1
|
Peng W, Fu X, Yu H, Zhang Y, Zhou Q, Cao D. Emergence of Triazole-Resistant Cryptococcus neoformans after Exposure to Environmentally Relevant Concentrations of Difenoconazole in Liquid Medium and Soil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9541-9549. [PMID: 40227020 DOI: 10.1021/acs.jafc.4c12837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
The rapid global emergence and spread of resistance to clinical triazoles in Cryptococcus neoformans have been associated with the use of agricultural triazole fungicides. However, there is no direct evidence currently linking the emergence of triazole-resistant C. neoformans (TRCN) strains to the application of triazole fungicides in soil. This study investigated whether triazole resistance in C. neoformans could be induced by difenoconazole, an agricultural triazole fungicide, in liquid medium and soil. Our findings reveal that environmentally relevant concentrations of difenoconazole can drive cross-resistance to clinical triazoles in C. neoformans through the upregulation of ERG11 and efflux pump genes (AFR1, AFR3, and MDR1). Notably, the prevalence of TRCN strains in soil correlates with residual difenoconazole levels, with significantly more TRCN isolates observed at two- and five-fold the recommended dose than at the standard dose. These results provide direct evidence linking agricultural triazole use to the emergence of TRCN and highlight the importance of applying difenoconazole at or below the recommended dosage to mitigate resistance development in soil environments. This study addresses a critical gap in the understanding of the environmental drivers of triazole resistance and underscores the need for responsible fungicide use to prevent the spread of resistant pathogens.
Collapse
Affiliation(s)
- Wenwen Peng
- The Laboratory for Phytochemistry and Botanical Pesticides, College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization (Jiangxi Agricultural University), Nanchang 330045, China
| | - Xiaoxiang Fu
- The Laboratory for Phytochemistry and Botanical Pesticides, College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization (Jiangxi Agricultural University), Nanchang 330045, China
| | - Hantao Yu
- The Laboratory for Phytochemistry and Botanical Pesticides, College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization (Jiangxi Agricultural University), Nanchang 330045, China
| | - Ying Zhang
- The Laboratory for Phytochemistry and Botanical Pesticides, College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qinghong Zhou
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization (Jiangxi Agricultural University), Nanchang 330045, China
| | - Duantao Cao
- The Laboratory for Phytochemistry and Botanical Pesticides, College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization (Jiangxi Agricultural University), Nanchang 330045, China
| |
Collapse
|
2
|
Zhang L, Wang S, Hong N, Li M, Liu Y, Zhou T, Peng Y, Hu C, Li X, Zhang Z, Guo M, Cogliati M, Hitchcock M, Xu J, Chen M, Liao G. Genotypic diversity and antifungal susceptibility of Cryptococcus neoformans species complex from China, including the diploid VNIII isolates from HIV-infected patients in Chongqing region. Med Mycol 2023; 61:myad119. [PMID: 37985734 DOI: 10.1093/mmy/myad119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023] Open
Abstract
Although previous studies on the genotypic diversity and antifungal susceptibility of the Cryptococcus neoformans species complex (CNSC) isolates from China revealed ST5 genotype isolates being dominant, the information about the CNSC isolates from Chinese HIV-infected patients is limited. In this study, 171 CNSC isolates from HIV-infected patients in the Chongqing region of Southwest China were genotyped using the International Society for Human and Animal Mycology-multilocus sequence typing consensus scheme, and their antifungal drug susceptibilities were determined following CLSI M27-A3 guidelines. Among 171 isolates, six sequence types (STs) were identified, including the dominant ST5 isolates, the newly reported ST15, and four diploid VNIII isolates (ST632/ST636). Moreover, a total of 1019 CNSC isolates with STs and HIV-status information were collected and analyzed from Mainland China in the present study. A minimum spanning analysis grouped these 1019 isolates into three main subgroups, which were dominated by the ST5 clonal complex (CC5), followed by the ST31 clonal complex (CC31) and ST93 clonal complex (CC93). The trend of resistance or decreasing susceptibility of clinical CNSC isolates to azole agents within HIV-infected patients from the Chongqing region is increasing, especially resistance to fluconazole.
