1
|
Li S, Gu Q, Li B, Abi K, Yang F. High prevalence of virulence genes and multi-drug resistance in Pasteurella multocida from goats in Sichuan, China. Vet J 2025; 311:106344. [PMID: 40174797 DOI: 10.1016/j.tvjl.2025.106344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 04/04/2025]
Abstract
Pasteurella multocida is one of the most important pathogens that infect goats, causing serious economic losses in the goat breeding industry. To understand the biological characteristics of P. multocida from goats, a comprehensive characterization of bacteria isolated from 342 nasal swabs and 8 lung tissue samples from goat farms in Sichuan, China, was performed. A total of 34 isolates were assigned to one capsular type, D, and one lipopolysaccharide (LPS) genotype, L3, indicating that the D: L3 was the predominant serotype in goat farms. In the 34 isolates, multiple virulence-related genes were identified, with a detection rate of 100 % (34/34) for the genes ompA, ompH, oma87, exbB, and exbD. It is noteworthy that the prevalence of the toxA gene, which encodes the P. multocida toxin (PMT), was found to be 85.2 % (29/34). Furthermore, antimicrobial susceptibility testing indicated a high prevalence of multidrug resistance, with resistance rates of 41.1 % for ampicillin, 38.2 % for tetracycline, and 32.3 % for kanamycin. Overall, this study provides a foundational understanding of the epidemiology and antimicrobial resistance of P. multocida in goats, offering insights for future prevention and control measures.
Collapse
Affiliation(s)
- Shenglin Li
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Qibing Gu
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Benrun Li
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Kehamo Abi
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Falong Yang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China.
| |
Collapse
|
2
|
Abera D, Mossie T. A review on pneumonic pasteurellosis in small ruminants. JOURNAL OF APPLIED ANIMAL RESEARCH 2023. [DOI: 10.1080/09712119.2022.2146123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Dessie Abera
- Debre markos Agricultural Research Center, Debre markos, Ethiopia
| | - Tesfa Mossie
- Jimma Agricultural Research Center, Jimma, Ethiopia
| |
Collapse
|
3
|
Abdulrahman RF, Davies RL. Diversity and characterization of temperate bacteriophages induced in Pasteurella multocida from different host species. BMC Microbiol 2021; 21:97. [PMID: 33784980 PMCID: PMC8008546 DOI: 10.1186/s12866-021-02155-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 02/25/2021] [Indexed: 12/31/2022] Open
Abstract
Background Bacteriophages play important roles in the evolution of bacteria and in the emergence of new pathogenic strains by mediating the horizontal transfer of virulence genes. Pasteurella multocida is responsible for different disease syndromes in a wide range of domesticated animal species. However, very little is known about the influence of bacteriophages on disease pathogenesis in this species. Results Temperate bacteriophage diversity was assessed in 47 P. multocida isolates of avian (9), bovine (8), ovine (10) and porcine (20) origin. Induction of phage particles with mitomycin C identified a diverse range of morphological types representing both Siphoviridae and Myoviridae family-types in 29 isolates. Phage of both morphological types were identified in three isolates indicating that a single bacterial host may harbour multiple prophages. DNA was isolated from bacteriophages recovered from 18 P. multocida isolates and its characterization by restriction endonuclease (RE) analysis identified 10 different RE types. Phage of identical RE types were identified in certain closely-related strains but phage having different RE types were present in other closely-related isolates suggesting possible recent acquisition. The host range of the induced phage particles was explored using plaque assay but only 11 (38%) phage lysates produced signs of infection in a panel of indicator strains comprising all 47 isolates. Notably, the majority (9/11) of phage lysates which caused infection originated from two groups of phylogenetically unrelated ovine and porcine strains that uniquely possessed the toxA gene. Conclusions Pasteurella multocida possesses a wide range of Siphoviridae- and Myoviridae-type bacteriophages which likely play key roles in the evolution and virulence of this pathogen. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02155-9.
Collapse
Affiliation(s)
- Rezheen F Abdulrahman
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK.,Pathology and Microbiology Department, Collage of Veterinary Medicine, University of Duhok, Kurdistan Region, Iraq
| | - Robert L Davies
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK.
