1
|
Davoodbasha M, Mani A, Arunachalam K, Jagadeesan A, Kamli MR, Kim JW, Thajuddin N. Isolation and Characterization of Probiotic Bacteria from Traditional Foods. Appl Biochem Biotechnol 2025; 197:2197-2215. [PMID: 39714558 DOI: 10.1007/s12010-024-05125-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2024] [Indexed: 12/24/2024]
Abstract
A probiotic is a live bacterium that, when given in sufficient proportions, helps to improve the host's gut health. Kimchi and pearl millet, two traditional foods, were used to isolate probiotic bacterial strains. This study's primary goals were to isolate, identify and analyse the microorganisms for potential probiotic traits, tolerance to gastrointestinal environments, and antimicrobial activity, and produce probiotic capsule. The present investigation resulted with identification of two probiotic strains (KAC1 and PAC1) from conventional foods, such as kimchi and pearl millet porridge. The isolated probiotics were identified as Enterobacteriaceae family by 16S rRNA sequencing and are deposited in GenBank (NCBI), accession numbers OQ629827 (KAC1) and OQ629828 (PAC1), respectively. These strains exhibited the characteristics of possible probiotic traits, such as the ability to tolerate simulated gastric juice, inhibits the growth of pathogenic bacteria, auto-aggregation, co-aggregation, and hydrophobicity. Furthermore, spectroscopic analysis divulges some critical findings which corroborate the results obtained. Finally, capsules containing freeze-dried probiotics was successfully produced.
Collapse
Affiliation(s)
- MubarakAli Davoodbasha
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, India.
- Crescent Global Outreach Mission (CGOM): Research & Development, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, India.
| | - Abinaya Mani
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, India
| | - Kannappan Arunachalam
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Arunkumar Jagadeesan
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25701, USA
| | - Majid Rasool Kamli
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
- Center of Excellence in Bionanoscience Research, King AbdulAziz University, Jeddah, 21589, Saudi Arabia
| | - Jung-Wan Kim
- Division of Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Nooruddin Thajuddin
- Crescent Global Outreach Mission (CGOM): Research & Development, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, India
| |
Collapse
|
2
|
Casella V, Della Sala G, Scarpato S, Buonocore C, Ragozzino C, Tedesco P, Coppola D, Vitale GA, de Pascale D, Palma Esposito F. Novel Insights into the Nobilamide Family from a Deep-Sea Bacillus: Chemical Diversity, Biosynthesis and Antimicrobial Activity Towards Multidrug-Resistant Bacteria. Mar Drugs 2025; 23:41. [PMID: 39852543 PMCID: PMC11766569 DOI: 10.3390/md23010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/30/2025] Open
Abstract
With rising concerns about antimicrobial resistance, the identification of new lead compounds to target multidrug-resistant bacteria is essential. This study employed a fast miniaturized screening to simultaneously cultivate and evaluate about 300 marine strains for biosurfactant and antibacterial activities, leading to the selection of the deep-sea Bacillus halotolerans BCP32. The integration of tandem mass spectrometry molecular networking and bioassay-guided fractionation unveiled this strain as a prolific factory of surfactins and nobilamides. Particularly, 84 nobilamide congeners were identified in the bacterial exometabolome, 71 of them being novel metabolites. Among these, four major compounds were isolated, including the known TL-119 and nobilamide I, as well as the two new nobilamides T1 and S1. TL-119 and nobilamide S1 exhibited potent antibiotic activity against various multidrug-resistant Staphylococcus strains and other Gram-positive pathogens, including the foodborne pathogen Listeria monocytogenes. Finally, in silico analysis of Bacillus halotolerans BCP32 genome revealed nobilamide biosynthesis to be directed by a previously unknown heptamodular nonribosomal peptide synthetase.
Collapse
Affiliation(s)
- Vincenza Casella
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via A.F. Acton, 55, 80133 Naples, Italy; (V.C.); (S.S.); (C.B.); (C.R.); (P.T.); (D.C.); (G.A.V.); (D.d.P.); (F.P.E.)
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres, 31, 98166 Messina, Italy
| | - Gerardo Della Sala
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via A.F. Acton, 55, 80133 Naples, Italy; (V.C.); (S.S.); (C.B.); (C.R.); (P.T.); (D.C.); (G.A.V.); (D.d.P.); (F.P.E.)
| | - Silvia Scarpato
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via A.F. Acton, 55, 80133 Naples, Italy; (V.C.); (S.S.); (C.B.); (C.R.); (P.T.); (D.C.); (G.A.V.); (D.d.P.); (F.P.E.)
| | - Carmine Buonocore
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via A.F. Acton, 55, 80133 Naples, Italy; (V.C.); (S.S.); (C.B.); (C.R.); (P.T.); (D.C.); (G.A.V.); (D.d.P.); (F.P.E.)
| | - Costanza Ragozzino
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via A.F. Acton, 55, 80133 Naples, Italy; (V.C.); (S.S.); (C.B.); (C.R.); (P.T.); (D.C.); (G.A.V.); (D.d.P.); (F.P.E.)
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres, 31, 98166 Messina, Italy
| | - Pietro Tedesco
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via A.F. Acton, 55, 80133 Naples, Italy; (V.C.); (S.S.); (C.B.); (C.R.); (P.T.); (D.C.); (G.A.V.); (D.d.P.); (F.P.E.)
| | - Daniela Coppola
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via A.F. Acton, 55, 80133 Naples, Italy; (V.C.); (S.S.); (C.B.); (C.R.); (P.T.); (D.C.); (G.A.V.); (D.d.P.); (F.P.E.)
| | - Giovanni Andrea Vitale
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via A.F. Acton, 55, 80133 Naples, Italy; (V.C.); (S.S.); (C.B.); (C.R.); (P.T.); (D.C.); (G.A.V.); (D.d.P.); (F.P.E.)
| | - Donatella de Pascale
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via A.F. Acton, 55, 80133 Naples, Italy; (V.C.); (S.S.); (C.B.); (C.R.); (P.T.); (D.C.); (G.A.V.); (D.d.P.); (F.P.E.)
| | - Fortunato Palma Esposito
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via A.F. Acton, 55, 80133 Naples, Italy; (V.C.); (S.S.); (C.B.); (C.R.); (P.T.); (D.C.); (G.A.V.); (D.d.P.); (F.P.E.)
| |
Collapse
|
3
|
Azeem K, Fatima S, Ali A, Ubaid A, Husain FM, Abid M. Biochemistry of Bacterial Biofilm: Insights into Antibiotic Resistance Mechanisms and Therapeutic Intervention. Life (Basel) 2025; 15:49. [PMID: 39859989 PMCID: PMC11767195 DOI: 10.3390/life15010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/30/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Biofilms, composed of structured communities of bacteria embedded in a self-produced extracellular matrix, pose a significant challenge due to their heightened resistance to antibiotics and immune responses. This review highlights the mechanisms underpinning antibiotic resistance within bacterial biofilms, elucidating the adaptive strategies employed by microorganisms to withstand conventional antimicrobial agents. This encompasses the role of the extracellular matrix, altered gene expression, and the formation of persister cells, contributing to the recalcitrance of biofilms to eradication. A comprehensive understanding of these resistance mechanisms provides a for exploring innovative therapeutic interventions. This study explores promising avenues for future research, emphasizing the necessity of uncovering the specific genetic and phenotypic adaptations occurring within biofilms. The identification of vulnerabilities in biofilm architecture and the elucidation of key biofilm-specific targets emerge as crucial focal points for the development of targeted therapeutic strategies. In addressing the limitations of traditional antibiotics, this review discusses innovative therapeutic approaches. Nanomaterials with inherent antimicrobial properties, quorum-sensing inhibitors disrupting bacterial communication, and bacteriophages as biofilm-specific viral agents are highlighted as potential alternatives. The exploration of combination therapies, involving antimicrobial agents, biofilm-disrupting enzymes, and immunomodulators, is emphasized to enhance the efficacy of existing treatments and overcome biofilm resilience.
Collapse
Affiliation(s)
- Kashish Azeem
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (K.A.); (S.F.); (A.A.); (A.U.)
| | - Sadaf Fatima
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (K.A.); (S.F.); (A.A.); (A.U.)
| | - Asghar Ali
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (K.A.); (S.F.); (A.A.); (A.U.)
- Clinical Biochemistry Laboratory, Department of Biochemistry, School of Chemical and Life Science, Jamia Hamdard, New Delhi 110062, India
| | - Ayesha Ubaid
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (K.A.); (S.F.); (A.A.); (A.U.)
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Abid
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (K.A.); (S.F.); (A.A.); (A.U.)
| |
Collapse
|
4
|
Biswas R, Jangra B, Ashok G, Ravichandiran V, Mohan U. Current Strategies for Combating Biofilm-Forming Pathogens in Clinical Healthcare-Associated Infections. Indian J Microbiol 2024; 64:781-796. [PMID: 39282194 PMCID: PMC11399387 DOI: 10.1007/s12088-024-01221-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 02/07/2024] [Indexed: 09/18/2024] Open
Abstract
The biofilm formation by various pathogens causes chronic infections and poses severe threats to industry, healthcare, and society. They can form biofilm on surfaces of medical implants, heart valves, pacemakers, contact lenses, vascular grafts, urinary catheters, dialysis catheters, etc. These biofilms play a central role in bacterial persistence and antibiotic tolerance. Biofilm formation occurs in a series of steps, and any interference in these steps can prevent its formation. Therefore, the hunt to explore and develop effective anti-biofilm strategies became necessary to decrease the rate of biofilm-related infections. In this review, we highlighted and discussed the current therapeutic approaches to eradicate biofilm formation and combat drug resistance by anti-biofilm drugs, phytocompounds, antimicrobial peptides (AMPs), antimicrobial lipids (AMLs), matrix-degrading enzymes, nanoparticles, phagebiotics, surface coatings, photodynamic therapy (PDT), riboswitches, vaccines, and antibodies. The clinical validation of these findings will provide novel preventive and therapeutic strategies for biofilm-associated infections to the medical world.
