1
|
Tiwana G, Cock IE, Cheesman MJ. Phytochemical Analysis and Antimicrobial Activity of Terminalia bellirica (Gaertn.) Roxb. and Terminalia chebula Retz. Fruit Extracts Against Gastrointestinal Pathogens: Enhancing Antibiotic Efficacy. Microorganisms 2024; 12:2664. [PMID: 39770866 PMCID: PMC11728670 DOI: 10.3390/microorganisms12122664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/12/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025] Open
Abstract
Terminalia bellirica (Gaertn) Roxb. and Terminalia chebula Retz. are significant botanicals in ancient Ayurvedic medicine. They are renowned for their therapeutic properties, notably in addressing gastrointestinal (GI) diseases. These plants have undergone thorough examination related to their antibacterial, anti-inflammatory, and antioxidant properties, which make them highly efficient natural treatments for controlling gastrointestinal infections. The current research demonstrated the antibacterial efficacy of fruit extracts of Terminalia bellirica and Terminalia chebula against Bacillus cereus, Shigella sonnei, Shigella flexneri, and Salmonella typhimurium. We performed disc diffusion and liquid microdilution experiments to evaluate the antibacterial efficacy. All extracts of Terminalia bellirica and Terminalia chebula showed good antibacterial effects against B. cereus and S. flexneri. The minimum inhibitory concentration (MIC) values ranged from 94 µg/mL to 556 µg/mL. The methanolic extracts from both plants also showed noteworthy antibacterial activity against S. sonnei and S. typhimurium, with MIC values of 755 µg/mL for both. Fractional inhibitory concentration studies revealed additive interactions between some conventional antibiotics and the plant extracts when used concurrently. Liquid chromatography-mass spectrometry (LC-MS) analyses revealed that the T. bellirica and T. chebula extracts contained various tannins including methyl gallate, propyl gallate, gallic acid, and ellagic acid. Lethality assays conducted using Artemia franciscana Kellogg nauplii indicated that all the plant extracts are non-toxic. The antibacterial properties and absence of toxicity in T. bellirica and T. chebula fruit extracts indicate their potential for antibiotic development, warranting additional mechanistic and phytochemical studies.
Collapse
Affiliation(s)
- Gagan Tiwana
- School of Pharmacy and Medical Sciences, Gold Coast Campus, Griffith University, Gold Coast 4222, Australia;
| | - Ian Edwin Cock
- School of Environment and Science, Nathan Campus, Griffith University, Brisbane 4111, Australia;
| | - Matthew James Cheesman
- School of Pharmacy and Medical Sciences, Gold Coast Campus, Griffith University, Gold Coast 4222, Australia;
| |
Collapse
|
2
|
Sulaiman M, Ebehairy L, Nissapatorn V, Rahmatullah M, Villegas J, Dupa HJ, Verzosa RC, Dolma KG, Shabaz M, Lanting S, Rusdi NA, Abdullah NH, Bin Break MK, Khoo T, Wang W, Wiart C. Antibacterial phenolic compounds from the flowering plants of Asia and the Pacific: coming to the light. PHARMACEUTICAL BIOLOGY 2024; 62:713-766. [PMID: 39392281 PMCID: PMC11486068 DOI: 10.1080/13880209.2024.2407530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024]
Abstract
CONTEXT The emergence of pan-resistant bacteria requires the development of new antibiotics and antibiotic potentiators. OBJECTIVE This review identifies antibacterial phenolic compounds that have been identified in Asian and Pacific Angiosperms from 1945 to 2023 and analyzes their strengths and spectra of activity, distributions, molecular masses, solubilities, modes of action, structures-activities, as well as their synergistic effects with antibiotics, toxicities, and clinical potential. METHODS All data in this review was compiled from Google Scholar, PubMed, Science Direct, Web of Science, and library search; other sources were excluded. We used the following combination of keywords: 'Phenolic compound', 'Plants', and 'Antibacterial'. This produced 736 results. Each result was examined and articles that did not contain information relevant to the topic or coming from non-peer-reviewed journals were excluded. Each of the remaining 467 selected articles was read critically for the information that it contained. RESULTS Out of ∼350 antibacterial phenolic compounds identified, 44 were very strongly active, mainly targeting the cytoplasmic membrane of Gram-positive bacteria, and with a molecular mass between 200 and 400 g/mol. 2-Methoxy-7-methyljuglone, [6]-gingerol, anacardic acid, baicalin, vitexin, and malabaricone A and B have the potential to be developed as antibacterial leads. CONCLUSIONS Angiosperms from Asia and the Pacific provide a rich source of natural products with the potential to be developed as leads for treating bacterial infections.
Collapse
Affiliation(s)
- Mazdida Sulaiman
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Layane Ebehairy
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Mohammed Rahmatullah
- Department of Biotechnology, University of Development Alternative, Dhaka, Bangladesh
| | - Jhonnel Villegas
- Faculty of Education and Teacher Training, Davao Oriental State University, Mati, Philippines
| | - Helina Jean Dupa
- Faculty of Education and Teacher Training, Davao Oriental State University, Mati, Philippines
| | - Ricksterlie C. Verzosa
- Faculty of Agriculture and Life Science, Davao Oriental State University, Mati, Philippines
| | - Karma G. Dolma
- Department of Microbiology, Sikkim Manipal University, Gangtok, India
| | - Muhamad Shabaz
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Scholastica Lanting
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Nor Azizun Rusdi
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Nor Hayati Abdullah
- Natural Product Division, Forest Research Institute of Malaysia, Kepong, Malaysia
| | - Mohammed Khaled Bin Break
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha’il, Ha’il, Saudi Arabia
| | - Teng Jin Khoo
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Wei Wang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Christophe Wiart
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| |
Collapse
|
3
|
Shah HS, Zaib S, Usman F, Sarfraz M, Faiz R, Rehman SA, Khan AA, Alanazi AM, Khan R, Nasrullah U, Nazir I. Synthesis, characterization, pharmacological and computational evaluation of hyaluronic acid modified chebulinic acid encapsulated chitosan nanocomposite for cancer therapy. Int J Biol Macromol 2024; 263:130160. [PMID: 38367777 DOI: 10.1016/j.ijbiomac.2024.130160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/04/2024] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
The purpose of this study was to produce hyaluronic acid customized nanoparticles with chitosan for the delivery of chebulinic acid (CLA) to enhance its anticancer potential against breast cancer. A significant portion of CLA was encapsulated (89.72 ± 4.38 %) and loaded (43.15 ± 5.61 %) within hybrid nanoparticles. The colloidal hybrid nanoparticles demonstrated a polydispersity index (PDI) of about 0.379 ± 0.112, with zeta capacitance of 32.69 ± 5.12 (mV), and an average size of 115 ± 8 (nm). It was found that CLA-CT-HA-NPs had stronger anticancer effects on MCF-7 cells (IC50 = 8.18 ± 3.02 μM) than pure CLA (IC50 = 17.15 ± 5.11 μM). The initial cytotoxicity findings were supported by additional investigations based on comet assay and flow cytometry analysis. Tumor remission and survival were evaluated in five separate groups of mice. When juxtaposed with pure CLA (3.17 ± 0.419 %), CLA-CT-HA-NPs improved survival rates and reduced tumor burden by 3.76 ± 0.811(%). Furthermore, in-silico molecular docking investigations revealed that various biodegradable polymers had several levels of compatibility with CLA. The outcomes of this study might potentially served as an effective strategy for delivering drugs in the context of breast cancer therapy.
