1
|
Xie W, Song L, Wang X, Xu Y, Liu Z, Zhao D, Wang S, Fan X, Wang Z, Gao C, Wang X, Wang L, Qiao X, Zhou H, Cui W, Jiang Y, Li Y, Tang L. A bovine lactoferricin-lactoferrampin-encoding Lactobacillus reuteri CO21 regulates the intestinal mucosal immunity and enhances the protection of piglets against enterotoxigenic Escherichia coli K88 challenge. Gut Microbes 2021; 13:1956281. [PMID: 34369287 PMCID: PMC8354667 DOI: 10.1080/19490976.2021.1956281] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is an important cause of diarrhea in human and animal. To determine the mechanism of a bovine lactoferricin-lactoferrampin (LFCA)-encoding Lactobacillus reuteri CO21 (LR-LFCA) to enhance the intestinal mucosal immunity, we used a newborn piglet intestine model to study the intestinal response to ETEC. Pigs were chosen due to the anatomical similarity between the porcine and the human intestine.4-day-old piglets were orally administered with LR-LFCA, LR-con (L. reuteri CO21 transformed with pPG612 plasmid) or phosphate buffered saline (PBS) for three consecutive days, within 21 days after these treatments, we found that LR-LFCA can colonize the intestines of piglets, improve the growth performance, enhance immune response and is beneficial for intestinal health of piglets by improving intestinal barrier function and modulating the composition of gut microbiota. Twenty-one days after, piglets were infected with ETEC K88 for 5 days, we found that oral administration of LR-LFCA to neonatal piglets attenuated ETEC-induced the weight loss of piglets and diarrhea incidence. LR-LFCA decreased the production of inflammatory factors and oxidative stress in intestinal mucosa of ETEC-infected piglets. Additionally, LR-LFCA increased the expression of tight junction proteins in the ileum of ETEC-infected piglets. Using LPS-induced porcine intestinal epithelial cells (IPEC-J2) in vitro, we demonstrated that LR-LFCA-mediated increases in the tight junction proteins might depend on the MLCK pathway; LR-LFCA might increase the anti-inflammatory ability by inhibiting the NF-κB pathway. We also found that LR-LFCA may enhance the antioxidant capacity of piglets by activating the Nrf2/HO-1 pathway. This study demonstrates that LR-LFCA is effective at maintaining intestinal epithelial integrity and host homeostasis as well as at repairing intestinal damage after ETEC infection and is thus a promising alternative therapeutic method for intestinal inflammation.
Collapse
Affiliation(s)
- Weichun Xie
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Liying Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xueying Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yigang Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen, Harbin, China
| | - Zengsu Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Dongfang Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Shubo Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaolong Fan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhaorui Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Chong Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaona Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen, Harbin, China
| | - Li Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen, Harbin, China
| | - Xinyuan Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen, Harbin, China
| | - Han Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen, Harbin, China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen, Harbin, China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen, Harbin, China
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen, Harbin, China
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen, Harbin, China,CONTACT Lijie Tang College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
2
|
Wolter M, Grant ET, Boudaud M, Steimle A, Pereira GV, Martens EC, Desai MS. Leveraging diet to engineer the gut microbiome. Nat Rev Gastroenterol Hepatol 2021; 18:885-902. [PMID: 34580480 DOI: 10.1038/s41575-021-00512-7] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 12/12/2022]
Abstract
Autoimmune diseases, including inflammatory bowel disease, multiple sclerosis and rheumatoid arthritis, have distinct clinical presentations but share underlying patterns of gut microbiome perturbation and intestinal barrier dysfunction. Their potentially common microbial drivers advocate for treatment strategies aimed at restoring appropriate microbiome function, but individual variation in host factors makes a uniform approach unlikely. In this Perspective, we consolidate knowledge on diet-microbiome interactions in local inflammation, gut microbiota imbalance and host immune dysregulation. By understanding and incorporating the effects of individual dietary components on microbial metabolic output and host physiology, we examine the potential for diet-based therapies for autoimmune disease prevention and treatment. We also discuss tools targeting the gut microbiome, such as faecal microbiota transplantation, probiotics and orthogonal niche engineering, which could be optimized using custom dietary interventions. These approaches highlight paths towards leveraging diet for precise engineering of the gut microbiome at a time of increasing autoimmune disease.