Collapse
Affiliation(s)
- Lanyu Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Saisai Wang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Nan Hong
- Department of Dermatology, Jinling Hospital, School of Medicine of Nanjing University, Nanjing, China
| | - Muyuan Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Yiting Liu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tao Zhou
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Yan Peng
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Changhua Hu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Xiaoxu Li
- The Medical Research Institute (MRI), Southwest University, Chongqing, China
| | - Zhen Zhang
- Department of Clinical Laboratory, Chongqing General Hospital, Chongqing, China
| | - Mengzhu Guo
- Department of Dermatology, General Hospital of Southern Theatre Command, Guangzhou, China
| | - Massimo Cogliati
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| | - Megan Hitchcock
- Department of Biology, McMaster University, Hamilton, Canada
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, Canada
| | - Min Chen
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Changzheng Hospital, Shanghai, China
| | - Guojian Liao
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
- The Medical Research Institute (MRI), Southwest University, Chongqing, China
| |
Collapse
|
3
|
Drakulovski P, Krasteva D, Bellet V, Randazzo S, Roger F, Pottier C, Bertout S. Exposure of Cryptococcus neoformans to Seven Commonly Used Agricultural Azole Fungicides Induces Resistance to Fluconazole as Well as Cross-Resistance to Voriconazole, Posaconazole, Itraconazole and Isavuconazole. Pathogens 2023; 12:pathogens12050662. [PMID: 37242332 DOI: 10.3390/pathogens12050662] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Cross-resistance to medical azoles by exposure to azole pesticides is well documented for Aspergillus family fungi but is poorly evaluated for other environmental pathogen fungi, particularly for yeasts belonging to the Cryptococcus neoformans/Cryptococcus gattii species complexes. METHODS One thousand C. neoformans yeast were exposed to various concentrations of seven different commonly used azole pesticides. Clones surviving exposure were picked randomly, and their minimal inhibitory concentrations (MICs) of fluconazole, voriconazole, posaconazole, itraconazole and isavuconazole were assessed. RESULTS Depending on the pesticide used for exposure, up to 13.3% of selected Cryptococcus colonies showed a phenotype of resistance to fluconazole, and among them, several showed cross-resistance to another or several other medical azoles. Molecular mechanisms involved in the resistance setups seem to be dependent on ERG11 and AFR1 gene overexpression. CONCLUSION Exposure to any of the seven azole pesticides tested is capable of increasing the MIC of fluconazole in C. neoformans, including up to the level of the fluconazole-resistant phenotype, as well as generating cross-resistance to other medical azoles in some cases.