Collapse
Affiliation(s)
- Rashmita Biswas
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal India
| | - Bhawana Jangra
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab India
| | - Ganapathy Ashok
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal India
| | - Velayutham Ravichandiran
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal India
| | - Utpal Mohan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal India
| |
Collapse
|
5
|
Kozień Ł, Policht A, Heczko P, Arent Z, Bracha U, Pardyak L, Pietsch-Fulbiszewska A, Gallienne E, Piwowar P, Okoń K, Tomusiak-Plebanek A, Strus M. PDIA iminosugar influence on subcutaneous Staphylococcus aureus and Pseudomonas aeruginosa infections in mice. Front Cell Infect Microbiol 2024; 14:1395577. [PMID: 39145303 PMCID: PMC11322076 DOI: 10.3389/fcimb.2024.1395577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/11/2024] [Indexed: 08/16/2024] Open
Abstract
Introduction Biofilm-associated infections persist as a therapeutic challenge in contemporary medicine. The efficacy of antibiotic therapies is ineffective in numerous instances, necessitating a heightened focus on exploring novel anti-biofilm medical strategies. Among these, iminosugars emerge as a distinctive class of compounds displaying promising biofilm inhibition properties. Methods This study employs an in vivo wound infection mouse model to evaluate the effectiveness of PDIA in treating biofilm-associated skin wound infections caused by Staphylococcus aureus and Pseudomonas aeruginosa. Dermic wounds in mice were infected with biofilm-forming strains, specifically S. aureus 48 and P. aeruginosa 5, which were isolated from patients with diabetic foot, and are well-known for their strong biofilm formation. The subsequent analysis included clinical, microbiological, and histopathological parameters. Furthermore, an exploration into the susceptibility of the infectious strains to hydrogen peroxide was conducted, acknowledging its potential presence during induced inflammation in mouse dermal wounds within an in vivo model. Results The findings revealed the efficacy of PDIA iminosugar against the S. aureus strain, evidenced by a reduction in bacterial numbers within the wound and the inflammatory focus. Discussion This study suggests that PDIA iminosugar emerges as an active and potentially effective antibiofilm agent, positioning it as a viable treatment option for staphylococcal infections.
Collapse
Affiliation(s)
- Łucja Kozień
- Department of Bacteriology, Ecology of Microbes and Parasitology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Aleksandra Policht
- Department of Bacteriology, Ecology of Microbes and Parasitology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Piotr Heczko
- Department of Bacteriology, Ecology of Microbes and Parasitology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Zbigniew Arent
- Center of Experimental and Innovative Medicine, University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Krakow, Poland
| | - Urszula Bracha
- Center of Experimental and Innovative Medicine, University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Krakow, Poland
| | - Laura Pardyak
- Center of Experimental and Innovative Medicine, University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Krakow, Poland
| | - Agnieszka Pietsch-Fulbiszewska
- Center of Experimental and Innovative Medicine, University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Krakow, Poland
| | - Estelle Gallienne
- Institut de Chimie Organique et Analytique (ICOA), UMR 7311, Université d'Orléans & CNRS, Orléans, France
| | - Piotr Piwowar
- Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Science and Technology, Kraków, Poland
| | - Krzysztof Okoń
- Department of Bacteriology, Ecology of Microbes and Parasitology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Anna Tomusiak-Plebanek
- Department of Bacteriology, Ecology of Microbes and Parasitology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Magdalena Strus
- Department of Bacteriology, Ecology of Microbes and Parasitology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
6
|
Bouhrour N, Nibbering PH, Bendali F. Medical Device-Associated Biofilm Infections and Multidrug-Resistant Pathogens. Pathogens 2024; 13:393. [PMID: 38787246 PMCID: PMC11124157 DOI: 10.3390/pathogens13050393] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024] Open
Abstract
Medical devices such as venous catheters (VCs) and urinary catheters (UCs) are widely used in the hospital setting. However, the implantation of these devices is often accompanied by complications. About 60 to 70% of nosocomial infections (NIs) are linked to biofilms. The main complication is the ability of microorganisms to adhere to surfaces and form biofilms which protect them and help them to persist in the host. Indeed, by crossing the skin barrier, the insertion of VC inevitably allows skin flora or accidental environmental contaminants to access the underlying tissues and cause fatal complications like bloodstream infections (BSIs). In fact, 80,000 central venous catheters-BSIs (CVC-BSIs)-mainly occur in intensive care units (ICUs) with a death rate of 12 to 25%. Similarly, catheter-associated urinary tract infections (CA-UTIs) are the most commonlyhospital-acquired infections (HAIs) worldwide.These infections represent up to 40% of NIs.In this review, we present a summary of biofilm formation steps. We provide an overview of two main and important infections in clinical settings linked to medical devices, namely the catheter-asociated bloodstream infections (CA-BSIs) and catheter-associated urinary tract infections (CA-UTIs), and highlight also the most multidrug resistant bacteria implicated in these infections. Furthermore, we draw attention toseveral useful prevention strategies, and advanced antimicrobial and antifouling approaches developed to reduce bacterial colonization on catheter surfaces and the incidence of the catheter-related infections.
Collapse
Affiliation(s)
- Nesrine Bouhrour
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria;
| | - Peter H. Nibbering
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Farida Bendali
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria;
| |
Collapse
|
7
|
Preljević K, Pašić I, Vlaović M, Matić IZ, Krivokapić S, Petrović N, Stanojković T, Živković V, Perović S. Comparative analysis of chemical profiles, antioxidant, antibacterial, and anticancer effects of essential oils of two Thymus species from Montenegro. Fitoterapia 2024; 174:105871. [PMID: 38428618 DOI: 10.1016/j.fitote.2024.105871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
The essential oils of Thymus vulgaris (TVEO) and Thymus serpyllum (TSEO) show different biological activities. The aim of the study was to evaluate the biological activities of TVEO and TSEO from Montenegro. The main components of TVEO were p-cymene (29.52%), thymol (22.8%) and linalool (4.73%) while the main components of TSEO were p-cymene (19.04%), geraniol (11,09%), linalool (9.16%), geranyl acetate (6.49%) and borneol (5.24%). Antioxidant activity determined via DPPH for TVEO was 4.49 and FRAP 1130.27, while for TSEO it was estimated that DPPH was 4.88 μL/mL and FRAP was 701.25 μmol FRAP/L. Both essential oils were active against all tested bacteria, with the highest level of sensitivity of E. coli with MIC of 1.5625 μL/mL. Essential oils showed strong cytotoxic effects on human cancer cell lines, with IC50 values ranging from 0.20 to 0.24 μL/mL for TVEO and from 0.32 to 0.49 μL/mL for TSEO. TVEO caused apoptosis in cervical adenocarcinoma HeLa cells through activation of caspase-3 and caspase-8, while TSEO caused apoptosis through caspase-3. EOs decreased levels of oxidative stress in normal MRC-5 cells. HeLa cells treated with TVEO had reduced MMP2 expression levels, while cells treated with TSEO had lowered MMP2 and MMP9 levels. The treatment of HeLa cells with TVEO increased the levels of miR-16 and miR-34a, indicating potential tumor-suppressive properties. Our findings suggest that Thymus essential oils may be considered as good candidates for further investigation as cancer-chemopreventive and cancer-therapeutic agents.
Collapse
Affiliation(s)
- Kenan Preljević
- University of Montenegro, Faculty of Natural Sciences and Mathematics, Department of Biology, Podgorica 81000, Montenegro
| | - Ivana Pašić
- Institute for Oncology and Radiology of Serbia, Belgrade 11000, Serbia
| | - Milorad Vlaović
- University of Montenegro, Faculty of Natural Sciences and Mathematics, Department of Biology, Podgorica 81000, Montenegro
| | - Ivana Z Matić
- Institute for Oncology and Radiology of Serbia, Belgrade 11000, Serbia.
| | - Slađana Krivokapić
- University of Montenegro, Faculty of Natural Sciences and Mathematics, Department of Biology, Podgorica 81000, Montenegro
| | - Nina Petrović
- Institute for Oncology and Radiology of Serbia, Belgrade 11000, Serbia; "VINČA" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| | | | - Vladimir Živković
- Center for Ecotoxicological Researches of Montenegro, Podgorica 81000, Montenegro
| | - Svetlana Perović
- University of Montenegro, Faculty of Natural Sciences and Mathematics, Department of Biology, Podgorica 81000, Montenegro
| |
Collapse
|
8
|
Kalia VC, Patel SKS, Lee JK. Bacterial biofilm inhibitors: An overview. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115389. [PMID: 37634478 DOI: 10.1016/j.ecoenv.2023.115389] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/05/2023] [Accepted: 08/17/2023] [Indexed: 08/29/2023]
Abstract
Bacteria that cause infectious diseases adopt biofilms as one of their most prevalent lifestyles. Biofilms enable bacteria to tolerate environmental stress and evade antibacterial agents. This bacterial defense mechanism has rendered the use of antibiotics ineffective for the treatment of infectious diseases. However, many highly drug-resistant microbes have rapidly emerged owing to such treatments. Different signaling mechanisms regulate bacterial biofilm formation, including cyclic dinucleotide (c-di-GMP), small non-coding RNAs, and quorum sensing (QS). A cell density-dependent phenomenon, QS is associated with c-di-GMP (a global messenger), which regulates gene expression related to adhesion, extracellular matrix production, the transition from the planktonic to biofilm stage, stability, pathogenicity, virulence, and acquisition of nutrients. The article aims to provide information on inhibiting biofilm formation and disintegrating mature/preformed biofilms. This treatment enables antimicrobials to target the free-living/exposed bacterial cells at lower concentrations than those needed to treat bacteria within the biofilm. Therefore, a complementary action of antibiofilm and antimicrobial agents can be a robust strategic approach to dealing with infectious diseases. Taken together, these molecules have broad implications for human health.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sanjay K S Patel
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
9
|
Hamzah H, Nuryastuti T, Rahmah W, Chabib L, Syamsul ES, Lestari D, Jabbar A, Tunjung Pratiwi SU. Molecular Docking Study of the C-10 Massoia Lactone Compound as an Antimicrobial and Antibiofilm Agent against Candida tropicalis. ScientificWorldJournal 2023; 2023:6697124. [PMID: 37766863 PMCID: PMC10522437 DOI: 10.1155/2023/6697124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/14/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Antimicrobial resistance is now considered a global health problem because it reduces the effectiveness of antimicrobial drugs. According to the World Health Organization (WHO), the highest mortality rate is associated with infections caused by multidrug-resistant microorganisms, with approximately 700,000 deaths worldwide each year. The aim of this study was to determine the potential of C-10 massoia lactone to inhibit the growth of fungi and C. tropicalis biofilm, and molecular docking studies were performed to determine the nature of the inhibition. The study was conducted using the microdilution method for antifungal and antibiofilm testing and designed with a molecular docking approach. Furthermore, an analysis using the scanning electron microscope (SEM) was performed to evaluate the mechanism of effect. The results obtained showed that C-10 massoia lactone can inhibit the growth of fungi by 84.21% w/v. Meanwhile, the growth of C. tropicalis biofilm in the intermediate phase was 80.23% w/v and in the mature phase was 74.23% w/v. SEM results showed that C-10 massoia lactone damaged the EPS matrix of C. tropicalis so that hyphal formation was hindered due to damage to fungal cells, resulting in a decrease in attachment, density, and lysis of C. tropicalis fungal cells. Based on molecular docking tests, C-10 massoia lactone was able to inhibit biofilm formation without affecting microbial growth, while docking C-10 massoia lactone showed a significant binding and has the potential as an antifungal agent. In conclusion, the C-10 massoia lactone compound has the potential as an antibiofilm against C. tropicalis, so it can become a new antibiofilm agent.