Collapse
Affiliation(s)
- Mathis Wolter
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Erica T Grant
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Marie Boudaud
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Alex Steimle
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | | | - Eric C Martens
- University of Michigan Medical School, Ann Arbor, MI, USA
| | - Mahesh S Desai
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg. .,Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
3
|
Hartwig O, Shetab Boushehri MA, Shalaby KS, Loretz B, Lamprecht A, Lehr CM. Drug delivery to the inflamed intestinal mucosa - targeting technologies and human cell culture models for better therapies of IBD. Adv Drug Deliv Rev 2021; 175:113828. [PMID: 34157320 DOI: 10.1016/j.addr.2021.113828] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/19/2022]
Abstract
Current treatment strategies for inflammatory bowel disease (IBD) seek to alleviate the undesirable symptoms of the disorder. Despite the higher specificity of newer generation therapeutics, e.g. monoclonal antibodies, adverse effects still arise from their interference with non-specific systemic immune cascades. To circumvent such undesirable effects, both conventional and newer therapeutic options can benefit from various targeting strategies. Of course, both the development and the assessment of the efficiency of such targeted delivery systems necessitate the use of suitable in vivo and in vitro models representing relevant pathophysiological manifestations of the disorder. Accordingly, the current review seeks to provide a comprehensive discussion of the available preclinical models with emphasis on human in vitro models of IBD, along with their potentials and limitations. This is followed by an elaboration on the advancements in the field of biology- and nanotechnology-based targeted drug delivery systems and the potential rooms for improvement to facilitate their clinical translation.
Collapse
Affiliation(s)
- Olga Hartwig
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, D-66123 Saarbrücken, Germany
| | | | - Karim S Shalaby
- Department of Pharmaceutics, University of Bonn, D-53121 Bonn, Germany; Department of Pharmaceutics and Industrial Pharmacy, Ain Shams University, Cairo, Egypt
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany
| | - Alf Lamprecht
- Department of Pharmaceutics, University of Bonn, D-53121 Bonn, Germany.
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, D-66123 Saarbrücken, Germany.
| |
Collapse
|
4
|
Mohedano ML, Hernández-Recio S, Yépez A, Requena T, Martínez-Cuesta MC, Peláez C, Russo P, LeBlanc JG, Spano G, Aznar R, López P. Real-Time Detection of Riboflavin Production by Lactobacillus plantarum Strains and Tracking of Their Gastrointestinal Survival and Functionality in vitro and in vivo Using mCherry Labeling. Front Microbiol 2019; 10:1748. [PMID: 31417534 PMCID: PMC6684964 DOI: 10.3389/fmicb.2019.01748] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/15/2019] [Indexed: 01/12/2023] Open
Abstract
Some strains of lactic acid bacteria (LAB) produce riboflavin, a water-soluble vitamin of the B complex, essential for human beings. Here, we have evaluated riboflavin (B2 vitamin) production by five Lactobacillus plantarum strains isolated from chicha, a traditional maize-based fermented alcoholic beverage from north-western Argentina and their isogenic riboflavin-overproducing derivatives previously selected using roseoflavin. A direct fluorescence spectroscopic detection method to quantify riboflavin production in bacterial culture supernatants has been tested. Comparison of the efficiency for riboflavin fluorescence quantification with and without prior HPLC fractionation showed that the developed method is a rapid and easy test for selection of B2 vitamin-producing strains. In addition, it can be used for quantitative detection of the vitamin production in real time during bacterial growth. On the basis of this and previous analyses, the L. plantarum M5MA1-B2 riboflavin overproducer was selected for in vitro and in vivo studies after being fluorescently labeled by transfer of the pRCR12 plasmid, which encodes the mCherry protein. The labeling did not affect negatively the growth, the riboflavin production nor the adhesion of the strain to Caco-2 cells. Thus, L. plantarum M5MA1-B2[pRCR12] was evaluated for its survival under digestive tract stresses in the presence of microbiota in the dynamic multistage BFBL gut model and in a murine model. After exposure to both models, M5MA1-B2[pRCR12] could be recovered and detected by the pink color of the colonies. The results indicated a satisfactory resistance of the strain to gastric and intestinal stress conditions but a low colonization capability observed both in vitro and in vivo. Overall, L. plantarum M5MA1-B2 could be proposed as a probiotic strain for the development of functional foods.