Collapse
Affiliation(s)
- Hamid Saeed Shah
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan.
| | - Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan.
| | - Faisal Usman
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 66000, Pakistan.
| | - Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Al Ain 64141, United Arab Emirates.
| | - Rabia Faiz
- Department of Zoology, University of Education, Bank Road Campus, Lahore, Pakistan.
| | - Saira Abdul Rehman
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; M Islam College of Pharmacy, 52230 Gujranwala, Pakistan
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Amer M Alanazi
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Riffat Khan
- College of Pharmacy, University of Sargodha, 40100 Sargodha, Pakistan
| | - Usman Nasrullah
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany.
| | - Imran Nazir
- Department of Pharmacy, COMSATS University Islamabad, Lahore campus, 54000 Lahore, Pakistan.
| |
Collapse
|
4
|
Sultan MT, Anwar MJ, Imran M, Khalil I, Saeed F, Neelum S, Alsagaby SA, Al Abdulmonem W, Abdelgawad MA, Hussain M, El-Ghorab AH, Umar M, Al Jbawi E. Phytochemical profile and pro-healthy properties of
Terminalia chebula
: A comprehensive review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023; 26:526-551. [DOI: 10.1080/10942912.2023.2166951] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 02/01/2023]
Affiliation(s)
| | | | - Muhammad Imran
- Department of Food Science and Technology, University of Narowal-Pakistan, Narowal, Pakistan
| | - Ijaz Khalil
- Institute of Food and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | - Farhan Saeed
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Shahzadi Neelum
- Department of Biochemistry, Hamdard University, Karachi, Pakistan
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, AL-Majmaah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Kingdom of Saudi Arabia
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ahmed H. El-Ghorab
- Department of Chemistry, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Maryam Umar
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | | |
Collapse
|
5
|
Liang H, Huang Q, Zou L, Wei P, Lu J, Zhang Y. Methyl gallate: Review of pharmacological activity. Pharmacol Res 2023; 194:106849. [PMID: 37429335 DOI: 10.1016/j.phrs.2023.106849] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Methyl gallate (MG) is a polyphenolic compound widely found in natural plants. MG has been shown to have a variety of biological functions, including anti-tumor, anti-inflammatory, anti-oxidant, neuroprotective, hepatoprotective and anti-microbial activities, and has broad research and development prospects. A total of 88 articles related to MG were searched using the PubMed, Science Direct, and Google Scholar databases, systematically investigating the pharmacological activity and molecular mechanisms of MG. There were no restrictions on the publication years, and the last search was conducted on June 5, 2023. MG can exert pharmacological effects through multiple pathways and targets, such as PI3K/Akt, ERK1/2, Caspase, AMPK/NF-κB, Wnt/β-catenin, TLR4/NF-κB, MAPK, p53, NLRP3, ROS, EMT. According to the literature, MG has the potential to be a prospective adjuvant for anticancer therapy and deserves further study.
Collapse
Affiliation(s)
- Huaguo Liang
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Qingsong Huang
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Li Zou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Peng Wei
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Jiazheng Lu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yongli Zhang
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
6
|
Meli Sonkoue A, Kengne IC, Tamekou Lacmata S, Jouogo Ngnokam CD, Djamalladine Djamalladine M, Voutquenne-Nazabadioko L, Ngnokam D, Tamokou JDD. Triterpene and Steroids from Ludwigia abyssinica A. Rich (Onagraceae) Displayed Antimicrobial Activities and Synergistic Effects with Conventional Antibiotics. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:2975909. [PMID: 37078065 PMCID: PMC10110380 DOI: 10.1155/2023/2975909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/14/2021] [Accepted: 03/23/2023] [Indexed: 04/21/2023]
Abstract
Difficulties encountered in treating drug-resistant pathogens have created a need for new therapies. Synergistic combinations of antibiotics are considered as ideal strategies in combating clinical and multidrug-resistant (MDR) infections. In this study, the antimicrobial activities of triterpenes and steroids from Ludwigia abyssinica A. Rich (Onagraceae) and their combined effects with antibiotics were assessed. The associations between plant constituents and antibiotics were evaluated by determining their fractional inhibitory concentrations (FICs). Sitost-5-en-3β-ol formiate (1), 5α,6β-dihydroxysitosterol (2), and maslinic acid (3) were isolated from the L. abyssinica ethyl acetate (EtOAc) extract. The EtOAc extract, compounds 1, 2, and 3 (MIC = 16-128 µg/mL) would be the best antibacterial and antifungal agents. The antimicrobial activities of amoxicillin were relatively weak against MDR Escherichia coli and Shigella flexneri and significant against Staphylococcus aureus ATCC 25923. However, when used in association with plant constituents, it displayed an interesting synergistic effect. Among plant components-antibiotic combinations, the EtOAc extract and compound 1 (steroid) showed a synergistic effect with amoxicillin/fluconazole against all the tested microorganisms whereas the association of compound 3 (triterpenoid) and amoxicillin/fluconazole displayed an additive effect against Shigella flexneri and Escherichia coli and a synergistic effect on Staphylococcus aureus, Cryptococcus neoformans, Candida tropicalis, and Candida albicans ATCC 10231. Overall, the results of the present study demonstrated antibacterial and antifungal activities of extracts and compounds isolated from L. abyssinica. The findings of the current study also showed that the potency of antibiotics was improved when screened in combination with L. abyssinica components, supporting the drug combination strategy to combat antimicrobial resistance.
Collapse
Affiliation(s)
- Arlette Meli Sonkoue
- Research Unit of Applied and Environmental Chemistry, Department of Chemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Irene Chinda Kengne
- Research Unit of Microbiology and Antimicrobial Substances, Department of Biochemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Stephen Tamekou Lacmata
- Research Unit of Microbiology and Antimicrobial Substances, Department of Biochemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Claudia Darille Jouogo Ngnokam
- Research Unit of Applied and Environmental Chemistry, Department of Chemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Mahamat Djamalladine Djamalladine
- Research Unit of Applied and Environmental Chemistry, Department of Chemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Laurence Voutquenne-Nazabadioko
- Groupe Isolement et Structure, Institut de Chimie Moléculaire de Reims (ICMR), CNRS UMR 7312, Bat. 18 B.P. 1039, 51687 Reims Cedex 2, Reims, France
| | - David Ngnokam
- Research Unit of Applied and Environmental Chemistry, Department of Chemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Jean-de-Dieu Tamokou
- Research Unit of Microbiology and Antimicrobial Substances, Department of Biochemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| |
Collapse
|
7
|
Terminalia chebula Medicinal Uses: A Review of in vitro and in vivo Studies. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0090-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
8
|
Hassan Bulbul MR, Uddin Chowdhury MN, Naima TA, Sami SA, Imtiaj MS, Huda N, Uddin MG. A comprehensive review on the diverse pharmacological perspectives of Terminalia chebula Retz. Heliyon 2022; 8:e10220. [PMID: 36051270 PMCID: PMC9424961 DOI: 10.1016/j.heliyon.2022.e10220] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/31/2022] [Accepted: 08/02/2022] [Indexed: 11/22/2022] Open
Abstract
Terminalia chebula Retz, commonly known as 'Haritaki/Myrobalan,' has been utilised as a traditional medicine for a long time. It has been extensively exercised in various indigenous medicine practices like Unani, Tibb, Ayurveda, and Siddha to remedy human ailments such as bleeding, carminative, dysentery, liver tonic, digestive, antidiarrheal, analgesic, anthelmintic, antibacterial and helpful in skin disorders. Studies on the pharmacological effects of T. chebula and its phytoconstituents documented between January, 1996 and December, 2021 were explored using various electronic databases. During the time mentioned above, several laboratory approaches revealed the biological properties of T. chebula, including antioxidative, antiproliferative, anti-microbial, proapoptotic, anti-diabetic, anti-ageing, hepatoprotective, anti-inflammatory, and antiepileptic. It is also beneficial in glucose and lipid metabolism and prevents atherogenesis and endothelial dysfunction. Different parts of T. chebula such as fruits, seeds, galls, barks extracted with various solvent systems (aqueous, ethanol, methanol, chloroform, ethyl-acetate) revealed major bioactive compounds like chebulic acid, chebulinic acid, and chebulaginic acid, which in turn proved to have valuable pharmacological properties through broad scientific investigations. There is a common link between chebulagic acid and chebulanin with its antioxidant property, antiaging activity, antiinflammatory, antidiabetic activity, and cardioprotective activity. The actions may be through neutralizing the free radicals responsible for producing tissue damage alongside interconnecting many other diseases. The current review summarises the scientifically documented literature on pharmacological potentials and chemical compositions of T. chebula, which is expected to investigate further studies on this subject.