Collapse
Affiliation(s)
- Hasyrul Hamzah
- Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Faculty of Pharmacy, Universitas Muhammadiyah Kalimantan Timur, Samarinda, Kalimantan Timur 75124, Indonesia
- Indonesian Biofilm Research Collaboration Centre (IBRCC), Farmako Street, Sekip Utara, Yogyakarta 55281, Indonesia
| | - Titik Nuryastuti
- Indonesian Biofilm Research Collaboration Centre (IBRCC), Farmako Street, Sekip Utara, Yogyakarta 55281, Indonesia
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Farmako Street, North Sekip, Yogyakarta 55281, Indonesia
| | - Widya Rahmah
- Indonesian Biofilm Research Collaboration Centre (IBRCC), Farmako Street, Sekip Utara, Yogyakarta 55281, Indonesia
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Farmako Street, North Sekip, Yogyakarta 55281, Indonesia
| | - Lutfi Chabib
- Department of Pharmacy, Islamic University of Indonesia, Yogyakarta, Indonesia
| | - Eka Siswanto Syamsul
- Department of Pharmacy, Sekolah Tinggi Ilmu Kesehatan Samarinda, Samarinda, East Borneo, Indonesia
| | - Dwi Lestari
- Faculty of Pharmacy, Universitas Muhammadiyah Kalimantan Timur, Samarinda, Kalimantan Timur 75124, Indonesia
| | - Asriullah Jabbar
- Indonesian Biofilm Research Collaboration Centre (IBRCC), Farmako Street, Sekip Utara, Yogyakarta 55281, Indonesia
- Department of Pharmacy, Faculty of Pharmacy, Haluoleo University, Kendari 93232, Indonesia
| | - Sylvia Utami Tunjung Pratiwi
- Indonesian Biofilm Research Collaboration Centre (IBRCC), Farmako Street, Sekip Utara, Yogyakarta 55281, Indonesia
- Faculty of Pharmacy, Universitas Gadjah Mada, North Sekip, Yogyakarta 55281, Indonesia
| |
Collapse
|
10
|
Kannappan A, Jothi R, Tian X, Pandian SK, Gowrishankar S, Chunlei S. Antibacterial activity of 2-hydroxy-4-methoxybenzaldehyde and its possible mechanism against Staphylococcus aureus. J Appl Microbiol 2023; 134:lxad144. [PMID: 37422440 DOI: 10.1093/jambio/lxad144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 07/10/2023]
Abstract
AIM Staphylococcus aureus causes several complicated infections. Despite decades of research on developing new antimicrobials, methicillin-resistant S. aureus (MRSA) remains a global health problem. Hence, there is a dire need to identify potent natural antibacterial compounds as an alternative to antimicrobials. In this light, the present work divulges the antibacterial efficacy and the action mechanism of 2-hydroxy-4-methoxybenzaldehyde (HMB) isolated from Hemidesmus indicus against S. aureus. METHODS AND RESULTS Antimicrobial activity of HMB was assessed. HMB exhibited 1024 µg ml-1 as the minimum inhibitory concentration (MIC) and 2 × MIC as the minimum bactericidal concentration against S. aureus. The results were validated by spot assay, time kill, and growth curve analysis. In addition, HMB treatment increased the release of intracellular proteins and nucleic acid contents from MRSA. Additional experiments assessing the structural morphology of bacterial cells using SEM analysis, β-galactosidase enzyme activity, and the fluorescence intensities of propidium iodide and rhodamine123 dye divulged that the cell membrane as one of the targets of HMB to hinder S. aureus growth. Moreover, the mature biofilm eradication assay revealed that HMB dislodged nearly 80% of the preformed biofilms of MRSA at the tested concentrations. Further, HMB treatment was found to sensitize MRSA cells upon combining tetracycline treatment. CONCLUSIONS The present study suggests that HMB is a promising compound with antibacterial and antibiofilm activities and could act as a lead structure for developing new antibacterial drugs against MRSA.
Collapse
Affiliation(s)
- Arunachalam Kannappan
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ravi Jothi
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu 630 003, India
| | - Xiaorong Tian
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | - Shanmugaraj Gowrishankar
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu 630 003, India
| | - Shi Chunlei
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
11
|
MubarakAli D, Arunachalam K, Lakshmanan M, Badar B, Kim JW, Lee SY. Unveiling the Anti-Biofilm Property of Hydroxyapatite on Pseudomonas aeruginosa: Synthesis and Strategy. Pharmaceutics 2023; 15:pharmaceutics15020463. [PMID: 36839785 PMCID: PMC9964847 DOI: 10.3390/pharmaceutics15020463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/18/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Biofilm-related nosocomial infections may cause a wide range of life-threatening infections. In this regard, Pseudomonas aeruginosa biofilm is becoming a serious health burden due to its capability to develop resistance to natural and synthetic drugs. The utilization of nanoparticles that inhibit biofilm formation is one of the major strategies to control infections caused by biofilm-forming pathogens. Hydroxyapatite (HA) is a synthetic ceramic material having properties similar to natural bones. Herein, a co-precipitation method followed by microwave treatment was used to synthesize HA nanoparticles (HANPs). The resulting HANPs were characterized using X-ray diffraction and transmission electron microscopy. Then, their antibiofilm properties against P. aeruginosa ATCC 10145 were examined in vitro. The needle-shaped HANPs were 30 and 90 nm long in width and length, respectively. The synthesized HANPs inhibited the biofilm formation of P. aeruginosa ATCC 10145 in a concentration-dependent manner, which was validated by light and confocal laser scanning microscopy. Hence, this study demonstrated that HANPs could be used to control the biofilm-related infections of P. aeruginosa.
Collapse
Affiliation(s)
- Davoodbasha MubarakAli
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 620048, India
- Centre for Surface Coating and Technology, Department of Material Engineering, Korea Aerospace University, Goyang 10540, Republic of Korea
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Kannappan Arunachalam
- State Key Laboratory of Microbial Metabolism, Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Murugan Lakshmanan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 620048, India
| | - Bazigha Badar
- Department of Environmental Science, Amar Singh College, Cluster University Srinagar, Srinagar 190008, India
| | - Jung-Wan Kim
- Centre for Surface Coating and Technology, Department of Material Engineering, Korea Aerospace University, Goyang 10540, Republic of Korea
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Correspondence: (J.-W.K.); (S.-Y.L.)
| | - Sang-Yul Lee
- Centre for Surface Coating and Technology, Department of Material Engineering, Korea Aerospace University, Goyang 10540, Republic of Korea
- Correspondence: (J.-W.K.); (S.-Y.L.)
| |
Collapse
|
12
|
Chabib L, Hamzah H, Rahmah W, Sammulia SF, Setyowati E, Nurfitriani A. Tracking of the Antibiofilm Activities of Lakum Leaf Extract ( Causonis trifolia Linn.) Against Staphylococcus aureus. Pak J Biol Sci 2023; 26:91-100. [PMID: 37265040 DOI: 10.3923/pjbs.2023.91.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
<b>Background and Objective:</b> Biofilms as a bacterial defense are relatively more difficult to eradicate with antibiotics, thus pathogenic bacteria in their biofilm form can cause serious problems for human health. Lakum <i>(Causonis trifolia</i> L.) is an herbaceous plant with many biological activities, one of which is an antimicrobial compound containing flavonoids, squalene, nimbidin, saponins, anthocyanins, tannins, myricetin, others. This study aimed to determine the antibiofilm activity of Lakum leaf extract against<i> Staphylococcus aureus </i>bacteria and the active compounds that play a role in inhibiting monomicrobial biofilms. <b>Materials and Methods:</b> This research method was carried out with an <i>in vitro</i> experimental study design using observations of phytochemical screening test results and the effectiveness of Lakum leaf antibiofilm on<i> Staphylococcus aureus</i> through microplate reader readings that measure optical density values. <b>Results:</b> This study showed that Lakum leaves contain alkaloids, flavonoids, phenolics, polyphenols, tannins and saponins. In addition, Lakum leaves gave biofilm inhibitory activity in the middle and maturation phase with the highest concentration in 1% extract of 76.95±0.0007 and 72.85± 0.0003%, respectively. Meanwhile, the lowest concentration was 0.125% extract of 65.65±0.0001% in the middle phase and 59.71±0.0003% in the maturation phase. <b>Conclusion:</b> That Lakum leaves have biofilm inhibitory activity on <i>Staphylococcus aureus</i> with flavonoid compounds, tannins and polyphenols that work as active substances in inhibiting the biofilm formation.