Collapse
Affiliation(s)
- Mari Luz Mohedano
- Department of Microorganisms and Plant Biotechnology, Biological Research Center (CIB-CSIC), Madrid, Spain
| | - Sara Hernández-Recio
- Department of Microorganisms and Plant Biotechnology, Biological Research Center (CIB-CSIC), Madrid, Spain
| | - Alba Yépez
- Department of Microbiology and Ecology, University of Valencia, Valencia, Spain
| | - Teresa Requena
- Department of Biotechnology and Food Microbiology, Institute of Food Science Research (CIAL-CSIC), Madrid, Spain
| | - M. Carmen Martínez-Cuesta
- Department of Biotechnology and Food Microbiology, Institute of Food Science Research (CIAL-CSIC), Madrid, Spain
| | - Carmen Peláez
- Department of Biotechnology and Food Microbiology, Institute of Food Science Research (CIAL-CSIC), Madrid, Spain
| | - Pasquale Russo
- Department of the Science of Agriculture, Food and Environment, University of Foggia, Foggia, Italy
| | - Jean Guy LeBlanc
- Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán, Argentina
| | - Giuseppe Spano
- Department of the Science of Agriculture, Food and Environment, University of Foggia, Foggia, Italy
| | - Rosa Aznar
- Department of Microbiology and Ecology, University of Valencia, Valencia, Spain
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology (IATA-CSIC), Paterna, Spain
| | - Paloma López
- Department of Microorganisms and Plant Biotechnology, Biological Research Center (CIB-CSIC), Madrid, Spain
| |
Collapse
|
5
|
Marques Da Silva W, Oliveira LC, Soares SC, Sousa CS, Tavares GC, Resende CP, Pereira FL, Ghosh P, Figueiredo H, Azevedo V. Quantitative Proteomic Analysis of the Response of Probiotic Putative Lactococcus lactis NCDO 2118 Strain to Different Oxygen Availability Under Temperature Variation. Front Microbiol 2019; 10:759. [PMID: 31031733 PMCID: PMC6470185 DOI: 10.3389/fmicb.2019.00759] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/26/2019] [Indexed: 02/06/2023] Open
Abstract
Lactococcus lactis is a gram positive facultative anaerobe widely used in the dairy industry and human health. L. lactis subsp. lactis NCDO 2118 is a strain that exhibits anti-inflammatory and immunomodulatory properties. In this study, we applied a label-free shotgun proteomic approach to characterize and quantify the NCDO 2118 proteome in response to variations of temperature and oxygen bioavailability, which constitute the environmental conditions found by this bacterium during its passage through the host gastro-intestinal tract and in other industrial processes. From this proteomic analysis, a total of 1,284 non-redundant proteins of NCDO 2118 were characterized, which correspond to approximately 54% of its predicted proteome. Comparative proteomic analysis identified 149 and 136 proteins in anaerobic (30°C and 37°C) and non-aerated (30°C and 37°C) conditions, respectively. Our label-free proteomic analysis quantified a total of 1,239 proteins amongst which 161 proteins were statistically differentially expressed. Main differences were observed in cellular metabolism, stress response, transcription and proteins associated to cell wall. In addition, we identified six strain-specific proteins of NCDO 2118. Altogether, the results obtained in our study will help to improve the understanding about the factors related to both physiology and adaptive processes of L. lactis NCDO 2118 under changing environmental conditions.