Collapse
Affiliation(s)
| | | | - Taslima Anjum Naima
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Saad Ahmed Sami
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Md. Shakil Imtiaj
- Department of Chemistry, Government City College, National University, Gazipur, 1708, Bangladesh
| | - Nazmul Huda
- Department of Chemistry, University of Texas at Rio Grande Valley, Edinburg, Texas, 78539, USA
| | - Md. Giash Uddin
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong, 4331, Bangladesh
| |
Collapse
|
9
|
Ryu BI, Kim KT. Antioxidant activity and protective effect of methyl gallate against t-BHP induced oxidative stress through inhibiting ROS production. Food Sci Biotechnol 2022; 31:1063-1072. [DOI: 10.1007/s10068-022-01120-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/29/2022] [Accepted: 06/09/2022] [Indexed: 11/04/2022] Open
|
10
|
Saha P, Banerjee A, Banerjee G, Bag PK. Inhibitory activities of Typhonium trilobatum (L.) Schott on virulence potential of multi-drug resistant toxigenic Vibrio cholerae. Microb Pathog 2022; 165:105485. [DOI: 10.1016/j.micpath.2022.105485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 11/29/2022]
|
11
|
Correa LB, Pádua TA, Alabarse PVG, Saraiva EM, Garcia EB, Amendoeira FC, Ferraris FK, Fukada SY, Rosas EC, Henriques MG. Protective effect of methyl gallate on murine antigen-induced arthritis by inhibiting inflammatory process and bone erosion. Inflammopharmacology 2022; 30:251-266. [PMID: 35112275 DOI: 10.1007/s10787-021-00922-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/28/2021] [Indexed: 12/15/2022]
Abstract
Methyl gallate (MG) is a plant-derived phenolic compound known to present remarkable anti-inflammatory effect in different experimental models, such as paw oedema, pleurisy, zymosan-induced arthritis and colitis. Herein we investigated the effect of MG in the mice model of antigen-induced arthritis (AIA), a model with complex inflammatory response, driven primally by immune process and that cause bone and cartilage erosion similarly found in rheumatoid arthritis. Arthritis was induced by intra-articular injection of albumin methylated from bovine serum (mBSA) in C57BL/6 male mice previously immunized. The dose-response analysis of MG (0.7-70 mg/kg; p.o) showed that maximum inhibition was reached with the dose of 7 mg/kg on paw oedema and cell infiltration induced by AIA at 7 h. Treatment with MG (7 mg/kg; p.o) or with the positive control, dexamethasone (Dexa, 10 mg/kg, ip) reduced AIA oedema formation, leukocyte infiltration, release of extracellular DNA and cytokine production 7 and 24 h (acute response). Mice treated daily with MG for 7 days showed no significant weight loss or liver and kidney toxicity contrary to dexamethasone that induced some degree of toxicity. Prolonged treatment with MG inhibited the late inflammatory response (28 days) reducing oedema formation, cell infiltration, synovial hyperplasia, pannus formation and cartilage degradation as observed in histopathological analyses. Ultimately, MG reduced bone resorption as evidenced by a decrease in tartrate-resistant acid phosphate (TRAP)-positive cells number in femur histology. Altogether, we demonstrate that MG ameliorates the inflammatory reaction driven primarily by the immune process, suggesting a potential therapeutic application in arthritis treatment.
Collapse
Affiliation(s)
- Luana Barbosa Correa
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDPN), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Tatiana Almeida Pádua
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDPN), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Paulo Vinicius Gil Alabarse
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Elvira Maria Saraiva
- Laboratory of Immunobiology of Leishmaniasis, Department of Immunology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Esdras Barbosa Garcia
- Laboratory of Pharmacology, Department of Pharmacology and Toxicology, National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Fabio Coelho Amendoeira
- Laboratory of Pharmacology, Department of Pharmacology and Toxicology, National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Fausto Klabund Ferraris
- Laboratory of Pharmacology, Department of Pharmacology and Toxicology, National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Sandra Yasuyo Fukada
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Elaine Cruz Rosas
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDPN), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Maria G Henriques
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil. .,National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDPN), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| |
Collapse
|
12
|
Liu P, Wang W, Li Q, Hu X, Xu B, Wu C, Bai L, Ping L, Lan Z, Chen L. Methyl Gallate Improves Hyperuricemia Nephropathy Mice Through Inhibiting NLRP3 Pathway. Front Pharmacol 2022; 12:759040. [PMID: 34987391 PMCID: PMC8721208 DOI: 10.3389/fphar.2021.759040] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/22/2021] [Indexed: 01/16/2023] Open
Abstract
Hyperuricemia nephropathy (HN) is a form of chronic tubulointerstitial inflammation, caused by the deposition of monosodium urate crystals (MSU) in the distal collecting duct and medullary interstitium, associated with a secondary inflammatory reaction. Numerous published reports indicated that NLRP3 inflammasome pathway play crucial roles in HN symptoms. The present study aims to investigate the protective effects of methyl gallate on HN mice and the underlying mechanisms. An HN model was established by intraperitoneal injection of potassium oxide (PO) to assess the effect of methyl gallate on renal histopathological changes, renal function, cytokine levels and expressions of NLRP3-related protein in HN mice. Moreover, in vitro models of lipopolysaccharide (LPS)-stimulated bone marrow-derived macrophages (BMDMs) and human peripheral blood mononuclear cells (PBMCs) were established to explore the mechanism of methyl gallate on NLRP3 inflammasome activation. The results showed that methyl gallate significantly ameliorated HN by inhibiting uric acid production and promoting uric acid excretion as well as ameliorating renal injury induced by NLRP3 activation. Mechanistically, methyl gallate is a direct NLRP3 inhibitor that inhibits NLRP3 inflammasome activation but has no effect on the activation of AIM2 or NLRC4 inflammasomes in macrophages. Furthermore, methyl gallate inhibited the assembly of NLRP3 inflammasomes by blocking the ROS over-generation and oligomerization of NLRP3. Methyl gallate was also active ex vivo against ATP-treated PBMCs and synovial fluid mononuclear cells from patients with gout. In conclusion, methyl gallate has a nephroprotective effect against PO-induced HN through blocking the oligomerization of NLRP3 and then exerting anti-inflammatory activity in the NLRP3-driven diseases.
Collapse
Affiliation(s)
- Peng Liu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Wen Wang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Qiang Li
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Xin Hu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Bingyong Xu
- Zhejiang Heze Pharmaceutical Technology Co., Ltd., Hangzhou, China
| | - Chen Wu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Lijie Bai
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Li Ping
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zhou Lan
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Lvyi Chen
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
13
|
Gao T, Zhang Y, Shi J, Mohamed SR, Xu J, Liu X. The Antioxidant Guaiacol Exerts Fungicidal Activity Against Fungal Growth and Deoxynivalenol Production in Fusarium graminearum. Front Microbiol 2021; 12:762844. [PMID: 34867894 PMCID: PMC8634675 DOI: 10.3389/fmicb.2021.762844] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/08/2021] [Indexed: 11/30/2022] Open
Abstract
The main component of creosote obtained from dry wood distillation—guaiacol—is a natural antioxidant that has been widely used in pharmaceutical and food preservation applications. However, the antifungal mechanism of guaiacol against phytopathogens remains unclear. In this study, we found that guaiacol exerts inhibitory effects against mycelial growth, conidial formation and germination, and deoxynivalenol (DON) biosynthesis in Fusarium graminearum in a dose-dependent manner. The median effective concentration (EC50) value of guaiacol for the standard F. graminearum strain PH-1 was 1.838 mM. Guaiacol strongly inhibited conidial production and germination. The antifungal effects of guaiacol may be attributed to its capability to cause damage to the cell membrane by disrupting Ca2+ transport channels. In addition, the decreased malondialdehyde (MDA) levels and catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) activity by guaiacol treatment indicate that guaiacol displays activity against DON production by modulating the oxidative response in F. graminearum. Taken together, this study revealed the potentials of antioxidant in inhibiting mycotoxins in F. graminearum.
Collapse
Affiliation(s)
- Tao Gao
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Collaborative Innovation Center for Modern Grain Circulation and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yao Zhang
- School of Food Science And Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Jianrong Shi
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Collaborative Innovation Center for Modern Grain Circulation and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Sherif Ramzy Mohamed
- Department of Food Toxicology and Contaminant, National Research Centre of Egypt, Giza, Egypt
| | - Jianhong Xu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Collaborative Innovation Center for Modern Grain Circulation and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xin Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Collaborative Innovation Center for Modern Grain Circulation and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
14
|
Liu X, Fang X, Wang S, Wu D, Gao T, Lee YW, Mohamed SR, Ji F, Xu J, Shi J. The antioxidant methyl gallate inhibits fungal growth and deoxynivalenol production in Fusarium graminearum. FOOD PRODUCTION, PROCESSING AND NUTRITION 2021. [DOI: 10.1186/s43014-021-00070-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Production of the Fusarium toxin deoxynivalenol (DON) is associated with oxidative stress and has been indicated to be part of an adaptive response to oxidative stress in the important wheat fungus Fusarium graminearum. In this study, we found that the antioxidant methyl gallate (MG) displays inhibitory effects against mycelial growth, conidial formation and germination, and DON biosynthesis in F. graminearum in a dose-dependent manner. Treatment with 0.05% (w/v) MG resulted in an abnormal swollen conidial morphology. The expression of the TRI genes involved in DON biosynthesis was significantly reduced, and the induction of Tri1-GFP green fluorescence signals in the spherical and crescent-shaped toxisomes was abolished in the MG-treated mycelium. RNA-Seq analysis of MG-treated F. graminearum showed that 0.5% (w/v) MG inhibited DON production by possibly altering membrane functions and oxidoreductase activities. Coupled with the observations that MG treatment decreases catalase, POD and SOD activity in F. graminearum. The results of this study indicated that MG displays antifungal activity against DON production by modulating its oxidative response. Taken together, the current study revealed the potential of MG in inhibiting mycotoxins in F. graminearum.