Collapse
|
13
|
Choudhary M, Shrivastava R, Vashistt J. Eugenol and geraniol impede Csu-pilus assembly and evades multidrug-resistant Acinetobacter baumannii biofilms: In-vitro and in-silico evidence. Biochem Biophys Res Commun 2022; 636:10-17. [DOI: 10.1016/j.bbrc.2022.10.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
|
14
|
Zhang L, Yang W, Chu Y, Wen B, Cheng Y, Mahmood T, Bao M, Ge F, Li L, Yi J, Du C, Lu C, Tan Y. The Inhibition Effect of Linezolid With Reyanning Mixture on MRSA and its Biofilm is More Significant than That of Linezolid Alone. Front Pharmacol 2022; 12:766309. [PMID: 35046807 PMCID: PMC8762264 DOI: 10.3389/fphar.2021.766309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 12/01/2021] [Indexed: 12/02/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a superbacterium, and when it forms biofilms, it is difficult to treat even with the first-line of antibiotic linezolid (LNZ). Reyanning mixture (RYN), a compound-based Chinese medicine formula, has been found to have inhibitory effects on biofilms. This study aims to explore the synergistic inhibitory effect and corresponding mechanisms of their (LNZ&RYN) combination on the planktonic as well as biofilm cells of MRSA. Broth microdilution and chessboard methods were employed for the determination of minimum inhibitory concentrations (MICs) and synergistic concentration of LNZ&RYN, respectively. The effect of the combined medication on biofilm and mature biofilm of MRSA were observed by biofilm morphology and permeability experiments, respectively. To unveil the molecular mechanism of action of the synergistic combination of LNZ and RYN, RT-PCR based biofilm-related gene expression analysis and ultra-high pressure liquid chromatography-time-of-flight mass spectrometry based endogenous metabonomic analysis were deployed. The results indicated that 1/16RYN as the best combined dose reduced LNZ (4 μg/ml) to 2 μg/ml. The combined treatment inhibited living MRSA before and after biofilm formation, removed the residual structure of dead bacteria in MRSA biofilms and affected the shape and size of bacteria, resulting in the improvement of biofilm permeability. The mechanism was that biofilm-related genes such as agrC, atlA, and sarA, as well as amino acid uptake associated with the metabolism of 3-dehydrocarnitine, kynurenine, L-leucine, L-lysine and sebacic acid were inhibited. This study provides evidence for the treatment of MRSA and its biofilms with LNZ combined with RYN.
Collapse
Affiliation(s)
- Lulu Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China
| | - Weifeng Yang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yajun Chu
- Tsing Hua De Ren Xi an Happiness Pharmaceutical Co., Ltd., Xi'an, China
| | - Bo Wen
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yungchi Cheng
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
| | - Tariq Mahmood
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Mei Bao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China
| | - Feng Ge
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianfeng Yi
- Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China
| | - Chengqiang Du
- Tsing Hua De Ren Xi an Happiness Pharmaceutical Co., Ltd., Xi'an, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yong Tan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
15
|
The Untargeted Phytochemical Profile of Three Meliaceae Species Related to In Vitro Cytotoxicity and Anti-Virulence Activity against MRSA Isolates. Molecules 2022; 27:molecules27020435. [PMID: 35056761 PMCID: PMC8777635 DOI: 10.3390/molecules27020435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/03/2022] [Accepted: 01/08/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND A high mortality rate is associated with about 80% of all infections worldwide, mainly due to antimicrobial resistance. Various antimicrobial and cytotoxic activities have been proposed for Meliaceae species. This study aimed to evaluate the in vitro anti-virulence and cytotoxic effect of the leaf extracts of Aphanamixis polystachya, Toona ciliata and Melia azedarach against five MRSA strains and on three cancer cell lines, followed by biological correlation to their encompassed phytoconstituents. MATERIAL AND METHODS We explored three plants of this family against a panel of Methicillin-resistant Staphylococcus aureus (MRSA) strains and several cancer cell lines to select the most promising candidates for further in vivo and preclinical studies. The phytochemical composition was evaluated by UHPLC-QTOF-MS untargeted profiling. Cell viability was assessed by SRB assay. Minimum Inhibitory Concentration was carried out by using the agar micro-dilution technique. Inhibition of biofilm formation and preformed biofilm disruption were assessed spectrophotomertically, according to the Sultan and Nabil method (2019). RESULTS A total of 279 compounds were putatively annotated to include different phytochemical classes, such as flavonoids (108), limonoids/terpenoids (59), phenolic acids (49) and lower-molecular-weight phenolics (39). A. polystachya extract showed the most potent cytotoxic activity against Huh-7, DU-145 and MCF-7 cell lines (IC50 = 3, 3.5 and 13.4 µg mL-1, respectively), followed by M. azedarach, with no effect recorded for T. ciliata extract. Furthermore, both A. polystachya and M. azedarach extracts showed promising anti-virulence and antimicrobial activities, with A. polystachya being particularly active against MRSA. These two latter extracts could inhibit and disrupt the biofilm, formed by MRSA, at sub-lethal concentrations. Interestingly, the extracts inhibited hemolysin-α enzyme, thus protecting rabbit RBCs from lysis. A. polystachya extract reduced the pigmentation and catalase enzyme activity of tested pigmented strains better than M. azedarach at both tested sub-MICs. Consequently, susceptibility of the extract-treated cells to oxidant killing by 200 mM H2O2 increased, leading to faster killing of the cells within 120 min as compared to the extract-non-treated cells, likely due to the lower antioxidant-scavenging activity of cells exhibiting less staphyloxanthin production. CONCLUSION These findings suggested that both A. polystachya and M. azedarach natural extracts are rich in bioactive compounds, mainly limonoids, phenolics and oxygenated triterpenoids, which can combat MRSA biofilm infections and could be considered as promising sources of therapeutic cytotoxic, antibiofilm and anti-virulence agents.
Collapse
|
16
|
Srinivasan R, Kannappan A, Shi C, Lin X. Marine Bacterial Secondary Metabolites: A Treasure House for Structurally Unique and Effective Antimicrobial Compounds. Mar Drugs 2021; 19:md19100530. [PMID: 34677431 PMCID: PMC8539464 DOI: 10.3390/md19100530] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023] Open
Abstract
The prevalence of antimicrobial resistance reduces the effectiveness of antimicrobial drugs in preventing and treating infectious diseases caused by pathogenic organisms, such as bacteria, fungi, and viruses. Because of the burgeoning growth of microbes with antimicrobial-resistant traits, there is a dire need to identify and develop novel and effective antimicrobial agents to treat infections from antimicrobial-resistant strains. The marine environment is rich in ecological biodiversity and can be regarded as an untapped resource for prospecting novel bioactive compounds. Therefore, exploring the marine environment for antimicrobial agents plays a significant role in drug development and biomedical research. Several earlier scientific investigations have proven that bacterial diversity in the marine environment represents an emerging source of structurally unique and novel antimicrobial agents. There are several reports on marine bacterial secondary metabolites, and many are pharmacologically significant and have enormous promise for developing effective antimicrobial drugs to combat microbial infections in drug-resistant pathogens. In this review, we attempt to summarize published articles from the last twenty-five years (1996–2020) on antimicrobial secondary metabolites from marine bacteria evolved in marine environments, such as marine sediment, water, fauna, and flora.
Collapse
Affiliation(s)
- Ramanathan Srinivasan
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (R.S.); (X.L.)
| | - Arunachalam Kannappan
- State Key Laboratory of Microbial Metabolism, MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (A.K.); (C.S.)
| | - Chunlei Shi
- State Key Laboratory of Microbial Metabolism, MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (A.K.); (C.S.)
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (R.S.); (X.L.)
| |
Collapse
|
17
|
Nourbakhsh F, Lotfalizadeh M, Badpeyma M, Shakeri A, Soheili V. From plants to antimicrobials: Natural products against bacterial membranes. Phytother Res 2021; 36:33-52. [PMID: 34532918 DOI: 10.1002/ptr.7275] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 07/16/2021] [Accepted: 08/25/2021] [Indexed: 12/24/2022]
Abstract
Bacterial membrane barrier provides a cytoplasmic environment for organelles of bacteria. The membrane is composed of lipid compounds containing phosphatide protein and a minimal amount of sugars, and is responsible for intercellular transfers of chemicals. Several antimicrobials have been found that affect bacterial cytoplasmic membranes. These compounds generally disrupt the organization of the membrane or perforate it. By destroying the membrane, the drugs can permeate and replace the effective macromolecules necessary for cell life. Furthermore, they can disrupt electrical gradients of the cells through impairment of the membrane integrity. In recent years, considering the spread of microbial resistance and the side effects of antibiotics, natural antimicrobial compounds have been studied by researchers extensively. These molecules are the best alternative for controlling bacterial infections and reducing drug resistance due to the lack of severe side effects, low cost of production, and biocompatibility. Better understanding of the natural compounds' mechanisms against bacteria provides improved strategies for antimicrobial therapies. In this review, natural products with antibacterial activities focusing on membrane damaging mechanisms were described. However, further high-quality research studies are needed to confirm the clinical efficacy of these natural products.