| |
Collapse
|
4
|
Prajapati A, Chanda MM, Yogisharadhya R, Parveen A, Ummer J, Dhayalan A, Mohanty NN, Shivachandra SB. Comparative genetic diversity analysis based on virulence and repetitive genes profiling of circulating Pasteurella multocida isolates from animal hosts. INFECTION GENETICS AND EVOLUTION 2020; 85:104564. [PMID: 32979548 DOI: 10.1016/j.meegid.2020.104564] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 12/21/2022]
Abstract
Virulence associated and/or housekeeping/repetitive genes either in single or multiple copies are being extensively targeted for bacterial pathogen detection and differentiation in epidemiological studies. In the present study, isolation of Pasteurella multocida from different animals and their genetic profiling based on the capsular types, virulence and repetitive elements (ERIC/REP) were carried out. A total 345 clinical samples from apparently healthy and diseased (pneumonic, septicaemia) animals (sheep, goat, pig, cattle, buffalo and rabbits) from different geographical regions of Karnataka, Uttar Pradesh, Mizoram and Assam states of India were screened. A total of 32% of the samples were found positive, of which 41 P. multocida isolates recovered. Virulence profiling of isolates indicated that omp87, ompA, ptfA, sodA, sodC, nanB, fur and exbB were present in 100% of isolates. Whereas, prevalence of other genes were; nanH (90%), ompH (71%), pfhA (63%), plpB (80%), hsf-1 (12%), hsf-2 (37%), pmHAS (78%), toxA (73%), hgbA (37%), hgbB (81%), tbpA (78%) and fimA (98%), among isolates. There was no influence of host or place on prevalence of virulence genes when assessed by fitting a Hierarchial Bayesian ordinal regression model. There was correlation (positive and negative) between broad groups of virulence genes. Both repetitive gene profiles (ERIC and REP) generated multiple amplicons (~200 to ~4000 bp). Cluster analysis with ERIC profiles revealed 5 clusters and 3 non- typable isolates with higher discriminatory power (D = 0.7991) than the REP-PCR profiles (D = 00.734) which revealed 4 clusters and 6 non- typable isolates. The results showed that a considerable level of genetic diversity exists among circulating P. multocida isolates despite belonging to the same geographical origin. The genetic diversity or clustering based on either virulence or repetitive elements among isolates could be largely driven by multiple factors acting together which lead to manifestations of particular disease symptoms.
Collapse
Affiliation(s)
- Awadhesh Prajapati
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru 560064, Karnataka, India
| | - Mohammed Mudassar Chanda
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru 560064, Karnataka, India
| | - Revanaiah Yogisharadhya
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru 560064, Karnataka, India
| | - Assma Parveen
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru 560064, Karnataka, India
| | - Janofer Ummer
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru 560064, Karnataka, India
| | - Arul Dhayalan
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru 560064, Karnataka, India
| | - Nihar Nalini Mohanty
- CCS-National Institute of Animal Health (NIAH), Baghpat 250609, Uttar Pradesh (UP), India
| | - Sathish Bhadravati Shivachandra
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru 560064, Karnataka, India.
| |
Collapse
|
5
|
|
6
|
Cid D, García-Alvarez A, Domínguez L, Fernández-Garayzábal JF, Vela AI. Pasteurella multocida isolates associated with ovine pneumonia are toxigenic. Vet Microbiol 2019; 232:70-73. [PMID: 31030847 DOI: 10.1016/j.vetmic.2019.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/01/2019] [Accepted: 04/05/2019] [Indexed: 02/04/2023]
Abstract
The P. multocida toxin (PMT), a dermonecrotic protein encoded by the toxA gene, is the major virulence factor of capsular type D P. multocida strains causing progressive atrophic rhinitis (PAR) in pigs. A high frequency of P. multocida isolates harboring the toxA gene has been found among ovine pneumonic isolates, although the ability of these isolates to express PMT has never been examined. In this study we have investigated the ability of ovine toxA+ P. multocida isolates (n = 57) to express a functional toxin by detection of PMT toxin antigen using an ELISA test and its cytopathic effect in a Vero cell assay. PMT antigen was expressed in the great majority (54/57; 94.7%) of toxA+ isolates. Moreover, the 100% toxA+ ovine isolates analyzed produced a cytopathic effect in Vero cells within 24-48 h post-inoculation, identical to that described for porcine toxigenic P. multocida isolates. These results show for the first time that, in addition to isolates associated with PAR, isolates of P. multocida associated with pneumonia in sheep are also toxigenic. In addition, we found a total agreement (Kappa = 1; C.I. 0.75-1.25) between the detection of the toxA gene and the toxigenic capability of P. multocida isolates, indicating the PCR detection of toxA would be a suitable predictive marker of the toxigenic fitness of P. multocida.
Collapse
Affiliation(s)
- D Cid
- Animal Health Department, Veterinary School, Universidad Complutense de Madrid, Spain.
| | - A García-Alvarez
- Animal Health Department, Veterinary School, Universidad Complutense de Madrid, Spain
| | - L Domínguez
- Animal Health Department, Veterinary School, Universidad Complutense de Madrid, Spain; Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense, Madrid, Spain
| | - J F Fernández-Garayzábal
- Animal Health Department, Veterinary School, Universidad Complutense de Madrid, Spain; Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense, Madrid, Spain
| | - A I Vela
- Animal Health Department, Veterinary School, Universidad Complutense de Madrid, Spain; Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense, Madrid, Spain
| |
Collapse
|
7
|
Insights into the genome sequence of ovine Pasteurella multocida type A strain associated with pneumonic pasteurellosis. Small Rumin Res 2018. [DOI: 10.1016/j.smallrumres.2018.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
8
|
García-Alvarez A, Vela AI, San Martín E, Chaves F, Fernández-Garayzábal JF, Lucas D, Cid D. Characterization of Pasteurella multocida associated with ovine pneumonia using multi-locus sequence typing (MLST) and virulence-associated gene profile analysis and comparison with porcine isolates. Vet Microbiol 2017; 204:180-187. [DOI: 10.1016/j.vetmic.2017.04.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 11/24/2022]
|