Collapse
Affiliation(s)
- Pascal Drakulovski
- Laboratoire de Parasitologie et Mycologie Médicale, UMI 233 TransVIHMI, University of Montpellier, IRD, INSERM U1175, 15 Avenue Charles Flahaut, 34093 Montpellier, France
| | - Donika Krasteva
- Laboratoire de Parasitologie et Mycologie Médicale, UMI 233 TransVIHMI, University of Montpellier, IRD, INSERM U1175, 15 Avenue Charles Flahaut, 34093 Montpellier, France
| | - Virginie Bellet
- Laboratoire de Parasitologie et Mycologie Médicale, UMI 233 TransVIHMI, University of Montpellier, IRD, INSERM U1175, 15 Avenue Charles Flahaut, 34093 Montpellier, France
| | - Sylvie Randazzo
- Laboratoire de Parasitologie et Mycologie Médicale, UMI 233 TransVIHMI, University of Montpellier, IRD, INSERM U1175, 15 Avenue Charles Flahaut, 34093 Montpellier, France
| | - Frédéric Roger
- Laboratoire de Parasitologie et Mycologie Médicale, UMI 233 TransVIHMI, University of Montpellier, IRD, INSERM U1175, 15 Avenue Charles Flahaut, 34093 Montpellier, France
| | - Cyrille Pottier
- Laboratoire de Parasitologie et Mycologie Médicale, UMI 233 TransVIHMI, University of Montpellier, IRD, INSERM U1175, 15 Avenue Charles Flahaut, 34093 Montpellier, France
| | - Sébastien Bertout
- Laboratoire de Parasitologie et Mycologie Médicale, UMI 233 TransVIHMI, University of Montpellier, IRD, INSERM U1175, 15 Avenue Charles Flahaut, 34093 Montpellier, France
| |
Collapse
|
4
|
Bisso BN, Makuété AL, Tsopmene JU, Dzoyem JP. Biofilm Formation and Phospholipase and Proteinase Production in Cryptococcus neoformans Clinical Isolates and Susceptibility towards Some Bioactive Natural Products. ScientificWorldJournal 2023; 2023:6080489. [PMID: 37035538 PMCID: PMC10081907 DOI: 10.1155/2023/6080489] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/01/2023] [Accepted: 03/15/2023] [Indexed: 04/04/2023] Open
Abstract
Background. Cryptococcosis is one of the most common fungal infections in immunocompromised patients, which is caused by Cryptococcus neoformans. However, relatively little is known about the virulence factors of C. neoformans and the incidence of antifungal drug resistance in C. neoformans is rapidly increasing. This study was undertaken to investigate the virulence factors in C. neoformans, thymol, curcumin, piperine, gallic acid, eugenol, and plumbagin for their potential antimicrobial activity against C. neoformans. Methods. The production of phospholipase and proteinase was detected using standard methods. Biofilm formation was determined using the microtiter plate method. The broth microdilution method was used to determine the antifungal activity. The antibiofilm activity was assessed using the safranin staining method. Results. All isolates of C. neoformans produced biofilms with optical density values ranging from 0.16 to 0.89. A majority of C. neoformans isolates that were tested exhibited strong phospholipase (7/8) and proteinase (5/8) production. Plumbagin (with minimum inhibitory concentration values ranging from 4 to 16 μg/mL) showed the highest antifungal activity followed by thymol (with minimum biofilm inhibitory concentration values ranging from 8 to 64 μg/mL). In addition, plumbagin showed the highest antibiofilm activity with minimum biofilm inhibitory concentration and minimum biofilm eradication concentration values ranging from 4 to 16 μg/mL and 32 to 256 μg/mL, respectively. Conclusion. Plumbagin, compared to other natural products studied, was the most efficient in terms of antifungal and antibiofilm activities. Hence, plumbagin could be used in combination with antifungals for the development of new anticryptococcal drugs.
Collapse
Affiliation(s)
- Borel Ndezo Bisso
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Alvine Lonkeng Makuété
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Joël Ulrich Tsopmene
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Jean Paul Dzoyem
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| |
Collapse
|
5
|
Kassaza K, Wasswa F, Nielsen K, Bazira J. Cryptococcus neoformans Genotypic Diversity and Disease Outcome among HIV Patients in Africa. J Fungi (Basel) 2022; 8:734. [PMID: 35887489 PMCID: PMC9325144 DOI: 10.3390/jof8070734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/24/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
Cryptococcal meningoencephalitis, a disease with poor patient outcomes, remains the most prevalent invasive fungal infection worldwide, accounting for approximately 180,000 deaths each year. In several areas of sub-Saharan Africa with the highest HIV prevalence, cryptococcal meningitis is the leading cause of community-acquired meningitis, with a high mortality among HIV-infected individuals. Recent studies show that patient disease outcomes are impacted by the genetics of the infecting isolate. Yet, there is still limited knowledge of how these genotypic variations contribute to clinical disease outcome. Further, it is unclear how the genetic heterogeneity of C. neoformans and the extensive phenotypic variation observed between and within isolates affects infection and disease. In this review, we discuss current knowledge of how various genotypes impact disease progression and patient outcome in HIV-positive populations in sub-Saharan African, a setting with a high burden of cryptococcosis.