Collapse
Affiliation(s)
- Fahimeh Nourbakhsh
- Medical Toxicology Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Lotfalizadeh
- Department of Obstetrics and Gynecology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Badpeyma
- Student Research Committee, Department of Clinical Nutrition, Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Shakeri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Soheili
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
18
|
Srinivasan R, Santhakumari S, Poonguzhali P, Geetha M, Dyavaiah M, Xiangmin L. Bacterial Biofilm Inhibition: A Focused Review on Recent Therapeutic Strategies for Combating the Biofilm Mediated Infections. Front Microbiol 2021; 12:676458. [PMID: 34054785 PMCID: PMC8149761 DOI: 10.3389/fmicb.2021.676458] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/14/2021] [Indexed: 12/31/2022] Open
Abstract
Biofilm formation is a major concern in various sectors and cause severe problems to public health, medicine, and industry. Bacterial biofilm formation is a major persistent threat, as it increases morbidity and mortality, thereby imposing heavy economic pressure on the healthcare sector. Bacterial biofilms also strengthen biofouling, affecting shipping functions, and the offshore industries in their natural environment. Besides, they accomplish harsh roles in the corrosion of pipelines in industries. At biofilm state, bacterial pathogens are significantly resistant to external attack like antibiotics, chemicals, disinfectants, etc. Within a cell, they are insensitive to drugs and host immune responses. The development of intact biofilms is very critical for the spreading and persistence of bacterial infections in the host. Further, bacteria form biofilms on every probable substratum, and their infections have been found in plants, livestock, and humans. The advent of novel strategies for treating and preventing biofilm formation has gained a great deal of attention. To prevent the development of resistant mutants, a feasible technique that may target adhesive properties without affecting the bacterial vitality is needed. This stimulated research is a rapidly growing field for applicable control measures to prevent biofilm formation. Therefore, this review discusses the current understanding of antibiotic resistance mechanisms in bacterial biofilm and intensely emphasized the novel therapeutic strategies for combating biofilm mediated infections. The forthcoming experimental studies will focus on these recent therapeutic strategies that may lead to the development of effective biofilm inhibitors than conventional treatments.
Collapse
Affiliation(s)
- Ramanathan Srinivasan
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fujian, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fujian, China
| | - Sivasubramanian Santhakumari
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | | | - Mani Geetha
- PG Research and Department of Microbiology, St. Joseph's College of Arts and Science (Autonomous), Tamil Nadu, India
| | - Madhu Dyavaiah
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Lin Xiangmin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fujian, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fujian, China.,Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fujian, China
| |
Collapse
|
19
|
Packiavathy IASV, Kannappan A, Thiyagarajan S, Srinivasan R, Jeyapragash D, Paul JBJ, Velmurugan P, Ravi AV. AHL-Lactonase Producing Psychrobacter sp. From Palk Bay Sediment Mitigates Quorum Sensing-Mediated Virulence Production in Gram Negative Bacterial Pathogens. Front Microbiol 2021; 12:634593. [PMID: 33935995 PMCID: PMC8079732 DOI: 10.3389/fmicb.2021.634593] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/15/2021] [Indexed: 11/13/2022] Open
Abstract
Quorum sensing (QS) is a signaling mechanism governed by bacteria used to converse at inter- and intra-species levels through small self-produced chemicals called N-acylhomoserine lactones (AHLs). Through QS, bacteria regulate and organize the virulence factors’ production, including biofilm formation. AHLs can be degraded by an action called quorum quenching (QQ) and hence QQ strategy can effectively be employed to combat biofilm-associated bacterial pathogenesis. The present study aimed to identify novel bacterial species with QQ potential. Screening of Palk Bay marine sediment bacteria for QQ activity ended up with the identification of marine bacterial isolate 28 (MSB-28), which exhibited a profound QQ activity against QS biomarker strain Chromobacterium violaceum ATCC 12472. The isolate MSB-28 was identified as Psychrobacter sp. through 16S-rRNA sequencing. Psychrobacter sp. also demonstrated a pronounced activity in controlling the biofilm formation in different bacteria and biofilm-associated virulence factors’ production in P. aeruginosa PAO1. Solvent extraction, heat inactivation, and proteinase K treatment assays clearly evidence the enzymatic nature of the bioactive lead. Furthermore, AHL’s lactone ring cleavage was confirmed with experiments including ring closure assay and chromatographic analysis, and thus the AHL-lactonase enzyme production in Psychrobacter sp. To conclude, this is the first report stating the AHL-lactonase mediated QQ activity from marine sediment bacteria Psychrobacter sp. Future work deals with the characterization, purification, and mass cultivation of the purified protein and should pave the way to assessing the feasibility of the identified protein in controlling QS and biofilm-mediated multidrug resistant bacterial infections in mono or multi-species conditions.
Collapse
Affiliation(s)
| | - Arunachalam Kannappan
- Department of Biotechnology, Alagappa University, Karaikudi, India.,Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | | | - Ramanathan Srinivasan
- Department of Biotechnology, Alagappa University, Karaikudi, India.,Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Danaraj Jeyapragash
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, India
| | - John Bosco John Paul
- Department of Electronics and Communication Engineering, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Pazhanivel Velmurugan
- Department of Biotechnology, Alagappa University, Karaikudi, India.,Centre for Materials Engineering and Regnerative Medicine, Bharath Institute of Higher Education and Research, Chennai, India
| | | |
Collapse
|
20
|
Anti-quorum sensing and antibiofilm potential of 1,8-cineole derived from Musa paradisiaca against Pseudomonas aeruginosa strain PAO1. World J Microbiol Biotechnol 2021; 37:66. [PMID: 33740144 DOI: 10.1007/s11274-021-03029-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
Pseudomonas aeruginosa is one of the vulnerable opportunistic pathogens associated with nosocomial infections, cystic fibrosis, burn wounds and surgical site infections. Several studies have reported that quorum sensing (QS) systems are controlled the P. aeruginosa pathogenicity. Hence, the targeting of QS considered as an alternative approach to control P. aeruginosa infections. This study aimed to evaluate the anti-quorum sensing and antibiofilm inhibitory potential of Musa paradisiaca against Chromobacterium violaceum (ATCC 12472) and Pseudomonas aeruginosa. The methanol extract of M. paradisiacsa exhibits that better antibiofilm potential against P. aeruginosa. Then, the crude methanol extract was subjected to purify by column chromatography and collected the fractions. The mass-spectrometric analysis of a methanol extract of M. paradisiaca revealed that 1,8-cineole is the major compounds. 1, 8-cineole significantly inhibited the QS regulated violacein production in C. violaceum. Moreover, 1,8-cineole significantly inhibited the QS mediated virulence production and biofilm formation of P. aeruginosa without affecting their growth. The real-time PCR analysis showed the downregulation of autoinducer synthase and transcriptional regulator genes upon 1,8-cineole treatment. The findings of the present study strongly suggested that metabolite of M. paradisiaca impedes P. aeruginosa QS system and associated virulence productions.
Collapse
|
21
|
Tiwari P, Khare T, Shriram V, Bae H, Kumar V. Plant synthetic biology for producing potent phyto-antimicrobials to combat antimicrobial resistance. Biotechnol Adv 2021; 48:107729. [PMID: 33705914 DOI: 10.1016/j.biotechadv.2021.107729] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/22/2021] [Accepted: 03/04/2021] [Indexed: 12/14/2022]
Abstract
Inappropriate and injudicious use of antimicrobial drugs in human health, hygiene, agriculture, animal husbandry and food industries has contributed significantly to rapid emergence and persistence of antimicrobial resistance (AMR), one of the serious global public health threats. The crisis of AMR versus slower discovery of newer antibiotics put forth a daunting task to control these drug-resistant superbugs. Several phyto-antimicrobials have been identified in recent years with direct-killing (bactericidal) and/or drug-resistance reversal (re-sensitization of AMR phenotypes) potencies. Phyto-antimicrobials may hold the key in combating AMR owing to their abilities to target major microbial drug-resistance determinants including cell membrane, drug-efflux pumps, cell communication and biofilms. However, limited distribution, low intracellular concentrations, eco-geographical variations, beside other considerations like dynamic environments, climate change and over-exploitation of plant-resources are major blockades in full potential exploration phyto-antimicrobials. Synthetic biology (SynBio) strategies integrating metabolic engineering, RNA-interference, genome editing/engineering and/or systems biology approaches using plant chassis (as engineerable platforms) offer prospective tools for production of phyto-antimicrobials. With expanding SynBio toolkit, successful attempts towards introduction of entire gene cluster, reconstituting the metabolic pathway or transferring an entire metabolic (or synthetic) pathway into heterologous plant systems highlight the potential of this field. Through this perspective review, we are presenting herein the current situation and options for addressing AMR, emphasizing on the significance of phyto-antimicrobials in this apparently post-antibiotic era, and effective use of plant chassis for phyto-antimicrobial production at industrial scales along with major SynBio tools and useful databases. Current knowledge, recent success stories, associated challenges and prospects of translational success are also discussed.
Collapse
Affiliation(s)
- Pragya Tiwari
- Molecular Metabolic Engineering Lab, Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune 411016, India; Department of Environmental Science, Savitribai Phule Pune University, Pune 411007, India
| | - Varsha Shriram
- Department of Botany, Prof. Ramkrishna More Arts, Commerce and Science College, Savitribai Phule Pune University, Akurdi, Pune 411044, India
| | - Hanhong Bae
- Molecular Metabolic Engineering Lab, Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune 411016, India; Department of Environmental Science, Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
22
|
Hamzah H, Hertiani T, Utami Tunjung Pratiwi S, Nuryastuti T, Bayu Murti Y. The biofilm inhibition and eradication activity of curcumin againts polymicrobial biofilm. BIO WEB OF CONFERENCES 2020. [DOI: 10.1051/bioconf/20202804001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Curcumin is a polyphenol compound that is a member of the ginger family (Zingiberaceae), which has potential as an antibacterial, antifungal, and polymicrobial antibiofilm on the catheter. Still, its inhibitory activity and eradication of non-catheter polymicrobial antibiotics against S. aureus, P. aeruginosa, E. coli, and C. albicans have never been reported. The discovery of a candidate polymicrobial anti-biofilm drug is indispensable for overcoming infections associated with biofilms. This study aims to determine the inhibitory activity and eradication of curcumin on polymicrobial biofilms. Inhibition testing and eradication activity of polymicrobial biofilms were performed using the microtiter broth method. The effectiveness of curcumin on polymicrobial biofilms was analyzed using minimum biofilm inhibition concentration (MBIC50) and minimum biofilm eradication concentration (MBEC50). The mechanism of action of curcumin against polymicrobial biofilms is tested using scanning electron microscopy (SEM). Curcumin 1 % b/v gives biofilm inhibition activity in the mid-phase and maturation of 62.23 % ± 0.01, 59.43 % ± 0.01, and can eradicate polymicrobial biofilms by 55.79 % ± 0.01 and not much different with nystatin drug control activity. The results also provide evidence that curcumin can damage the extracellular polymeric matrix (EPS) polymicrobial biofilms of S. aureus, P. aeruginosa, E. coli, and C. albicans and damage the morphology of polymicrobial biofilms. Therefore, curcumin can be developed as a candidate for new antibiofilm drugs against polymicrobial biofilms S. aureus, P. aeruginosa, E. coli dan C albicabs.