Graphical abstract
Collapse
|
15
|
Methyl gallate attenuates inflammation induced by Toll-like receptor ligands by inhibiting MAPK and NF-Κb signaling pathways. Inflamm Res 2020; 69:1257-1270. [PMID: 33037469 DOI: 10.1007/s00011-020-01407-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/20/2020] [Accepted: 10/01/2020] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE AND DESIGN Methyl gallate (MG) is a prevalent polyphenol in the plant kingdom, which may be related to the effects of several medicinal plants. Although it is widely reported that polyphenols have therapeutic effects, there are few studies demonstrating that MG has anti-inflammatory action. This study aimed to investigate the molecular mechanism behind the anti-inflammatory activity of MG and its effect on hyperalgesia. METHODS Swiss mice were pretreated orally with different doses of MG and subjected to i.pl. injection of zymosan to induce paw edema. RAW264.7 macrophages and BMDMs stimulated with different TLR agonists such as zymosan, LPS, or Pam3CSK4 were used to investigate the molecular mechanisms of MG RESULTS: MG inhibits zymosan-induced paw edema and hyperalgesia and modulates molecular pathways crucial for inflammation development. Pretreatment with MG inhibited cytokines production and NF-κB activity by RAW 264.7 cells stimulated with zymosan, Pam3CSK4 or LPS, but not with PMA. Moreover, pretreatment with MG decreased IκB degradation, nuclear translocation of NF-κBp65, c-jun and c-fos and ERK1/2, p38 and JNK phosphorylation. CONCLUSION Thus, the results of this study demonstrate that MG has a promising anti-inflammatory effect and suggests an explanation of its mechanism of action through the inhibition of NF-κB signaling and the MAPK pathway.
Collapse
|
16
|
Synergism of the Combination of Traditional Antibiotics and Novel Phenolic Compounds against Escherichia coli. Pathogens 2020; 9:pathogens9100811. [PMID: 33023003 PMCID: PMC7600547 DOI: 10.3390/pathogens9100811] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022] Open
Abstract
Pathogenic Escherichia coli (E. coli)-associated infections are becoming difficult to treat because of the rapid emergence of antibiotic-resistant strains. Novel approaches are required to prevent the progression of resistance and to extend the lifespan of existing antibiotics. This study was designed to improve the effectiveness of traditional antibiotics against E. coli using a combination of the gallic acid (GA), hamamelitannin, epicatechin gallate, epigallocatechin, and epicatechin. The fractional inhibitory concentration index (FICI) of each of the phenolic compound-antibiotic combinations against E. coli was ascertained. Considering the clinical significance and FICI, two combinations (hamamelitannin-erythromycin and GA-ampicillin) were evaluated for their impact on certain virulence factors of E. coli. Finally, the effects of hamamelitannin and GA on Rattus norvegicus (IEC-6) cell viability were investigated. The FICIs of the antibacterial combinations against E. coli were 0.281-1.008. The GA-ampicillin and hamamelitannin-erythromycin combinations more effectively prohibited the growth, biofilm viability, and swim and swarm motilities of E. coli than individual antibiotics. The concentration of hamamelitannin and GA required to reduce viability by 50% (IC50) in IEC-6 cells was 988.54 μM and 564.55 μM, correspondingly. GA-ampicillin and hamamelitannin-erythromycin may be potent combinations and promising candidates for eradicating pathogenic E. coli in humans and animals.
Collapse
|
17
|
Qin H, Guo Y, Li Y, Zheng R. Molecular Relatedness of Salmonella enterica Typhimurium Isolates from Feces and an Infected Surgical Wound. Infect Drug Resist 2020; 13:2139-2144. [PMID: 32753909 PMCID: PMC7352376 DOI: 10.2147/idr.s251695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/16/2020] [Indexed: 11/23/2022] Open
Abstract
Purpose Salmonella enterica serovar Typhimurium infection is common in foodborne diseases, but its isolation from surgical incisions is rare. Our aim in this study was to trace the transmission source of a surgical incision infected with S. Typhimurium in a Yunnan Province hospital patient and elucidate the underlying molecular mechanisms of antibiotic resistance. Methods Primers were designed to amplify the drug-resistance genes using polymerase chain reaction (PCR). Susceptibility to antibiotics was determined using Etest strips. Macrorestriction profiles were analyzed using pulsed-field gel electrophoresis (PFGE) and XbaI. The two isolates were characterized using agglutination tests and multilocus sequence typing (MLST). Results MLST analysis revealed that S. Typhimurium isolates SM043 and SM080 belonged to the same genotype, ST34, and PFGE revealed that SM043 and SM080 had high similarity. The isolates were both resistant to third-generation cephalosporins. SM043 harbored the antibiotic resistance genes blaCTX-M-15, blaTEM-1, qnrS-1, qnrB, and acc-3, whereas blaCTX-M-15, blaTEM-1, blaCMY-2, qnrS-1, and acc-3 were detected in SM080. Conclusion The surgical incision infection by S. Typhimurium may have been hospital-acquired. Thus, it is critical to strengthen hospital sanitation by addressing hand hygiene and sterilization of the operational environment to avoid outbreaks of nosocomial Salmonella infections.
Collapse
Affiliation(s)
- Haiyan Qin
- Department of Infection Prevention and Control, The First People's Hospital of Kunming City, Kunming, Yunnan, People's Republic of China
| | - Yidan Guo
- Yunnan Provincial Center of Disease Control and Prevention, Kunming, Yunnan, People's Republic of China
| | - Yikun Li
- Department of Clinical Laboratory, The First People's Hospital of Yunnan Province, Kunming, Yunnan, People's Republic of China.,Department of Clinical Laboratory, the First People's Hospital of Yunnan Province, Kunming, Yunnan, People's Republic of China
| | - Rui Zheng
- Department of Clinical Laboratory, The First People's Hospital of Yunnan Province, Kunming, Yunnan, People's Republic of China.,Department of Clinical Laboratory, the First People's Hospital of Yunnan Province, Kunming, Yunnan, People's Republic of China
| |
Collapse
|
18
|
Evaluation of the pharmacokinetic-pharmacodynamic integration of marbofloxacin in combination with methyl gallate against Salmonella Typhimurium in rats. PLoS One 2020; 15:e0234211. [PMID: 32497083 PMCID: PMC7272065 DOI: 10.1371/journal.pone.0234211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/20/2020] [Indexed: 01/07/2023] Open
Abstract
Fluoroquinolone resistance in Salmonella Typhimurium is becoming a major concern. Hence, an intervention to limit the growth in resistance is inevitable. One way to combat this challenge is through combination therapy. The combination of antibiotics with phytochemicals has become an ideal means of preventing antimicrobial resistance. Recently, in an in vitro study, the combination of methyl gallate (MG) with marbofloxacin (MAR) has shown to prevent Salmonella Typhimurium invasion. It is also worth to study the effects of plant extracts on the pharmacokinetics of antibiotics. Hence, the objective of this study was to determine the effect of MG on the pharmacokinetics of MAR and pharmacokinetics/pharmacodynamics integration of MG and MAR. The micro-broth dilution method was used to obtain the minimum inhibitory concentration (MIC), and fractional inhibitory concentration (FIC) of MAR and MG. Whereas, the pharmacokinetic was conducted in rats by administering either MAR alone or combined with MG through oral and/or intravenous routes. The results indicated that the MIC of MAR and MG against standard strain Salmonella Typhimurium (ATCC 14028) was 0.031 and 500 μg/mL, respectively. The FICindex of the combination of MAR and MG was 0.5. For orally administered drugs, the Cmax and AUC24h of MAR were 1.04 and 0.78 μg/mL and 5.98 and 6.11 h.μg/mL when MAR was given alone and in combination with MG, respectively. The intravenous administration of MAR showed a half-life of 3.8 and 3.9 h; a clearance rate of 1.1 and 0.73 L/h/kg and a volume of distribution of 5.98 and 4.13 L/kg for MAR alone and in combination with MG, respectively. The AUC24/MIC for MAR alone and in combination with MG was 192.8 and 381.9 h, respectively. In conclusion, MG has shown to increase the antimicrobial activity of MAR in vitro and ex vivo experiments without affecting the pharmacokinetics of MAR in rats.