Collapse
Affiliation(s)
- Kennedy Kassaza
- Department of Microbiology and Parasitology, Mbarara University of Science and Technology, Mbarara P.O. Box 1410, Uganda; (K.K.); (F.W.)
| | - Fredrickson Wasswa
- Department of Microbiology and Parasitology, Mbarara University of Science and Technology, Mbarara P.O. Box 1410, Uganda; (K.K.); (F.W.)
| | - Kirsten Nielsen
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Joel Bazira
- Department of Microbiology and Parasitology, Mbarara University of Science and Technology, Mbarara P.O. Box 1410, Uganda; (K.K.); (F.W.)
| |
Collapse
|
6
|
Phytochemical Analysis and Antifungal Potentiating Activity of Extracts from Loquat (Eriobotrya japonica) against Cryptococcus neoformans Clinical Isolates. Adv Pharmacol Pharm Sci 2022; 2022:6626834. [PMID: 35464619 PMCID: PMC9023220 DOI: 10.1155/2022/6626834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/16/2022] [Accepted: 03/29/2022] [Indexed: 01/08/2023] Open
Abstract
Eriobotrya japonica (loquat) has been used in African traditional medicine with numerous beneficial health effects. The extracts from loquat contain several bioactive compounds with a plethora of pharmacological properties. However, a scientific study on the activity against the aetiological agent of cryptococcosis has not yet been reported. Therefore, this study aimed to investigate the antifungal potential of various extracts from Eriobotrya japonica against clinical isolates of Cryptococcus neoformans. Quantitative and qualitative phytochemical analyses of extracts were made by following standard procedures. The broth microdilution method and the checkerboard methods were used to determine the antifungal activity and the combination of extracts with antifungals drugs. The methanol extract of seeds and the hexane extract of leaves exhibited the best significant antifungal activity with MIC values of 32 µg/mL. Furthermore, the combination of both extracts with nystatin and clotrimazole showed synergistic interactions with a 32-fold reduction in the MIC values of nystatin. Our findings indicate that Eriobotrya japonica extracts are a potential source of new antifungals that could be developed for use in the treatment of cryptococcosis. The anticryptococcal and antifungal activities potentiating activity of the studied extracts indicate their potential in the management of cryptococcosis. Further study should be considered to identify the bioactive principles against Cryptococcus neoformans.
Collapse
|
7
|
Naicker SD, Magobo RE, Maphanga TG, Firacative C, van Schalkwyk E, Monroy-Nieto J, Bowers J, Engelthaler DM, Shuping L, Meyer W, Govender NP. Genotype, Antifungal Susceptibility, and Virulence of Clinical South African Cryptococcus neoformans Strains from National Surveillance, 2005-2009. J Fungi (Basel) 2021; 7:jof7050338. [PMID: 33925754 PMCID: PMC8146981 DOI: 10.3390/jof7050338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 01/04/2023] Open
Abstract
In South Africa, Cryptococcus neoformans is the most common cause of adult meningitis. We performed multi locus sequence typing and fluconazole susceptibility testing of clinical C. neoformans isolates collected from 251 South African patients with cryptococcosis through national surveillance from 2005 to 2009. We examined the association between clinical characteristics of patients and genotype, and the effect of genotype on in-hospital mortality. We performed whole genome phylogenetic analysis of fifteen C. neoformans isolates with the molecular type VNB and tested their virulence in a Galleria mellonella model. Most isolates had the molecular type VNI (206/251, 82%), followed by VNII (25/251, 10%), VNB (15/251, 6%), and VNIV (5/251, 2%); 67 sequence types were identified. There were no differences in fluconazole minimum inhibitory concentration (MIC) values among molecular types and the majority of strains had low MIC values (MIC50 of 1 µg/mL and MIC90 of 4 µg/mL). Males were almost twice as likely of being infected with a non-VNI genotype (adjusted odds ratio [OR]: 1.65, 95% confidence interval [CI]: 0.25–10.99; p = 0.61). Compared to patients infected with a VNI genotype, those with a non-VNI genotype had a 50% reduced adjusted odds of dying in hospital (95% CI: 0.03–7.57; p = 0.62). However, for both these analyses, our estimates had wide confidence intervals spanning 1 with large p-values. Fifteen VNB strains were not as virulent in a G. mellonella larval model as the H99 reference strain. A majority of these VNB strains belonged to the VNBII clade and were very closely related by phylogenetic analysis.