Collapse
|
23
|
Srinivasan R, Devi KR, Santhakumari S, Kannappan A, Chen X, Ravi AV, Lin X. Anti-quorum Sensing and Protective Efficacies of Naringin Against Aeromonas hydrophila Infection in Danio rerio. Front Microbiol 2020; 11:600622. [PMID: 33424802 PMCID: PMC7793879 DOI: 10.3389/fmicb.2020.600622] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
It is now well known that the quorum sensing (QS) mechanism coordinates the production of several virulence factors and biofilm formation in most pathogenic microorganisms. Aeromonas hydrophila is a prime pathogen responsible for frequent outbreaks in aquaculture settings. Recent studies have also continuously reported that A. hydrophila regulates virulence factor production and biofilm formation through the QS system. In addition to the presence of antibiotic resistance genes, biofilm-mediated antibiotic resistance increases the severity of A. hydrophila infections. To control the bacterial pathogenesis and subsequent infections, targeting the QS mechanism has become one of the best alternative methods. Though very few compounds were identified as QS inhibitors against A. hydrophila, to date, the screening and identification of new and effective natural QS inhibitors is a dire necessity to control the infectious A. hydrophila. The present study endorses naringin (NA) as an anti-QS and anti-infective agent against A. hydrophila. Initially, the NA showed a concentration-dependent biofilm reduction against A. hydrophila. Furthermore, the results of microscopic analyses and quantitative virulence assays displayed the promise of NA as a potential anti-QS agent. Subsequently, the downregulation of ahh1, aerA, lip and ahyB validate the interference of NA in virulence gene expression. Furthermore, the in vivo assays were carried out in zebrafish model system to evaluate the anti-infective potential of NA. The outcome of the immersion challenge assay showed that the recovery rate of the zebrafish has substantially increased upon treatment with NA. Furthermore, the quantification of the bacterial load upon NA treatment showed a decreased level of bacterial counts in zebrafish when compared to the untreated control. Moreover, the NA treatment averts the pathogen-induced histoarchitecture damages in vital organs of zebrafish, compared to their respective controls. The current study has thus analyzed the anti-QS and anti-infective capabilities of NA and could be employed to formulate effective treatment measures against A. hydrophila infections.
Collapse
Affiliation(s)
- Ramanathan Srinivasan
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| | - Kannan Rama Devi
- Department of Biotechnology, Alagappa University, Karaikudi, India
| | - Sivasubramanian Santhakumari
- Department of Biotechnology, Alagappa University, Karaikudi, India.,Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Arunachalam Kannappan
- Department of Biotechnology, Alagappa University, Karaikudi, India.,Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaomeng Chen
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| | | | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China.,Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
24
|
Swetha TK, Vikraman A, Nithya C, Hari Prasath N, Pandian SK. Synergistic antimicrobial combination of carvacrol and thymol impairs single and mixed-species biofilms of Candida albicans and Staphylococcus epidermidis. BIOFOULING 2020; 36:1256-1271. [PMID: 33435734 DOI: 10.1080/08927014.2020.1869949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Candida albicans and Staphylococcus epidermidis are important opportunistic human pathogens, which form mixed-species biofilms and cause recalcitrant device associated infections in clinical settings. Further to many reports suggesting the therapeutic potential of plant-derived monoterpenoids, this study investigated the interaction of the monoterpenoids carvacrol (C) and thymol (T) against mono- and mixed-species growth of C. albicans and S. epidermidis. C and T exhibited synergistic antimicrobial activity. The time-kill study and post-antimicrobial effect results revealed the effective microbicidal action of the C + T combination. Filamentation, surface coating assays and live-dead staining of biofilms determined the anti-hyphal, antiadhesion, and anti-biofilm activities of the C + T combination, respectively. Notably, this combination killed highly tolerant persister cells of mono-species and mixed-species biofilms and demonstrated less risk of resistance development. The collective data suggest that the C + T combination could act as an effective therapeutic agent against biofilm associated mono-species and mixed-species infections of C. albicans and S. epidermidis.
Collapse
Affiliation(s)
| | - Arumugam Vikraman
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Chari Nithya
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| | | | | |
Collapse
|
25
|
Vijayakumar K, Thirunanasambandham R. 5-Hydroxymethylfurfural inhibits Acinetobacter baumannii biofilms: an in vitro study. Arch Microbiol 2020; 203:673-682. [PMID: 33037454 DOI: 10.1007/s00203-020-02061-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 09/12/2020] [Accepted: 09/30/2020] [Indexed: 01/23/2023]
Abstract
The present study was aimed to investigate the antibiofilm activity of 5-hydroxymethylfurfural against Acinetobacter baumanni and Vellar estuary isolates v3 (Acinetobacter nosocomialis). The biofilm inhibitory concentration (BIC) of 5HMF against A. baumannii and v3 (A. nosocomialis) was found to be 100 µg/ml) exhibited non-bactericidal concentration-dependent antibiofilm activities against Acinetobacter species. The present study found that 5HMF treatment is very effective in the initial stage of A. baumannii biofilms and it significantly disrupted the mature biofilms. Moreover, 5HMF treatment inhibited the extracellular polymeric substances (EPS), including polysaccharides and proteins production. Results from gene expression and in vitro assays further demonstrated the 5HMF treatment downregulated the expression of bfmR, bap, csuA/B, ompA and katE virulence genes, which consistently affects biofilm formation and its mediated virulence property. The present study suggests that 5HMF unveil its antibiofilm activity by interfering initial biofilm formation and suppressing the virulence regulator genes in A. baumannii. Further studies are required to explore the 5HMF mode of action responsible for the antibiofilm activity.
Collapse
Affiliation(s)
- Karuppiah Vijayakumar
- Centre of Advanced Study in Marine Biology, Annamalai University, Tamil Nadu, Parangipettai, 608 502, India.
| | | |
Collapse
|
26
|
Vijayakumar K, Manigandan V, Jeyapragash D, Bharathidasan V, Anandharaj B, Sathya M. Eucalyptol inhibits biofilm formation of Streptococcus pyogenes and its mediated virulence factors. J Med Microbiol 2020; 69:1308-1318. [PMID: 32930658 DOI: 10.1099/jmm.0.001253] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Introduction. Streptococcus pyogenes is a diverse virulent synthesis pathogen responsible for invasive systemic infections. Establishment of antibiotic resistance in the pathogen has produced a need for new antibiofilm agents to control the biofilm formation and reduce biofilm-associated resistance development.Aim. The present study investigates the in vitro antibiofilm activity of eucalyptol against S. pyogenes.Methodology. The antibiofilm potential of eucalyptol was assessed using a microdilution method and their biofilm inhibition efficacy was visualized by microscopic analysis. The biochemical assays were performed to assess the influence of eucalyptol on virulence productions. Real-time PCR analysis was performed to evaluate the expression profile of the virulence genes.Results. Eucalyptol showed significant antibiofilm potential in a dose-dependent manner without affecting bacterial growth. Eucalyptol at 300 µg ml-1 (biofilm inhibitory concentration) significantly inhibited the initial stage of biofilm formation in S. pyogenes. However, eucalyptol failed to diminish the mature biofilms of S. pyogenes at biofilm inhibitory concentration and it effectively reduced the biofilm formation on stainless steel, titanium, and silicone surfaces. The biochemical assay results revealed that eucalyptol greatly affects the cell-surface hydrophobicity, auto-aggregation, extracellular protease, haemolysis and hyaluronic acid synthesis. Further, the gene-expression analysis results showed significant downregulation of virulence gene expression upon eucalyptol treatment.Conclusion. The present study suggests that eucalyptol applies its antibiofilm assets by intruding the initial biofilm formation of S. pyogenes. Supplementary studies are needed to understand the mode of action involved in biofilm inhibition.