Collapse
|
19
|
Nigam M, Mishra AP, Adhikari-Devkota A, Dirar AI, Hassan MM, Adhikari A, Belwal T, Devkota HP. Fruits of Terminalia chebula Retz.: A review on traditional uses, bioactive chemical constituents and pharmacological activities. Phytother Res 2020; 34:2518-2533. [PMID: 32307775 DOI: 10.1002/ptr.6702] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 02/29/2020] [Accepted: 03/28/2020] [Indexed: 11/12/2022]
Abstract
Fruits of Terminalia chebula Retz. (Combretaceae) are widely used as crude drugs in various traditional medicine systems. The aim of this article is to review the available scientific information regarding the traditional uses, bioactive chemical constituents and the pharmacological activities of T. chebula. Numerous researches conducted on T. chebula have confirmed the presence of wide range of the phytochemicals such as flavonoids, tannins, phenolic acids and other bioactive compounds. T. chebula is also widely studied regarding its pharmacological activities such as antioxidant, hepatoprotective, neuroprotective, cytotoxic, antidiabetic, anti-inflammatory activities among others. However, more in vivo and clinical studies for mechanism-based pharmacological evaluation should be conducted in future to provide stronger scientific evidences for their traditional uses.
Collapse
Affiliation(s)
- Manisha Nigam
- Department of Biochemistry, H. N. B. Garhwal University, Srinagar Garhwal, India
| | - Abhay P Mishra
- Department of Pharmaceutical Chemistry, H. N. B. Garhwal University, Srinagar Garhwal, India
| | | | - Amina Ibrahim Dirar
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Md Mahadi Hassan
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Achyut Adhikari
- Central Department of Chemistry, Tribhuwan University, Kritipur, Nepal
| | - Tarun Belwal
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.,Program for Leading Graduate Schools, Health Life Science: Interdisciplinary and Glocal Oriented (HIGO) Program, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
20
|
Ranjbar R, Farahani A. Shigella: Antibiotic-Resistance Mechanisms And New Horizons For Treatment. Infect Drug Resist 2019; 12:3137-3167. [PMID: 31632102 PMCID: PMC6789722 DOI: 10.2147/idr.s219755] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/28/2019] [Indexed: 12/17/2022] Open
Abstract
Shigella spp. are a common cause of diarrheal disease and have remained an important pathogen responsible for increased rates of morbidity and mortality caused by dysentery each year around the globe. Antibiotic treatment of Shigella infections plays an essential role in reducing prevalence and death rates of the disease. However, treatment of these infections remains a challenge, due to the global rise in broad-spectrum resistance to many antibiotics. Drug resistance in Shigella spp. can result from many mechanisms, such as decrease in cellular permeability, extrusion of drugs by active efflux pumps, and overexpression of drug-modifying and -inactivating enzymes or target modification by mutation. Therefore, there is an increasing need for identification and evolution of alternative therapeutic strategies presenting innovative avenues against Shigella infections, as well as paying further attention to this infection. The current review focuses on various antibiotic-resistance mechanisms of Shigella spp. with a particular emphasis on epidemiology and new mechanisms of resistance and their acquisition, and also discusses the status of novel strategies for treatment of Shigella infection and vaccine candidates currently under evaluation in preclinical or clinical phases.
Collapse
Affiliation(s)
- Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abbas Farahani
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Root Bark of Paeonia suffruticosa Extract and Its Component Methyl Gallate Possess Peroxynitrite Scavenging Activity and Anti-inflammatory Properties through NF-κB Inhibition in LPS-treated Mice. Molecules 2019; 24:molecules24193483. [PMID: 31557976 PMCID: PMC6804175 DOI: 10.3390/molecules24193483] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/18/2019] [Accepted: 09/24/2019] [Indexed: 11/25/2022] Open
Abstract
A peroxynitrite (ONOO−)-generating system induced by 3-morpholinosydnonimine, was used to evaluate the ONOO− scavenging properties of plants that have been widely used as traditional medicine in Korea for the treatment of several diseases. The most effective medicinal plants were Paeonia suffruticosa Andrew, followed in order by Lonicera japonica Thunb., Curcuma zedoaria (Christm.) Roscoe, and Pueraria thunbergiana Benth. In addition, root bark of P. suffruticosa was partitioned with organic solvents of different polarities, and the ethyl acetate (EtOAc) fraction showed the strongest ONOO− scavenging activity. Methyl gallate, a plant-derived phenolic compound identified from the EtOAc fraction, exerted strong ONOO− scavenging activity. The in vivo therapeutic potential of methyl gallate was investigated using lipopolysaccharide-treated mice. Oral administration of methyl gallate protected against acute renal injury and exhibited potential anti-inflammatory properties through an increase in antioxidant activity and decrease in nuclear factor-kappa B activity.
Collapse
|
22
|
Mechesso AF, Yixian Q, Park SC. Methyl gallate and tylosin synergistically reduce the membrane integrity and intracellular survival of Salmonella Typhimurium. PLoS One 2019; 14:e0221386. [PMID: 31490973 PMCID: PMC6730861 DOI: 10.1371/journal.pone.0221386] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/07/2019] [Indexed: 11/18/2022] Open
Abstract
Nymphaea tetragona Georgi (Nymphaceae) is traditionally used in Asia for the treatment of diarrhea, dysentery and fever. The plant contains various active compounds, including methyl gallate (MG) which are reported to inhibit bacterial virulence mechanisms. This study aimed to evaluate the alterations on viability, membrane potential and integrity of Salmonella enterica Serovar Typhimurium exposed to MG in combination with Tylosin (Ty), which is relatively inactive against Gram-negative bacteria, but it is commonly used as a feed additive in livestock. Besides, the effects of sub-inhibitory concentrations of the combination (MT) on the interaction between S. Typhimurium and the host cell, as well as on the indirect host responses, were characterized. Flow cytometry, confocal and electron microscopic examinations were undertaken to determine the effects of MT on S. Typhimurium. The impacts of sub-inhibitory concentrations of MT on biofilm formation, as well as on the adhesion, invasion and intracellular survival of S. Typhimurium were assessed. The result demonstrated significant damage to the bacterial membrane, leakage of cell contents and a reduction in the membrane potential when treated with MT. Sub-inhibitory concentrations of MT significantly reduced (P < 0.05) the biofilm-forming, adhesive and invasive abilities of S. Typhimurium. Exposure to MT drastically reduced the bacterial count in macrophages. Up-regulation of interleukin (IL)-6, IL-8 and IL-10 cytokine genes were detected in intestinal epithelial cells pre-treated with MT. This report is the first to describe the effects of MT against S. Typhimurium. The result indicates a synergistic interaction between MG and Ty against S. Typhimurium. Therefore, the combination may be a promising option to combat S. Typhimurium in swine and, indirectly, safeguard the health of the public.