Collapse
Affiliation(s)
- Serisha D. Naicker
- Center for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, Johannesburg 2192, South Africa; (R.E.M.); (T.G.M.); (E.v.S.); (L.S.); (N.P.G.)
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2001, South Africa
- Correspondence: ; Tel.: +27-11-555-0491
| | - Rindidzani E. Magobo
- Center for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, Johannesburg 2192, South Africa; (R.E.M.); (T.G.M.); (E.v.S.); (L.S.); (N.P.G.)
| | - Tsidiso G. Maphanga
- Center for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, Johannesburg 2192, South Africa; (R.E.M.); (T.G.M.); (E.v.S.); (L.S.); (N.P.G.)
| | - Carolina Firacative
- Studies in Translational Microbiology and Emerging Diseases (MICROS) Research Group, School of Medicine and Health Sciences, Universidad del Rosario, 111611 Bogota, Colombia;
| | - Erika van Schalkwyk
- Center for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, Johannesburg 2192, South Africa; (R.E.M.); (T.G.M.); (E.v.S.); (L.S.); (N.P.G.)
| | - Juan Monroy-Nieto
- Pathogen and Microbiome Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA; (J.M.-N.); (J.B.); (D.M.E.)
| | - Jolene Bowers
- Pathogen and Microbiome Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA; (J.M.-N.); (J.B.); (D.M.E.)
| | - David M. Engelthaler
- Pathogen and Microbiome Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA; (J.M.-N.); (J.B.); (D.M.E.)
| | - Liliwe Shuping
- Center for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, Johannesburg 2192, South Africa; (R.E.M.); (T.G.M.); (E.v.S.); (L.S.); (N.P.G.)
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Center for Infectious Diseases and Microbiology, Westmead Clinical School, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia;
- Marie Bashir Institute for Emerging Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW 2006, Australia
- Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
- Research and Educational Network, Westmead Hospital, Western Sydney Local Health District, Westmead, NSW 2145, Australia
| | - Nelesh P. Govender
- Center for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, Johannesburg 2192, South Africa; (R.E.M.); (T.G.M.); (E.v.S.); (L.S.); (N.P.G.)