Collapse
Affiliation(s)
- Karuppiah Vijayakumar
- Centre of advanced study in Marine Biology, Annamalai University, Parangipettai - 608 502, Tamil Nadu, India
| | - Vajravelu Manigandan
- Centre of advanced study in Marine Biology, Annamalai University, Parangipettai - 608 502, Tamil Nadu, India
| | - Danaraj Jeyapragash
- Department of Biotechnology, Karpagam academy of higher education, Eachanari, Coimbatore-641 021, Tamil Nadu, India
| | - Veeraiyan Bharathidasan
- Centre of advanced study in Marine Biology, Annamalai University, Parangipettai - 608 502, Tamil Nadu, India
| | - Balaiyan Anandharaj
- Department of Botany, Annamalai University, Annamalai Nagar, Chidambaram - 608 002, Tamil Nadu, India
| | - Madhavan Sathya
- Department of Botany, Annamalai University, Annamalai Nagar, Chidambaram - 608 002, Tamil Nadu, India
| |
Collapse
|
27
|
Rathinapriya P, Pandian S, Rakkammal K, Balasangeetha M, Alexpandi R, Satish L, Rameshkumar R, Ramesh M. The protective effects of polyamines on salinity stress tolerance in foxtail millet ( Setaria italica L.), an important C4 model crop. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:1815-1829. [PMID: 32943818 PMCID: PMC7468048 DOI: 10.1007/s12298-020-00869-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/26/2020] [Accepted: 08/14/2020] [Indexed: 05/27/2023]
Abstract
ABSTRACT Soil salinity is a major abiotic stress that adversely affects crop growth, development and productivity worldwide. In this study, the individual and synergistic roles of putrescine (Put) and spermidine (Spd) in salinity stress tolerance of foxtail millet (Setaria italica L.) was assessed. In the present study, plants treated with combined biogenic amines Put + Spd possess very efficient antioxidant enzyme systems which help to control the uninhibited oxidation and protect the plants from oxidative damage by ROS scavenging. Additionally, lower concentration of Put + Spd under NaCl stress showed reduced hydrogen peroxide, electrolyte leakage and caspase-like activity than control. FTIR analysis underlying the ability of PAs induced tolerance and the chemical bonds of Put + Spd treated plants were reminiscent of control plants. Moreover, histochemical analysis with 2',7'-dichlorofluorescein diacetate (DCF-DA), 3,3'-Diaminobenzidine (DAB) and nitrotetrazolium blue chloride (NBT) revealed that ROS accumulation was inhibited by combined PAs under salt stress condition. These results showed that Put + Spd significantly improve the endogenous PAs, which enhance high-salinity stress tolerance by detoxifying ROS. For the first time, the synergistic ROS scavenging ability of Put along with Spd was investigated upon salinity tolerance in C4 model foxtail millet crop. Overall, our findings illustrated the implication for improving salinity tolerance of agronomically important crop species. GRAPHIC ABSTRACT
Collapse
Affiliation(s)
- Periyasamy Rathinapriya
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, 630 003 India
| | - Subramani Pandian
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, 630 003 India
| | - Kasinathan Rakkammal
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, 630 003 India
| | - Manoharan Balasangeetha
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, 630 003 India
| | - Rajaiah Alexpandi
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, 630 003 India
| | - Lakkakula Satish
- Department of Biotechnology Engineering, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of Negev, 84105 Beer Sheva, Israel
| | - Ramakrishnan Rameshkumar
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, 630 003 India
| | - Manikandan Ramesh
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, 630 003 India
| |
Collapse
|
28
|
Inhibition of multidrug-resistant foodborne Staphylococcus aureus biofilms by a natural terpenoid (+)-nootkatone and related molecular mechanism. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107154] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Kannappan A, Durgadevi R, Srinivasan R, Lagoa RJL, Packiavathy IASV, Pandian SK, Veera Ravi A. 2-Hydroxy-4-methoxybenzaldehyde from Hemidesmus indicus is antagonistic to Staphylococcus epidermidis biofilm formation. BIOFOULING 2020; 36:549-563. [PMID: 32586125 DOI: 10.1080/08927014.2020.1777989] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 05/21/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
Staphylococcus epidermidis (SE) is an opportunistic nosocomial pathogen that accounts for recalcitrant device-related infections worldwide. Owing to the growing interest in plants and their secondary metabolites targeting bacterial adhesion, this study was intended to uncover the anti-biofilm potential of Hemidesmus indicus and its major constituent 2-hydroxy-4-methoxybenzaldehyde (HMB) against SE. The minimum biofilm inhibitory concentration (MBIC) of H. indicus root extract and HMB were found to be 500 and 250 µg ml-1, respectively. The results of time-dependent biofilm inhibition and mature biofilm disruption assays confirmed that HMB targets initial cell adhesion. Furthermore, interference by HMB in the expression of adhesin genes (icaA, aap and bhp) and biofilm components was associated with an increased susceptibility of SE to oxidative stress and antibiotics. To conclude, this study reports for the first time HMB as a potential drug against SE biofilms.
Collapse
Affiliation(s)
- Arunachalam Kannappan
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, India
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Ravindran Durgadevi
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Ramanathan Srinivasan
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, India
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, PR China
| | | | | | | | - Arumugam Veera Ravi
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, India
| |
Collapse
|
30
|
Lira MHPD, Andrade Júnior FPD, Moraes GFQ, Macena GDS, Pereira FDO, Lima IO. Antimicrobial activity of geraniol: an integrative review. JOURNAL OF ESSENTIAL OIL RESEARCH 2020. [DOI: 10.1080/10412905.2020.1745697] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Maria Helena Pereira de Lira
- Natural Sciences and Biotechnology, Education and Health Center (Ces), Federal University of Campina Grande (UFCG), Cuité, Brazil
| | | | | | | | | | - Igara Oliveira Lima
- Health Academic Unit and of Post-Graduation in Natural Sciences and Biotechnology, CES/UFCG, Cuité, Brazil
| |
Collapse
|
31
|
Li D, Ramanathan S, Wang G, Wu Y, Tang Q, Li G. Acetylation of lysine 7 of AhyI affects the biological function in Aeromonas hydrophila. Microb Pathog 2020; 140:103952. [DOI: 10.1016/j.micpath.2019.103952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/04/2019] [Accepted: 12/26/2019] [Indexed: 01/18/2023]
|
32
|
Patsilinakos A, Artini M, Papa R, Sabatino M, Božović M, Garzoli S, Vrenna G, Buzzi R, Manfredini S, Selan L, Ragno R. Machine Learning Analyses on Data including Essential Oil Chemical Composition and In Vitro Experimental Antibiofilm Activities against Staphylococcus Species. Molecules 2019; 24:molecules24050890. [PMID: 30832446 PMCID: PMC6429525 DOI: 10.3390/molecules24050890] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 11/28/2022] Open
Abstract
Biofilm resistance to antimicrobials is a complex phenomenon, driven not only by genetic mutation induced resistance, but also by means of increased microbial cell density that supports horizontal gene transfer across cells. The prevention of biofilm formation and the treatment of existing biofilms is currently a difficult challenge; therefore, the discovery of new multi-targeted or combinatorial therapies is growing. The development of anti-biofilm agents is considered of major interest and represents a key strategy as non-biocidal molecules are highly valuable to avoid the rapid appearance of escape mutants. Among bacteria, staphylococci are predominant causes of biofilm-associated infections. Staphylococci, especially Staphylococcus aureus (S. aureus) is an extraordinarily versatile pathogen that can survive in hostile environmental conditions, colonize mucous membranes and skin, and can cause severe, non-purulent, toxin-mediated diseases or invasive pyogenic infections in humans. Staphylococcus epidermidis (S. epidermidis) has also emerged as an important opportunistic pathogen in infections associated with medical devices (such as urinary and intravascular catheters, orthopaedic implants, etc.), causing approximately from 30% to 43% of joint prosthesis infections. The scientific community is continuously looking for new agents endowed of anti-biofilm capabilities to fight S. aureus and S epidermidis infections. Interestingly, several reports indicated in vitro efficacy of non-biocidal essential oils (EOs) as promising treatment to reduce bacterial biofilm production and prevent the inducing of drug resistance. In this report were analyzed 89 EOs with the objective of investigating their ability to modulate bacterial biofilm production of different S. aureus and S. epidermidis strains. Results showed the assayed EOs to modulated the biofilm production with unpredictable results for each strain. In particular, many EOs acted mainly as biofilm inhibitors in the case of S. epidermidis strains, while for S. aureus strains, EOs induced either no effect or stimulate biofilm production. In order to elucidate the obtained experimental results, machine learning (ML) algorithms were applied to the EOs’ chemical compositions and the determined associated anti-biofilm potencies. Statistically robust ML models were developed, and their analysis in term of feature importance and partial dependence plots led to indicating those chemical components mainly responsible for biofilm production, inhibition or stimulation for each studied strain, respectively.
Collapse
Affiliation(s)
- Alexandros Patsilinakos
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy.
- Alchemical Dynamics s.r.l., 00125 Rome, Italy.
| | - Marco Artini
- Department of Public Health and Infectious Diseases, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Rosanna Papa
- Department of Public Health and Infectious Diseases, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy.
| | | | - Mijat Božović
- Faculty of Natural Sciences and Mathematics, University of Montenegro, Podgorica, Montenegro.
| | - Stefania Garzoli
- Department of Drug Chemistry and Technology, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Gianluca Vrenna
- Department of Public Health and Infectious Diseases, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Raissa Buzzi
- Master Course in Cosmetic Sciences, Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| | - Stefano Manfredini
- Master Course in Cosmetic Sciences, Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| | - Laura Selan
- Department of Public Health and Infectious Diseases, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Rino Ragno
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy.
- Alchemical Dynamics s.r.l., 00125 Rome, Italy.
| |
Collapse
|
33
|
Arunachalam K, Ramar M, Ramanathan S, Govindaraju A, Shunmugiah KP, Kandasamy R, Arumugam VR. In vivo protective effect of geraniol on colonization of Staphylococcus epidermidis in rat jugular vein catheter model. Pathog Dis 2019; 76:5035816. [PMID: 29893828 DOI: 10.1093/femspd/fty055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 06/08/2018] [Indexed: 01/13/2023] Open
Abstract
Staphylococcal infections associated with indwelling medical devices are difficult to eradicate owing to its recalcitrant nature of biofilms to conventional antibiotics. In our earlier study, we reported the efficacy of geraniol (GE) in inhibiting the in vitro biofilm formation of Staphylococcus epidermidis and adaptive resistant development. To examine the in vivo potential of GE in eradicating the in vivo colonization of S. epidermidis, an implanted rat jugular vein catheter model was developed. Oral supplementation of GE (GE at 200 mg/kg bw for three days) in rats infected with S. epidermidis exhibited a significant reduction of the bacterial burden in catheter, blood, heart and kidney, when compared to the untreated infection control. In addition, GE supplemented animals showed significantly reduced level of inflammatory markers such as nitric oxide and malondialdehyde in heart and kidney tissues. Furthermore, in contrast to the infection control, histopathology analysis of the heart and kidney tissues of the GE-treated group showed a normal histoarchitecture similar to animal control. Thus, the outcome of the present study exhibits the potential of GE as antibiofilm and anti-inflammatory agent against S. epidermidis infections. Furthermore, elucidating the molecular mechanism of GE is important to exploit the therapeutic efficacy of GE.