Collapse
Affiliation(s)
- Abraham Fikru Mechesso
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Bukgu, Daegu, South Korea
| | - Quah Yixian
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Bukgu, Daegu, South Korea
| | - Seung-Chun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Bukgu, Daegu, South Korea
- * E-mail:
| |
Collapse
|
23
|
In vivo fluid accumulation-inhibitory, anticolonization and anti-inflammatory and in vitro biofilm-inhibitory activities of methyl gallate isolated from Terminalia chebula against fluoroquinolones resistant Vibrio cholerae. Microb Pathog 2019; 128:41-46. [DOI: 10.1016/j.micpath.2018.12.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 12/02/2017] [Accepted: 12/18/2018] [Indexed: 11/21/2022]
|
24
|
Hernández-García E, García A, Garza-González E, Avalos-Alanís FG, Rivas-Galindo VM, Rodríguez-Rodríguez J, Alcantar-Rosales VM, Delgadillo-Puga C, Del Rayo Camacho-Corona M. Chemical composition of Acacia farnesiana (L) wild fruits and its activity against Mycobacterium tuberculosis and dysentery bacteria. JOURNAL OF ETHNOPHARMACOLOGY 2019; 230:74-80. [PMID: 30367988 DOI: 10.1016/j.jep.2018.10.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/02/2018] [Accepted: 10/12/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In Mexico, plants are an important element of traditional medicine, and many are considered part of Mexican cultural heritage from prehispanic and colonial times. Nevertheless, relatively few systematic scientific studies have been conducted to fully characterize the chemical composition and pharmacological activities of Mexican medicinal plants. Acacia farnesiana is used in Mexican traditional medicine to treat dysentery and tuberculosis and therefore could have bioactive compounds that may explain its traditional use. AIMS OF THE STUDY i) To isolate and characterize the compounds from the hexanic, chloroformic and methanolic extracts; ii) to identify the volatile compounds from methylated hexanic and chloroformic extracts using GC-FID and GC-MS methods; iii) to identify the compounds from methanolic and aqueous extracts using HPLC-Q-TOF-MS; iv) to test the activity of extracts and isolated compounds against Mycobacterium tuberculosis and dysentery bacteria. MATERIAL AND METHODS A. farnesiana fruits were collected in Acatlán de Osorio, Puebla, Mexico. Hexanic, chloroformic, methanolic and aqueous extracts were prepared and analyzed by different chromatographic techniques including column chromatography, flash chromatography, GC-FID, GC-MS and HPLC-Q-TOF-MS. Structural elucidation was carried out by NMR spectroscopic analysis. The activity of extracts, phytochemicals and semi-synthetic derivatives against Mycobacterium tuberculosis H37Rv and G122 as well as dysentery bacteria (Campylobacter jejuni, Shigella flexneri, Salmonella enteritidis, Yersinia enterocolitica and enterohemorrhagic Escherichia coli) was determined by the broth microdilution method and reported as minimal inhibitory concentration (MIC µg/mL). RESULTS From both hexane and chloroform extracts, tetracosanoic acid (2S)-2,3-dihydroxypropyl ester (1) and (3β,22E)-estigmasta-5,22-dien-3-yl β-D-glucopyranoside (2) were isolated and characterized. From the methanolic extract, methyl gallate (3), gallic acid (4), (3β,22E)-estigmasta-5,22-dien-3-yl β-D-glucopyranoside (2), (2S) naringenin 7-O-β-glucopyranoside (prunin, 5), pinitol (6) and sucrose (7) were isolated and characterized. Furthermore, hexanic and chloroformic extracts were analyzed by GC-FID and GC-MS and 18 methylated fatty acids were identified for each extract in addition to three sterols. The methanolic and aqueous extracts were analyzed separately by HPLC-Q-TOF-MS, and 15 compounds were identified in each extract. The compounds 1, 2, and 7, in addition to 13 fatty acids and eight phenolic compounds, were identified for the first time in A. farnesiana. The extracts showed antitubercular (MIC 100-200 µg/mL) and antidysentery activity (MIC 100-200 µg/mL). Methyl gallate and its acetylated derivative showed activity against the sensible strain M. tuberculosis H37Rv with MIC values of 50-25 µg/mL, respectively. The flavanone prunin showed activity against multidrug resistant M. tuberculosis G122 (MIC 50 μg/mL). Methyl gallate, gallic acid and prunin showed activity against C. jejuni (MIC 50 μg/mL). CONCLUSIONS The activity of tested extracts and isolated compounds against M. tuberculosis and dysentery bacteria justifies the ethnomedical use of A. farnesiana fruits for the treatment of tuberculosis and dysentery.
Collapse
Affiliation(s)
- Erika Hernández-García
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad S/N, Ciudad Universitaria, CP 66451 San Nicolás de los Garza, Nuevo León, Mexico.
| | - Abraham García
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad S/N, Ciudad Universitaria, CP 66451 San Nicolás de los Garza, Nuevo León, Mexico.
| | - Elvira Garza-González
- Universidad Autónoma de Nuevo León, Servicio de Gastroenterología Hospital Universitario Dr. José Eleuterio González, Av. Gonzalitos y Madero S/N, Col. Mitras Centro, CP 64460 Monterrey, Nuevo León, Mexico.
| | - Francisco G Avalos-Alanís
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad S/N, Ciudad Universitaria, CP 66451 San Nicolás de los Garza, Nuevo León, Mexico.
| | - Verónica M Rivas-Galindo
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Av. Madero S/N, Col. Mitras Centro, CP 64460 Monterrey, Nuevo León, Mexico.
| | - José Rodríguez-Rodríguez
- Instituto Tecnológico de Estudios Superiores de Monterrey, Escuela de Ingeniería y Ciencias, Campus Monterrey, Av. 2 de Abril S/N, Tecnológico, CP 64849 Monterrey, Nuevo León, Mexico.
| | - Victor M Alcantar-Rosales
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Servicios Analíticos, Sede Noreste, Parque de Investigación e Innovación Tecnológica, Vía de la Innovación 404, CP 66628 Apodaca, Nuevo León, Mexico.
| | - Claudia Delgadillo-Puga
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga No. 15, Col. Belisario Domínguez Sección XVI, CP 14080 Ciudad de México, Mexico.
| | - María Del Rayo Camacho-Corona
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad S/N, Ciudad Universitaria, CP 66451 San Nicolás de los Garza, Nuevo León, Mexico.
| |
Collapse
|
25
|
Birhanu BT, Park NH, Lee SJ, Hossain MA, Park SC. Inhibition of Salmonella Typhimurium adhesion, invasion, and intracellular survival via treatment with methyl gallate alone and in combination with marbofloxacin. Vet Res 2018; 49:101. [PMID: 30286813 PMCID: PMC6389159 DOI: 10.1186/s13567-018-0597-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/23/2018] [Indexed: 12/19/2022] Open
Abstract
Salmonella enterica serovar Typhimurium infects intestinal epithelia and macrophages, which is prevented by inhibiting adhesion and cell invasion. This study aimed to investigate the role of methyl gallate (MG) in adhesion, invasion, and intracellular survival of Salmonella Typhimurium in Caco-2 and RAW 264.7 cells via a gentamicin protection assay, confocal microscopy, and quantitative reverse-transcription polymerase chain reaction. MG (30 µg/mL) inhibited adhesion and invasion of Salmonella Typhimurium by 54.01% and 60.5% in RAW 264.7 cells, respectively. The combination of MG with sub-minimum inhibitory concentration (MIC) of marbofloxacin (MRB) inhibited the adhesion, invasion, and intracellular survival by 70.49%, 67.36%, and 74%, respectively. Confocal microscopy further revealed reductions in bacterial count in Caco-2 cells treated with MG alone or with sub-MIC of MRB. Furthermore, MG alone or in combination with sub-MIC of MRB decreased the motility of Salmonella Typhimurium. Quorum sensing genes including sdiA, srgE, and rck were downregulated by 52.8%, 61.7%, and 22.2%, respectively. Moreover, rac-1 was downregulated by 56.9% and 71.9% for MG alone and combined with sub-MIC of MRB, respectively, in mammalian cells. Furthermore, MG downregulated virulence genes of Salmonella Typhimurium including cheY, ompD, sipB, lexA, and ompF by 59.6%, 60.2%, 20.5%, 31.4%, and 16.2%, respectively. Together, the present results indicate that MG alone or in combination with a sub-MIC of MRB effectively inhibited the adhesion, invasion, and intracellular survival of Salmonella Typhimurium in vitro by downregulating quorum sensing and virulence genes.
Collapse
Affiliation(s)
- Biruk Tesfaye Birhanu
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Bukgu, Daegu, 41566, South Korea
| | - Na-Hye Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Bukgu, Daegu, 41566, South Korea
| | - Seung-Jin Lee
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Bukgu, Daegu, 41566, South Korea
| | - Md Akil Hossain
- Veterinary Drugs and Biologics Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, South Korea
| | - Seung-Chun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Bukgu, Daegu, 41566, South Korea.
| |
Collapse
|
26
|
Tagousop CN, Tamokou JDD, Kengne IC, Ngnokam D, Voutquenne-Nazabadioko L. Antimicrobial activities of saponins from Melanthera elliptica and their synergistic effects with antibiotics against pathogenic phenotypes. Chem Cent J 2018; 12:97. [PMID: 30238231 PMCID: PMC6768134 DOI: 10.1186/s13065-018-0466-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 09/15/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Resistance of bacteria and fungi to antibiotics is one of the biggest problems that faces public health. The present work was designated to evaluate the antimicrobial activities of saponins from Melanthera elliptica and their synergistic effects with standard antibiotics against pathogenic phenotypes. The plant extract was prepared by maceration in methanol. The methanol extract was partitioned into ethyl acetate and n-butanol extracts. Column chromatography of the n-butanol extract followed by purification of different fractions led to the isolation of four saponins. Their structures were elucidated on the basis of spectra analysis, and by comparison with those from the literature. The antimicrobial activities of the extracts/compounds alone and their combinations with tetracycline and fluconazole were evaluated using the broth microdilution method through the determination of minimum inhibitory concentration (MIC) and minimum microbicidal concentration. RESULTS Four compounds: 3-O-β-D-glucuronopyranosyl-oleanolic acid (1), 3-O-β-D-glucuronopyranosyloleanolic acid 28-O-β-D-glucopyranosyl ester (2), 3-O-β-D-glucopyranosyl(1 → 2)-β-D-glucuronopyranosyl oleanolic acid (3) and 3-O-β-D-glucopyranosyl(1 → 2)-β-D-glucuronopyranosyl oleanolic acid 28-O-β-D-glucopyranosyl ester (4) were isolated. Compounds 1, 2 and 3 showed the largest antibacterial activities (MIC = 8-128 μg/mL) whereas compound 4 displayed the highest antifungal activities (MIC = 8-16 μg/mL). The antibacterial activities of compounds 1 and 2 (MIC = 16-32 μg/mL) against multi-drug-resistant Escherichia coli S2 (1) and Shigella flexneri SDINT are equal to those of vancomycin (MIC = 16-32 μg/mL) used as reference antibiotic. CONCLUSIONS The present study showed significant antimicrobial activity of compounds 1, 2, 3 and 4 against the tested microorganisms. The saponins act in synergy with the tested standard antibiotics. This synergy could lead to new options for the treatment of infectious diseases and emerging drug resistance.