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2001, South Africa
- Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town 7701, South Africa
| |
Collapse
|
8
|
Kassi FK, Drakulovski P, Bellet V, Roger F, Chabrol A, Krasteva D, Doumbia A, Landman R, Kakou A, Reynes J, Delaporte E, Menan HEI, Bertout S. Cryptococcus genetic diversity and mixed infections in Ivorian HIV patients: A follow up study. PLoS Negl Trop Dis 2019; 13:e0007812. [PMID: 31738768 PMCID: PMC6886875 DOI: 10.1371/journal.pntd.0007812] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 12/02/2019] [Accepted: 09/26/2019] [Indexed: 01/07/2023] Open
Abstract
Genetic diversity analyses were performed by sero-genotyping and multi-locus sequence typing on 252 cryptococcal isolates from 13 HIV-positive Ivorian patients followed-up for cryptococcal meningitis. Antifungal susceptibility analyses were performed according to the CLSI M27A3 method. The majority (67.8%) of the isolates belonged to the Cryptococcus neoformans (serotype A) species complex, with 93% being VNI and 7% being VNII. Cryptococcus deuterogattii VGII (serotype B) represented 16.7% of the strains, while C. neoformans/C. deneoformans VNIII (serotype AD) hybrids accounted for 15.1% of the strains. One strain (0.4%) was not identifiable. Nine different sequence types (STs 5, 6, 23, 40, 93, 207, 311, and a new ST; 555) were identified in the C. neoformans population, while the C. deuterogattii population comprised the single ST 173. The distribution of the strains showed that, while the majority of patients (9/13) harboured a single sequence type, 4 patients showed mixed infections. These patients experienced up to 4 shifts in strain content either at the species and/or ST level during their follow-up. This evolution of diversity over time led to the co-existence of up to 3 different Cryptococcus species and 4 different ST within the same individual during the course of infection. Susceptibility testing showed that all strains were susceptible to amphotericin B while 3.6% of them had a none-wild type phenotype to 5-flucytosine. Concerning fluconazole, 2.9% of C.neoformans serotype A strains and 2.4% of C. deuterogattii had also respectively a none-wild type phenotype to this molecule. All C. neoformans x C. deneoformans serotype AD hybrids had however a wild type phenotype to fluconazole. The present study showed that mixed infections exist and could be of particular importance for care outcomes. Indeed, (i) the different Cryptococcus species are known to exhibit different virulence and different susceptibility patterns to antifungal drugs and (ii) the strains genetic diversity within the samples may influence the susceptibility to antifungal treatment.
Collapse
Affiliation(s)
- Fulgence Kondo Kassi
- Université Félix Houphouet-Boigny, Unité des Sciences Pharmaceutiques et Biologiques, Abidjan, Côte d’Ivoire
| | - Pascal Drakulovski
- Laboratoire de Parasitologie et Mycologie Médicale, IRD UMI 233, INSERM U1175, Université de Montpellier, Unité TransVIHMI, Montpellier, France
| | - Virginie Bellet
- Laboratoire de Parasitologie et Mycologie Médicale, IRD UMI 233, INSERM U1175, Université de Montpellier, Unité TransVIHMI, Montpellier, France
| | - Frédéric Roger
- Laboratoire de Parasitologie et Mycologie Médicale, IRD UMI 233, INSERM U1175, Université de Montpellier, Unité TransVIHMI, Montpellier, France
| | - Amélie Chabrol
- Service de Maladies Infectieuses et Tropicales, CH Sud Francilien, Corbeil, France
| | - Donika Krasteva
- Laboratoire de Parasitologie et Mycologie Médicale, IRD UMI 233, INSERM U1175, Université de Montpellier, Unité TransVIHMI, Montpellier, France
| | - Adama Doumbia
- Université Félix Houphouet-Boigny, Unité des Sciences Pharmaceutiques et Biologiques, Abidjan, Côte d’Ivoire
| | - Roland Landman
- Institut de Médecine et Epidémiologie Appliquée (IMEA), Fondation Léon M’Ba, Paris, France
| | - Aka Kakou
- Service des Maladies Infectieuses et Tropicales, CHU Treichville, Abidjan, Côte d’Ivoire
| | - Jacques Reynes
- CHU Gui de Chauliac, Service des Maladies Infectieuses et Tropicales, IRD UMI 233, INSERM U1175, Université de Montpellier, Unité TransVIHMI, Montpellier, France
