AB T1J 4V6, Canada; (S.R.C.); (L.T.)
| | - Lisa Tymensen
- Alberta Agriculture and Forestry, Lethbridge, AB T1J 4V6, Canada; (S.R.C.); (L.T.)
| | - Sherry J. Hannon
- Feedlot Health Management Services Ltd., Okotoks, AB T1S 2A2, Canada; (S.J.H.); (D.C.); (C.W.B.)
| | - Deirdre Church
- Feedlot Health Management Services Ltd., Okotoks, AB T1S 2A2, Canada; (S.J.H.); (D.C.); (C.W.B.)
| | - Calvin W. Booker
- Feedlot Health Management Services Ltd., Okotoks, AB T1S 2A2, Canada; (S.J.H.); (D.C.); (C.W.B.)
| | - Kingsley Amoako
- Canadian Food Inspection Agency, National Center for Animal Disease, Lethbridge Laboratory, Lethbridge, AB T1J 3Z4, Canada; (N.G.); (K.A.)
| | - Celine A. Nadon
- National Microbiology Laboratory, Winnipeg, MB R3E 3R2, Canada; (M.W.); (C.A.N.)
| | - Ron Read
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1 Canada;
| | - Tim A. McAllister
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (E.H.A.); (C.N.-B.)
- Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada;
- Correspondence:
| |
Collapse
|
12
|
Wang S, Dai E, Jiang X, Zeng L, Cheng Q, Jing Y, Hu L, Yin Z, Gao B, Wang J, Duan G, Cai X, Zhou D. Characterization of the plasmid of incompatibility groups IncFII pKF727591 and Inc pKPHS1 from Enterobacteriaceae species. Infect Drug Resist 2019; 12:2789-2797. [PMID: 31564929 PMCID: PMC6735626 DOI: 10.2147/idr.s212321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/08/2019] [Indexed: 11/23/2022] Open
Abstract
Background Multiple incompatibility (Inc) groups of plasmids have been identified in Enterobacteriaceae species, but there are still quite a few sequenced plasmids that could not be assigned to any known Inc groups. Methods One IncFIIpKF727591β plasmid p205880-qnrS and two IncpKPHS1 plasmids p11219-CTXM and p205880-NR1 were fully sequenced in this work. Detailed genomic comparison was applied to all available sequenced plasmids of IncFIIpKF727591 or IncpKPHS1 group. Results p205880-qnrS carried a novel transposon Tn6396, which was an ISKpn19-compsite transposon and represented a prototype transposable element carrying a minimum core qnrS1 module. p11219-CTXM harbored a novel transposon Tn6559, which was generated from integration of a truncated IS903D–blaCTX-M-14–ISEcp1 unit into the Tn3-family cryptic unit transposon Tn1722. Two Inc groups, IncFIIpKF727591 and IncpKPHS1, of plasmids from Enterobacteriaceae species were proposed, and IncFIIpKF727591 was further grouped into two subgroups IncFIIpKF727591α and IncFIIpKF727591β. Each of the 11 IncFIIpKF727591 plasmids carried multiple accessory modules including at least one resistance module, and the relatively small IncFIIpKF727591 backbones could acquire a wealth of foreign genetic contents. The modular structures of plasmid backbones were conserved within each of IncFIIpKF727591α and IncFIIpKF727591β subgroups but dramatically different, although with similar gene organizations, between these two subgroups. The IncpKPHS1 backbones were conserved with respect to modular structures, and only four of the 14 IncpKPHS1 plasmids carried accessory modules, two of which contained resistance genes. Conclusion A genomic comparison of sequenced IncpKPHS1 or IncFIIpKF727591 plasmids provides insights into modular differences and genetic diversification of these plasmids, some of which carries antimicrobial resistance genes.
Collapse
Affiliation(s)
- Shujie Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, People's Republic of China
| | - Erhei Dai
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, Hebei 050021, People's Republic of China
| | - Xiaoyuan Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People's Republic of China
| | - Lijun Zeng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People's Republic of China
| | - Qiaoxiang Cheng
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, Hebei 050021, People's Republic of China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People's Republic of China
| | - Ying Jing
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People's Republic of China
| | - Lingfei Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People's Republic of China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People's Republic of China
| | - Bo Gao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People's Republic of China
| | - Jinglin Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People's Republic of China
| | - Guixin Duan
- Animal Science and Technology College, Heilongjiang Bayi Agricultural University, Daqing 163000, People's Republic of China
| | - Xuehui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, People's Republic of China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People's Republic of China
| |
Collapse
|
13
|
Nguyen HNK, Van TTH, Coloe PJ. Antibiotic resistance associated with aquaculture in Vietnam. MICROBIOLOGY AUSTRALIA 2016. [DOI: 10.1071/ma16037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The fishery sector is an important source of income, employment and food supply in Vietnam. In 2014, Vietnam was ranked the world's fourth largest exporter and the third largest producer of farmed food fish. Vietnam seafood export has attained the value of over US$6.0 billion since 2011 and reached a peak of US$7.9 billion in 2014. However, many problems and diseases confront sustainable development of the fishery sector and overuse of antibiotics is considered a major challenge. Antibiotics are used in aquaculture for both therapeutic and prophylactic reasons. Various antimicrobials used in human medicine are also used for food animals even for non-therapeutic use. The use of antibiotics in health management of aquaculture farming is of great concern due to possible residues in aquatic products and in the development of antibiotic resistance. In 2005 the Vietnamese government first promulgated a list of medicines, chemicals and antibiotics that are banned or limited for use in aquaculture and this is regularly updated and amended to tackle the growing problem of antibiotic resistance.
Collapse
|