Collapse
Affiliation(s)
- Cyrille Ngoufack Tagousop
- Research Unit of Environmental and Applied Chemistry, Department of Chemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Jean-de-Dieu Tamokou
- Research Unit of Microbiology and Antimicrobial Substances, Department of Biochemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon.
| | - Irene Chinda Kengne
- Research Unit of Microbiology and Antimicrobial Substances, Department of Biochemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - David Ngnokam
- Research Unit of Environmental and Applied Chemistry, Department of Chemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon.
| | - Laurence Voutquenne-Nazabadioko
- Groupe Isolement et Structure, Institut de Chimie Moléculaire de Reims (ICMR), CNRS, UMR 7312, Bat. 18, BP.1039, 51687, Reims cedex 2, France
| |
Collapse
|
27
|
Tagousop CN, Tamokou JDD, Ekom SE, Ngnokam D, Voutquenne-Nazabadioko L. Antimicrobial activities of flavonoid glycosides from Graptophyllum grandulosum and their mechanism of antibacterial action. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:252. [PMID: 30219066 PMCID: PMC6139119 DOI: 10.1186/s12906-018-2321-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/06/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND The search for new antimicrobials should take into account drug resistance phenomenon. Medicinal plants are known as sources of potent antimicrobial compounds including flavonoids. The objective of this investigation was to evaluate the antimicrobial activities of flavonoid glycosides from Graptophyllum grandulosum, as well as to determine their mechanism of antibacterial action using lysis, leakage and osmotic stress assays. METHODS The plant extracts were prepared by maceration in organic solvents. Column chromatography of the n-butanol extract followed by purification of different fractions led to the isolation of five flavonoid glycosides. The antimicrobial activities of extracts/compounds were evaluated using the broth microdilution method. The bacteriolytic activity was evaluated using the time-kill kinetic method. The effect of extracts on the red blood cells and bacterial cell membrane was determined by spectrophotometric methods. RESULTS Chrysoeriol-7-O-β-D-xyloside (1), luteolin-7-O-β-D-apiofuranosyl-(1 → 2)-β-D-xylopyranoside (2), chrysoeriol-7-O-β-D-apiofuranosyl-(1 → 2)-β-D-xylopyranoside (3), chrysoeriol-7-O-α-L-rhamnopyranosyl-(1 → 6)-β-D-(4"-hydrogeno sulfate) glucopyranoside (4) and isorhamnetin-3-O-α-L-rhamnopyranosyl-(1 → 6)-β-D-glucopyranoside (5) were isolated from G. grandulosum and showed different degrees of antimicrobial activities. Their antibacterial activities against multi-drug-resistant Vibrio cholerae strains were in some cases equal to, or higher than those of ciprofloxacin used as reference antibiotic. The antibacterial activities of flavonoid glycosides and chloramphenicol increased under osmotic stress (5% NaCl) whereas that of vancomycin decreased under this condition. V. cholerae suspension treated with flavonoid glycosides, showed a significant increase in the optical density at 260 nm, suggesting that nucleic acids were lost through a damaged cytoplasmic membrane. A decrease in the optical density of V. cholerae NB2 suspension treated with the isolated compounds was observed, indicating the lysis of bacterial cells. The tested samples were non-toxic to normal cells highlighting their good selectivity index. CONCLUSIONS The results of the present study indicate that the purified flavonoids from G. glandulosum possess antimicrobial activities. Their mode of antibacterial activity is due to cell lysis and disruption of the cytoplasmic membrane upon membrane permeability.
Collapse
Affiliation(s)
- Cyrille Ngoufack Tagousop
- Research Unit of Environmental and Applied Chemistry, Department of Chemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Jean-de-Dieu Tamokou
- Research Unit of Microbiology and Antimicrobial Substances, Department of Biochemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Steve Endeguele Ekom
- Research Unit of Microbiology and Antimicrobial Substances, Department of Biochemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - David Ngnokam
- Research Unit of Environmental and Applied Chemistry, Department of Chemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Laurence Voutquenne-Nazabadioko
- Groupe Isolement et Structure, Institut de Chimie Moléculaire de Reims (ICMR), CNRS UMR 7312, Bat. 18 BP.1039, 51687 Reims cedex 2, France
| |
Collapse
|
28
|
Kolla JN, Kulkarni NM, Kura RR, Theepireddy SKR. Terminalia chebula Retz. – an important medicinal plant. HERBA POLONICA 2018. [DOI: 10.1515/hepo-2017-0024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Summary
Ayurveda, whispered to be the ancient practice of healthcare existed and contributes a holistic approach to health, healing and longevity. Terminalia chebula Retz. is a popular plant and widely spread all over southern Asia. T. chebula is a native plant of India and its dried fruit is extensively used in various types of home remedies. Dried fruit of T. chebula contains high quantities phenolic compounds that consist of ellagic acid, gallic acid and chebulic acid. The fruit extract of T. chebula is known to display different biological properties like anticancer, anti-inflammatory, antioxidant, anti-protozoal, antimicrobial, hepato and renal protective activities, and in the management of metabolic syndrome. The phenolic active compounds might play vital role in the influence of biological activity. Fruit extract of T. chebula is widely employed as an important ingredient in various ayurvedic preparations like ‘Triphala’. This formulation is beneficial as detoxifying agent of the colon, purgative in chronic constipation, aids in digestion and as a body rejuvenator. The fruit has great medicinal significance and conventionally applied for the management of various illness conditions, such as sore throat, high cough, asthma, ulcers, gout, heart burn, vomiting, diarrhea, dysentery, bleeding piles and bladder diseases. It is also utilized as mild laxative, antispasmodic and stomachic. Because of these enormous medicinal properties, T. chebula is commonly termed as ‘King of Medicine’ in Tibet and can be called as a ‘wonder herb’. In the present review, recent advances in medicinal properties of T. chebula are discussed.
Collapse
Affiliation(s)
| | - Nagaraj M. Kulkarni
- Hetero Research Foundation Plot No B80 & 81, A.P.I.E. Balanagar, Hyderabad-500018 Telangana , India
| | - Rathanakar Reddy Kura
- Hetero Research Foundation Plot No B80 & 81, A.P.I.E. Balanagar, Hyderabad-500018 Telangana , India
| | | |
Collapse
|
29
|
Kosuru RY, Aashique M, Fathima A, Roy A, Bera S. Revealing the dual role of gallic acid in modulating ampicillin sensitivity of Pseudomonas aeruginosa biofilms. Future Microbiol 2018; 13:297-312. [DOI: 10.2217/fmb-2017-0132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Aim: To understand the effects of gallic acid (GA) on ampicillin (Amp) sensitive or resistant strain of Pseudomonas sp. and also in modulating the corresponding biofilms. Methodology: The cell viability was determined by broth dilution, dry weight and CFU assays. Biofilm formation was measured by crystal violet assay while oxygen consumption rate was measured to verify the metabolic status of the cells. The membrane damage and drug efflux/accumulation were studied by fluorimetric assays. Results: GA transformed the Amp resistant cells, both planktonic and biofilms, into highly sensitive one by inducing membrane damage and enhancing accumulation of drug, whereas the Amp sensitive cells gained resistance against Amp. Conclusion: Use of GA as an antimicrobial compound should be analyzed more critically depending on the drug dosages, drug sensitivity as well as types of bacterial strains being studied.