Collapse
Affiliation(s)
- Wanderson Marques Da Silva
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Leticia Castro Oliveira
- Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triangulo Mineiro, Uberaba, Brazil
| | - Siomar Castro Soares
- Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triangulo Mineiro, Uberaba, Brazil
| | - Cassiana Severiano Sousa
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Felipe Luis Pereira
- AQUACEN, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, United States
| | - Henrique Figueiredo
- AQUACEN, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vasco Azevedo
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
6
|
Martín R, Chain F, Miquel S, Motta JP, Vergnolle N, Sokol H, Langella P. Using murine colitis models to analyze probiotics-host interactions. FEMS Microbiol Rev 2018; 41:S49-S70. [PMID: 28830096 DOI: 10.1093/femsre/fux035] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/08/2017] [Indexed: 02/07/2023] Open
Abstract
Probiotics are defined as 'live microorganisms which when administered in adequate amounts confer a health benefit on the host'. So, to consider a microorganism as a probiotic, a demonstrable beneficial effect on the health host should be shown as well as an adequate defined safety status and the capacity to survive transit through the gastrointestinal tract and to storage conditions. In this review, we present an overview of the murine colitis models currently employed to test the beneficial effect of the probiotic strains as well as an overview of the probiotics already tested. Our aim is to highlight both the importance of the adequate selection of the animal model to test the potential probiotic strains and of the value of the knowledge generated by these in vivo tests.
Collapse
Affiliation(s)
- Rebeca Martín
- INRA, Commensals and Probiotics-Host Interactions Laboratory, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Florian Chain
- INRA, Commensals and Probiotics-Host Interactions Laboratory, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Sylvie Miquel
- Laboratoire Microorganismes: Génome et Environnement (LMGE), UMR CNRS 6023, Université Clermont-Auvergne, 63000 Clermont-Ferrand, France
| | - Jean-Paul Motta
- Department of Biological Science, Inflammation Research Network, University of Calgary, AB T3E 4N1, Canada.,IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, F-31300 Toulouse, France
| | - Nathalie Vergnolle
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, F-31300 Toulouse, France
| | - Harry Sokol
- INRA, Commensals and Probiotics-Host Interactions Laboratory, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.,Sorbonne University - Université Pierre et Marie Curie (UPMC), 75252 Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) Equipe de Recherche Labélisée (ERL) 1157, Avenir Team Gut Microbiota and Immunity, 75012 Paris, France.,Department of Gastroenterology, Saint Antoine Hospital, Assistance Publique - Hopitaux de Paris, UPMC, 75012 Paris, France
| | - Philippe Langella
- INRA, Commensals and Probiotics-Host Interactions Laboratory, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| |
Collapse
|
7
|
Synthetic biology in probiotic lactic acid bacteria: At the frontier of living therapeutics. Curr Opin Biotechnol 2018; 53:224-231. [PMID: 29550614 DOI: 10.1016/j.copbio.2018.01.028] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/22/2017] [Accepted: 01/24/2018] [Indexed: 12/19/2022]
Abstract
The trillions of microbes hosted by humans can dictate health or illness depending on a multitude of genetic, environmental, and lifestyle factors that help define the human ecosystem. As the human microbiota is characterized, so can the interconnectivity of microbe-host-disease be realized and manipulated. Designing microbes as therapeutic agents can not only enable targeted drug delivery but also restore homeostasis within a perturbed microbial community. Used for centuries in fermentation and preservation of food, lactic acid bacteria (LAB) have a long history of safe, and occasionally health promoting, interactions with the human gut, making them ideal candidates for engineered functionality. This review outlines available genetic tools, recent developments in biomedical applications, as well as potential future applications of synthetic biology to program LAB-based therapeutic systems.