Collapse
Affiliation(s)
- Kannappan Arunachalam
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - Mohankumar Ramar
- Department of Pharmaceutical Technology, National Facility for Drug Development (NFDD) for Academia, Pharmaceutical and Allied Industries, Bharathidasan Institute of Technology, Anna University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Srinivasan Ramanathan
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - Archunan Govindaraju
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | | | - Ruckmani Kandasamy
- Department of Pharmaceutical Technology, National Facility for Drug Development (NFDD) for Academia, Pharmaceutical and Allied Industries, Bharathidasan Institute of Technology, Anna University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Veera Ravi Arumugam
- Department of Pharmaceutical Technology, National Facility for Drug Development (NFDD) for Academia, Pharmaceutical and Allied Industries, Bharathidasan Institute of Technology, Anna University, Tiruchirappalli, 620 024, Tamil Nadu, India
| |
Collapse
|
34
|
Muthamil S, Balasubramaniam B, Balamurugan K, Pandian SK. Synergistic Effect of Quinic Acid Derived From Syzygium cumini and Undecanoic Acid Against Candida spp. Biofilm and Virulence. Front Microbiol 2018; 9:2835. [PMID: 30534118 PMCID: PMC6275436 DOI: 10.3389/fmicb.2018.02835] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/05/2018] [Indexed: 12/14/2022] Open
Abstract
In recent decades, fungal infections have incredibly increased with Candida genus as the major cause of morbidity and mortality in hospitalized and immunocompromised patients. Most of the Candida species are proficient in biofilm formation on implanted medical devices as well as human tissues. Biofilm related Candida infections are very difficult to treat using common antifungal agents owing to their increased drug resistance. To address these issues, the present study investigated the antibiofilm and antivirulent properties of Syzygium cumini derived quinic acid in combination with known antifungal compound undecanoic acid. Initially, antibiofilm potential of S. cumini leaf extract was assessed and the active principles were identified through gas chromatography and mass spectrometry analysis. Among the compounds identified, quinic acid was one of the major compounds. The interaction between quinic acid and undecanoic acid was found to be synergistic in the Fractional inhibitory concentration index (≤0.5). Results of in vitro assays and gene expression analysis suggested that the synergistic combinations of quinic acid and undecanoic acid significantly inhibited virulence traits of Candida spp. such as the biofilm formation, yeast-to-hyphal transition, extracellular polymeric substances production, filamentation, secreted hydrolases production and ergosterol biosynthesis. In addition, result of in vivo studies using Caenorhabditis elegans demonstrated the non-toxic nature of QA-UDA combination and antivirulence effect against Candida spp. For the first time, synergistic antivirulence ability of quinic acid and undecanoic acid was explored against Candida spp. Thus, results obtained from the present study suggest that combination of phytochemicals might be used an alternate therapeutic strategy for the prevention and treatment of biofilm associated Candida infection.
Collapse
|
35
|
Sivaranjani M, Srinivasan R, Aravindraja C, Karutha Pandian S, Veera Ravi A. Inhibitory effect of α-mangostin on Acinetobacter baumannii biofilms - an in vitro study. BIOFOULING 2018; 34:579-593. [PMID: 29869541 DOI: 10.1080/08927014.2018.1473387] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
The present study was designed to investigate the anti-biofilm potential of alpha-mangostin (α-MG) against Acinetobacter baumannii (AB). The biofilm inhibitory concentration (BIC) of α-MG against AB was found to be 2 μg ml-1. α-MG (0.5, 1 and 2 μg ml-1) exhibited non-bactericidal concentration-dependent anti-biofilm activities against AB. However, α-MG failed to disintegrate the mature biofilms of AB even at a 10-fold increased concentration from its BIC. Results from qRT-PCR and in vitro bioassays further demonstrated that α-MG downregulated the expression of bfmR, pgaA, pgaC, csuA/B, ompA, bap, katE, and sodB genes, which correspondingly affects biofilm formation and its associated virulence traits. The present study suggests that α-MG exerts its anti-biofilm property by interrupting initial biofilm formation and the cell-to-cell signaling mechanism of AB. Additional studies are required to understand the mode of action responsible for the anti-biofilm property.
Collapse
|
36
|
Ramanathan S, Arunachalam K, Chandran S, Selvaraj R, Shunmugiah K, Arumugam V. Biofilm inhibitory efficiency of phytol in combination with cefotaxime against nosocomial pathogen Acinetobacter baumannii. J Appl Microbiol 2018; 125:56-71. [DOI: 10.1111/jam.13741] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/11/2018] [Accepted: 02/18/2018] [Indexed: 12/29/2022]
Affiliation(s)
- S. Ramanathan
- Department of Biotechnology; Science Campus; Alagappa University; Karaikudi Tamil Nadu India
| | - K. Arunachalam
- Department of Biotechnology; Science Campus; Alagappa University; Karaikudi Tamil Nadu India
| | - S. Chandran
- Department of Biotechnology; Science Campus; Alagappa University; Karaikudi Tamil Nadu India
| | - R. Selvaraj
- Department of Biotechnology; Science Campus; Alagappa University; Karaikudi Tamil Nadu India
| | - K.P. Shunmugiah
- Department of Biotechnology; Science Campus; Alagappa University; Karaikudi Tamil Nadu India
| | - V.R. Arumugam
- Department of Biotechnology; Science Campus; Alagappa University; Karaikudi Tamil Nadu India
| |
Collapse
|
37
|
Srinivasan R, Vigneshwari L, Rajavel T, Durgadevi R, Kannappan A, Balamurugan K, Pandima Devi K, Veera Ravi A. Biogenic synthesis of silver nanoparticles using Piper betle aqueous extract and evaluation of its anti-quorum sensing and antibiofilm potential against uropathogens with cytotoxic effects: an in vitro and in vivo approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:10538-10554. [PMID: 29288300 DOI: 10.1007/s11356-017-1049-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 12/13/2017] [Indexed: 04/15/2023]
Abstract
Urinary tract infections are the utmost common bacterial infections caused by Proteus mirabilis, Pseudomonas aeruginosa, Escherichia coli, and Serratia marcescens. These uropathogens resist the action of several antibiotics due to their ability to form biofilms. Most of these bacterial pathogens use the quorum sensing (QS) machinery to co-ordinate their cells and regulate several virulence factors and biofilm formation. On the other hand, the anti-quorum sensing (anti-QS) and antibiofilm potential of silver nanoparticles have been well reported against certain bacterial pathogens, but to the best of our knowledge, no report is available against the pathogenicity of uropathogens in particular S. marcescens and P. mirabilis. Therefore, the present study is primarily focused on the anti-QS and antibiofilm potential of Piper betle-based synthesized silver nanoparticles (PbAgNPs) against S. marcescens and P. mirabilis. Initially, the silver nanoparticles were synthesized by the aqueous extract of P. betle and characterized by UV-absorbance spectroscopy, XRD, FT-IR, SEM, TEM, and DLS. The synthesized silver nanoparticles were assessed for their anti-QS activity and the obtained results revealed that the PbAgNPs inhibited the QS-mediated virulence factors such as prodigiosin, protease, biofilm formation, exopolysaccharides and hydrophobicity productions in uropathogens. The gene expression analysis divulged the downregulation of fimA, fimC, flhD, and bsmB genes in S. marcescens and flhB, flhD, and rsbA genes in P. mirabilis, respectively. The in vivo Caenorhabditis elegans assays revealed the non-toxic and anti-adherence efficiency of PbAgNPs. Furthermore, the non-toxic effect of PbAgNPs was also confirmed through peripheral blood mononuclear cells and normal lung epithelial cells. Therefore, the contemporary study demonstrates the use of PbAgNPs as a possible alternative toward conventional antibiotics in controlling QS and biofilm-related uropathogen infections.
Collapse
Affiliation(s)
- Ramanathan Srinivasan
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, -630 003, India
| | - Loganathan Vigneshwari
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, -630 003, India
| | - Tamilselvam Rajavel
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, -630 003, India
| | - Ravindran Durgadevi
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, -630 003, India
| | - Arunachalam Kannappan
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, -630 003, India
| | - Krishnaswamy Balamurugan
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, -630 003, India
| | - Kasi Pandima Devi
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, -630 003, India
| | - Arumugam Veera Ravi
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, -630 003, India.
| |
Collapse
|
38
|
Ramanathan S, Ravindran D, Arunachalam K, Arumugam VR. Inhibition of quorum sensing-dependent biofilm and virulence genes expression in environmental pathogen Serratia marcescens by petroselinic acid. Antonie van Leeuwenhoek 2017; 111:501-515. [PMID: 29101490 DOI: 10.1007/s10482-017-0971-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 10/26/2017] [Indexed: 11/26/2022]
Abstract
The aim of this study was to evaluate the anti-biofilm and anti-virulence properties of petroselinic acid (PSA) against the environmental pathogen Serratia marcescens. PSA significantly inhibited the quorum sensing (QS)-dependent virulence factors such as prodigiosin, protease productions, and biofilm formation in S. marcescens. The antibiofilm potential of PSA was also confirmed through light, confocal laser scanning, and scanning electron microscopic analyses. Furthermore, PSA effectively inhibited the biofilm-related phenomena such as exopolysaccharide production, hydrophobicity production, swimming, and swarming motility without affecting the bacterial growth. In FT-IR analysis, the PSA treated S. marcescens cells displayed a reduction in cellular components compared to the untreated controls. The real-time analysis revealed the downregulation of QS-controlled virulence genes such as bsmB, fimA, fimC, and flhD in S. marcescens on treatment with PSA. The obtained results strongly suggested that PSA could be further explored as an antipathogenic drug to treat QS-mediated infections caused by S. marcescens.
Collapse
Affiliation(s)
- Srinivasan Ramanathan
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, 630 003, India
| | - Durgadevi Ravindran
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, 630 003, India
| | - Kannappan Arunachalam
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, 630 003, India
| | - Veera Ravi Arumugam
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, 630 003, India.
| |
Collapse
|