Collapse
Affiliation(s)
- Rekha Yamini Kosuru
- School of Life Sciences, BS Abdur Rahman University, Vandalur, Chennai, Tamil Nadu 600048, India
| | - Md Aashique
- School of Life Sciences, BS Abdur Rahman University, Vandalur, Chennai, Tamil Nadu 600048, India
| | - Aisha Fathima
- School of Life Sciences, BS Abdur Rahman University, Vandalur, Chennai, Tamil Nadu 600048, India
| | - Amrita Roy
- School of Life Sciences, BS Abdur Rahman University, Vandalur, Chennai, Tamil Nadu 600048, India
| | - Soumen Bera
- School of Life Sciences, BS Abdur Rahman University, Vandalur, Chennai, Tamil Nadu 600048, India
| |
Collapse
|
30
|
Synthesis, Characterization, and Antimicrobial Activity of a Novel Trisazo Dye from 3-Amino-4H-thieno[3,4-c][1]benzopyran-4-one. INTERNATIONAL JOURNAL OF MEDICINAL CHEMISTRY 2018; 2018:9197821. [PMID: 29484208 PMCID: PMC5816859 DOI: 10.1155/2018/9197821] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/18/2017] [Accepted: 11/22/2017] [Indexed: 11/17/2022]
Abstract
A new trisazo dye has been synthesized by coupling the diazonium ion of 3-amino-4H thieno[3,4-c][1]benzopyran-4-one with 2-tert-butyl-4-methoxyphenol. The newly prepared trisazo dye was characterized by its physical, elemental, and spectroscopic data. 2D-NMR (COSY, HSQC, and HMBC) techniques were used to secure the structural assignments. The new trisazo dye (compound 7) along with precursors 3, 4, and 6 was screened by microdilution susceptibility assay for antibacterial and antifungal activities towards eight bacterial strains and three yeasts selected on the basis of their relevance as human pathogens. The results showed that compound 7 (MIC = 2-128 μg/mL) was the most active as compared with its precursors. The most resistant microorganisms were V. cholerae NB2 and V. cholerae SG24, whereas the most sensitive microorganism was C. neoformans. The overall results of this study indicated that compound 7 had the greatest potential value against both yeasts and multidrug-resistant bacteria, so further investigation is warranted.
Collapse
|
31
|
Sarkar P, Acharyya S, Banerjee A, Patra A, Thankamani K, Koley H, Bag PK. Intracellular, biofilm-inhibitory and membrane-damaging activities of nimbolide isolated from Azadirachta indica A. Juss (Meliaceae) against meticillin-resistant Staphylococcus aureus. J Med Microbiol 2016; 65:1205-1214. [PMID: 27553840 DOI: 10.1099/jmm.0.000343] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Staphylococcus aureus is a leading aetiologic agent of nosocomial- and community-acquired infectious diseases worldwide. The public health concern regarding staphylococcal infections is inflated by the increasing occurrence of multidrug-resistant strains, e.g. multidrug- and meticillin-resistant S.aureus (MDR MRSA). This study was designed to evaluate the intracellular killing, membrane-damaging and biofilm-inhibitory activities of nimbolide isolated from Azadirachta indica against MDR MRSA. In vitro antibacterial activity of nimbolide was determined by performing MIC, minimal bactericidal concentration (MBC) and time-kill kinetic studies. Bacterial membrane-damaging activity was determined by membrane perturbation and scanning electron microscopy (SEM) examination. Biofilm-inhibitory activities were determined by SEM. Cellular drug accumulation and assessments of intracellular activities were performed using Vero cell culture. SEM revealed that nimbolide caused significant membrane damage and lysis of the S. aureus cells. The biofilm structure was disrupted, and the biofilm formation was greatly reduced in the presence of nimbolide as examined by SEM. The level of accumulation of nimbolide in Vero cells incubated for 24 h is relatively higher than that of ciprofloxacin and nalidixic acid (Cc/Ce for nimbolide > ciprofloxacin and nalidixic acid). The viable number of intracellular S. aureus was decreased [reduction of ~2 log10 c.f.u. (mg Vero cell protein)-1] in a time-dependent manner in the presence of nimbolide (4× MBC) that was comparable to that of tetracycline and nalidixic acid. The significant intracellular, biofilm-inhibitory and bacterial membrane-damaging activities of nimbolide demonstrated here suggested that it has potential as an effective antibacterial agent for the treatment of severe infections caused by MDR MRSA.
Collapse
Affiliation(s)
- Prodipta Sarkar
- Department of Biochemistry, University of Calcutta, 35 Ballygunge, Circular Road, Kolkata 700019, India
| | - Saurabh Acharyya
- Department of Biochemistry, University of Calcutta, 35 Ballygunge, Circular Road, Kolkata 700019, India
| | - Anirban Banerjee
- Department of Biochemistry, University of Calcutta, 35 Ballygunge, Circular Road, Kolkata 700019, India
| | - Amarendra Patra
- Department of Chemistry, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700009, India
| | - Karthika Thankamani
- Department of Biochemistry, University of Calcutta, 35 Ballygunge, Circular Road, Kolkata 700019, India
| | - Hemanta Koley
- National Institute of Cholera and Enteric Diseases, P-33 C.I.T. Road, Scheme-XM, Beliaghata, Kolkata 700010, India
| | - Prasanta K Bag
- Department of Biochemistry, University of Calcutta, 35 Ballygunge, Circular Road, Kolkata 700019, India
| |
Collapse
|
32
|
Correa LB, Pádua TA, Seito LN, Costa TEMM, Silva MA, Candéa ALP, Rosas EC, Henriques MG. Anti-inflammatory Effect of Methyl Gallate on Experimental Arthritis: Inhibition of Neutrophil Recruitment, Production of Inflammatory Mediators, and Activation of Macrophages. JOURNAL OF NATURAL PRODUCTS 2016; 79:1554-1566. [PMID: 27227459 DOI: 10.1021/acs.jnatprod.5b01115] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Methyl gallate (MG) is a prevalent phenolic acid in the plant kingdom, and its presence in herbal medicines might be related to its remarkable biological effects, such as its antioxidant, antitumor, and antimicrobial activities. Although some indirect evidence suggests anti-inflammatory activity for MG, there are no studies demonstrating this effect in animal models. Herein, we demonstrated that MG (0.7-70 mg/kg) inhibited zymosan-induced experimental arthritis in a dose-dependent manner. The oral administration of MG (7 mg/kg) attenuates arthritis induced by zymosan, affecting edema formation, leukocyte migration, and the production of inflammatory mediators (IL-1β, IL-6, TNF-α, CXCL-1, LTB4, and PGE2). Pretreatment with MG inhibited in vitro neutrophil chemotaxis elicited by CXCL-1, as well as the adhesion of these cells to TNF-α-primed endothelial cells. MG also impaired zymosan-stimulated macrophages by inhibiting IL-6 and NO production, COX-2 and iNOS expression, and intracellular calcium mobilization. Thus, MG is likely to present an anti-inflammatory effect by targeting multiple cellular events such as the production of various inflammatory mediators, as well as leukocyte activation and migration.
Collapse
Affiliation(s)
- Luana Barbosa Correa
- Laboratory of Applied Pharmacology, Farmanguinhos, and ‡National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz) , Rio de Janeiro, RJ, Brazil
| | - Tatiana Almeida Pádua
- Laboratory of Applied Pharmacology, Farmanguinhos, and ‡National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz) , Rio de Janeiro, RJ, Brazil
| | - Leonardo Noboru Seito
- Laboratory of Applied Pharmacology, Farmanguinhos, and ‡National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz) , Rio de Janeiro, RJ, Brazil
| | - Thadeu Estevam Moreira Maramaldo Costa
- Laboratory of Applied Pharmacology, Farmanguinhos, and ‡National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz) , Rio de Janeiro, RJ, Brazil
| | - Magaiver Andrade Silva
- Laboratory of Applied Pharmacology, Farmanguinhos, and ‡National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz) , Rio de Janeiro, RJ, Brazil
| | - André Luis Peixoto Candéa
- Laboratory of Applied Pharmacology, Farmanguinhos, and ‡National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz) , Rio de Janeiro, RJ, Brazil
| | - Elaine Cruz Rosas
- Laboratory of Applied Pharmacology, Farmanguinhos, and ‡National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz) , Rio de Janeiro, RJ, Brazil
| | - Maria G Henriques
- Laboratory of Applied Pharmacology, Farmanguinhos, and ‡National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz) , Rio de Janeiro, RJ, Brazil
| |
Collapse
|
33
|
Mabou FD, Tamokou JDD, Ngnokam D, Voutquenne-Nazabadioko L, Kuiate JR, Bag PK. Complex secondary metabolites from Ludwigia leptocarpa with potent antibacterial and antioxidant activities. Drug Discov Ther 2016; 10:141-9. [DOI: 10.5582/ddt.2016.01040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Florence Déclaire Mabou
- Laboratory of Environmental and Applied Chemistry, Department of Chemistry, Faculty of Science, University of Dschang
| | - Jean-de-Dieu Tamokou
- Laboratory of Microbiology and Antimicrobial Substances, Department of Biochemistry, Faculty of Science, University of Dschang
| | - David Ngnokam
- Laboratory of Environmental and Applied Chemistry, Department of Chemistry, Faculty of Science, University of Dschang
| | | | - Jules-Roger Kuiate
- Laboratory of Microbiology and Antimicrobial Substances, Department of Biochemistry, Faculty of Science, University of Dschang
| | | |
Collapse
|