Collapse
|
8
|
Shigemori S, Shimosato T. Applications of Genetically Modified Immunobiotics with High Immunoregulatory Capacity for Treatment of Inflammatory Bowel Diseases. Front Immunol 2017; 8:22. [PMID: 28179904 PMCID: PMC5263139 DOI: 10.3389/fimmu.2017.00022] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/05/2017] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel diseases (IBDs), including ulcerative colitis and Crohn’s disease, are chronic inflammatory diseases characterized by dysregulated immune responses of the gastrointestinal tract. In recent years, the incidence of IBDs has increased in developed nations, but their prophylaxis/treatment is not yet established. Site-directed delivery of molecules showing anti-inflammatory properties using genetically modified (gm)-probiotics shows promise as a new strategy for the prevention and treatment of IBD. Advantages of gm-probiotics include (1) the ability to use bacteria as a delivery vehicle, enabling safe and long-term use by humans, (2) decreased risks of side effects, and (3) reduced costs. The intestinal delivery of anti-inflammatory proteins such as cytokines and enzymes using Lactococcus lactis has been shown to regulate host intestinal homeostasis depending on the delivered protein-specific machinery. Additionally, clinical experience using interleukin 10-secreting Lc. lactis has been shown to be safe and to facilitate biological containment in IBD therapy. On the other hand, some preclinical studies have demonstrated that gm-strains of immunobiotics (probiotic strains able to beneficially regulate the mucosal immunity) provide beneficial effects on intestinal inflammation as a result of the synergy between the immunoregulatory effects of the bacterium itself and the anti-inflammatory effects of the delivered recombinant proteins. In this review, we discuss the rapid progression in the development of strategies for the prophylaxis and treatment of IBD using gm-probiotics that exhibit immune regulation effects (gm-immunobiotics). In particular, we discuss the type of strains used as delivery agents.
Collapse
Affiliation(s)
- Suguru Shigemori
- Department of Bioscience and Food Production Science, Interdisciplinary Graduate School of Science and Technology, Shinshu University, Nagano, Japan; Japan Society for the Promotion of Science, Tokyo, Japan
| | - Takeshi Shimosato
- Department of Interdisciplinary Genome Sciences and Cell Metabolism, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan; Supramolecular Complexes Unit, Research Center for Fungal and Microbial Dynamism, Shinshu University, Nagano, Japan
| |
Collapse
|
9
|
Del Carmen S, de Moreno de LeBlanc A, Levit R, Azevedo V, Langella P, Bermúdez-Humarán LG, LeBlanc JG. Anti-cancer effect of lactic acid bacteria expressing antioxidant enzymes or IL-10 in a colorectal cancer mouse model. Int Immunopharmacol 2016; 42:122-129. [PMID: 27912148 DOI: 10.1016/j.intimp.2016.11.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/31/2016] [Accepted: 11/18/2016] [Indexed: 02/07/2023]
Abstract
The association between inflammatory bowel diseases and colorectal cancer is well documented. The genetic modification of lactic acid bacteria as a tool to increase the anti-inflammatory potential of these microorganisms has also been demonstrated. Thus the aim of the present work was to evaluate the anti-cancer potential of different genetically modified lactic acid bacteria (GM-LAB) producing antioxidant enzymes (catalase or superoxide dismutase) or the anti-inflammatory cytokine IL-10 (protein or DNA delivery) using a chemical induced colon cancer murine model. Dimethilhydrazine was used to induce colorectal cancer in mice. The animals received GM-LAB producing anti-oxidant enzymes, IL-10 or a mixture of different GM-LAB. Intestinal damage, enzyme activities and cytokines were evaluated and compared to the results obtained from mice that received the wild type strains from which derived the GM-LAB. All the GM-LAB assayed showed beneficial effects against colon cancer even though they exerted different mechanisms of action. The importance to select LAB with innate beneficial properties as the progenitor strain was demonstrated with the GM-LAB producing anti-oxidant enzymes. In addition, the best effects for the mixtures GM-LAB that combine different anti-inflammatory mechanism. Results indicate that mixtures of selected LAB and GM-LAB could be used as an adjunct treatment to decrease the inflammatory harmful environment associated to colorectal cancer, especially for patients with chronic intestinal inflammation who have an increased risk to develop colorectal cancer.
Collapse
Affiliation(s)
- Silvina Del Carmen
- Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán T4000ILC, Argentina
| | | | - Romina Levit
- Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán T4000ILC, Argentina
| | - Vasco Azevedo
- Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG 31270-901, Brazil
| | - Philippe Langella
- INRA, Commensal and Probiotics-Host Interactions Laboratory, UMR 1319 Micalis, F-78350 Jouy-en-Josas, France; Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Luis G Bermúdez-Humarán
- INRA, Commensal and Probiotics-Host Interactions Laboratory, UMR 1319 Micalis, F-78350 Jouy-en-Josas, France; Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Jean Guy LeBlanc
- Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán T4000ILC, Argentina.
| |
Collapse
|