| | - Eric Delaporte
- TransVIHMI/INSERM1175, Institut de Recherche pour le Développement (IRD) and University of Montpellier, Montpellier, France
| | - Hervé Eby Ignace Menan
- Diagnostic and Research Center on AIDS and Other Infectious Diseases (CeDReS), Abidjan, Côte d'Ivoire
| | - Sébastien Bertout
- Laboratoire de Parasitologie et Mycologie Médicale, IRD UMI 233, INSERM U1175, Université de Montpellier, Unité TransVIHMI, Montpellier, France
| |
Collapse
|
9
|
Epidemiology of antifungal susceptibility: Review of literature. J Mycol Med 2019; 28:574-584. [PMID: 29773435 DOI: 10.1016/j.mycmed.2018.04.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 11/24/2022]
Abstract
Fungal infections are a major cause of morbidity and mortality despite the latest developments of diagnostic tools and therapeutic options. Early initiation of the appropriate antifungal therapy has been demonstrated to have a direct impact on the patient's outcome. Antifungal susceptibility testing methods are available to detect antifungal resistance and to determine the best treatment for a specific fungus. American and European standards have been developed, as well as equivalent commercial systems, which are more appropriate for clinical laboratories. These studies have allowed the development of interpretative breakpoints against the most frequent agents of fungal infections in the world. Surveillance of antifungal susceptibility patterns can provide the local drug resistance data to the clinicians, which can further aid better management of patients. Antifungal susceptibility tests have become essential tools to identify resistance to antifungals, to know the local and global disease epidemiology and to guide the treatment of fungal diseases. The distribution of species and the prevalence of antifungal resistance in fungi isolates varied among different areas. Here we summarize the epidemiology of antifungal susceptibility pattern of different fungal species.
Collapse
|
10
|
Molecular Characterization and Antifungal Susceptibility Testing of Sequentially Obtained Clinical Cryptococcus deneoformans and Cryptococcus neoformans Isolates from Ljubljana, Slovenia. Mycopathologia 2017; 183:371-380. [PMID: 29064061 DOI: 10.1007/s11046-017-0214-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 10/15/2017] [Indexed: 12/22/2022]
Abstract
AIM To retrospectively investigate the epidemiology of cryptococcosis in Ljubljana, Slovenia. METHODOLOGY Forty-six sequentially obtained isolates from 19 patients were subjected to amplified fragment length polymorphism (AFLP) genotyping, microsatellite typing, mating- and serotype PCRs and antifungal susceptibility testing. RESULTS Majority of the isolates were Cryptococcus deneoformans (n = 29/46; 63%) followed by Cryptococcus neoformans (n = 16/46; 34.8%) and their interspecies hybrid (n = 1/46; 2.2%). Mating-type α was predominant, two mating-type a C. deneoformans isolates and one mating-type a/α isolate were observed. Several mixed infections were found by microsatellite typing; one patient had a persisting C. deneoformans infection for > 2.5 years. For C. deneoformans, the in vitro antifungal MIC90 and susceptibility ranges were for amphotericin B 0.25 µg/ml (0.031-0.25 µg/ml), 5-fluorocytosine 0.25 µg/ml (0.063-4 µg/ml), fluconazole 8 µg/ml (0.5-16 µg/ml), voriconazole 0.063 µg/ml (0.008-0.125 µg/ml), posaconazole 0.063 µg/ml (0.008-0.063 µg/ml) and itraconazole 0.063 µg/ml (0.031-0.125 µg/ml). For C. neoformans, these values were for amphotericin B 0.25 µg/ml (0.063-0.5 µg/ml), 5-fluorocytosine 1 µg/ml (0.063-1 µg/ml), fluconazole 16 µg/ml (0.5-64 µg/ml), voriconazole 0.125 µg/ml (0.008-0.25 µg/ml), posaconazole 0.063 µg/ml (0.008-0.063 µg/ml) and itraconazole 0.063 µg/ml (0.031-0.125 µg/ml). CONCLUSIONS Majority of the cases were caused by C. deneoformans; mating-type α was predominant. Several mixed infections were identified by AFLP genotyping and microsatellite typing. Despite antifungal therapy, a cryptococcal isolate could persist for years. Voriconazole, itraconazole and posaconazole were the most potent antifungal drugs.
Collapse
|