1
|
Sisay A, Kumie G, Gashaw Y, Nigatie M, Gebray HM, Reta MA. Prevalence of genes encoding carbapenem-resistance in Klebsiella pneumoniae recovered from clinical samples in Africa: systematic review and meta-analysis. BMC Infect Dis 2025; 25:556. [PMID: 40251495 PMCID: PMC12007206 DOI: 10.1186/s12879-025-10959-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 04/10/2025] [Indexed: 04/20/2025] Open
Abstract
BACKGROUND The potential of Klebsiella pneumoniae (K. pneumoniae) to acquire and spread carbapenem-resistant genes is the most concerning characteristic of the bacteria. In hospitals and other healthcare settings, multidrug-resistant K. pneumoniae can be prevalent and cause severe infections, posing significant challenges to patient management. Studying genetic variants and drug-resistant mutations in pathogenic bacteria of public health importance is essential. Therefore, this study aimed to assess the overall prevalence of carbapenemase-encoding genes in K. pneumoniae across Africa. METHODS All studies published between January 2010, and December 2023, were retrieved from the electronic databases PubMed, Science Direct, and Scopus, as well as through the Google Scholar search engine. This systematic review and meta-analysis adhered strictly to the PRISMA guidelines. Data analysis was performed using STATA version 17. The quality of the included studies was critically evaluated using the "Joanna Briggs Institute" criteria. To evaluate heterogeneity among the studies, inverse variance (I2) tests were utilized. Subgroup analysis was conducted when heterogeneity exists among studies. To assess publication bias, we used a funnel plot and Egger's regression test. A random effects model was used to calculate the weighted pooled prevalence of genetic variants associated with carbapenem resistance in K. pneumoniae. RESULTS A total of 49 potential studies were included in this systematic review and meta-analysis, encompassing 8,021 K. pneumoniae isolates. Among these isolates, 2,254 (28.1%) carbapenems-resistance-conferring genes were identified. The overall pooled prevalence of carbapenemase-encoding genes in K. pneumoniae isolated from clinical specimens across Africa was found to be 34.0% (95% CI: 26.01-41.98%). Furthermore, the pooled prevalence of the carbapenemase genes blaOXA-48 and blaNDM-1 was 16.96% (95% CI: 12.17-21.76%) and 15.08% (95% CI: 9.79-20.37%), respectively. The pooled prevalence of carbapenemase genes in K. pneumoniae isolates from clinical samples across Africa increased over time, reported as 20.4%(-0.7-41.4%) for 2010-2015, 34.5% (20.2-48.8%) for 2016-2020, and 35.2% (24.8-45.5%) for 2021-2023, with heterogeneity (I2) values of 36.5%, 96.7%, and 99.3%, respectively. CONCLUSIONS The emergence and spread of carbapenemase-encoding genes in K. pneumoniae pose a major threat to public health. Knowledge on the genetic mechanisms of carbapenem resistance is crucial for developing effective strategies to combat these multidrug-resistant infections and reduce their impact on healthcare systems. The carbapenemase genes blaOXA-48 and blaNDM-1 were the most prevalent and showed an increasing trend over time.
Collapse
Affiliation(s)
- Assefa Sisay
- Department of Medical Laboratory Sciences, College of Health Sciences, Woldia University, P.O. Box 400, Woldia, Ethiopia.
| | - Getinet Kumie
- Department of Medical Laboratory Sciences, College of Health Sciences, Woldia University, P.O. Box 400, Woldia, Ethiopia
| | - Yalewayker Gashaw
- Department of Medical Laboratory Sciences, College of Health Sciences, Woldia University, P.O. Box 400, Woldia, Ethiopia
| | - Marye Nigatie
- Department of Medical Laboratory Sciences, College of Health Sciences, Woldia University, P.O. Box 400, Woldia, Ethiopia
| | - Habtamu Mesele Gebray
- Departments of Internal Medicine, Woldia Comprehensive Specialized Hospital, Woldia, Ethiopia
| | - Melese Abate Reta
- Department of Medical Laboratory Sciences, College of Health Sciences, Woldia University, P.O. Box 400, Woldia, Ethiopia
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Prinshof, Pretoria, 0084, South Africa
| |
Collapse
|
2
|
Mapunda L, Mwingwa A, Kamori D, Kumburu H, van Zwetselaar M, Blomberg B, Manyahi J. Co-existence of two bla NDM-5 and bla OXA-181 on distinct plasmids in a carbapenem-resistant Klebsiella pneumoniae from a tertiary hospital, Tanzania. J Glob Antimicrob Resist 2025; 41:173-180. [PMID: 39755167 DOI: 10.1016/j.jgar.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 01/06/2025] Open
Abstract
PURPOSE To understand the mechanisms of carbapenem-resistant Klebsiella pneumoniae (CRKP) from Tanzania and characterize the genomes carrying the carbapenemase genes. METHODS Clinical CRKP isolates were selected from ongoing antimicrobial resistance surveillance at Muhimbili National Hospital, Dar es Salaam, Tanzania. Whole-genome sequencing was performed utilizing Illumina and Nanopore platforms. RESULTS A total of twelve CRKP were analyzed in this study. Six different multilocus sequence types were detected, six isolates were sequence type ST437 and one belonged to a novel sequence type, ST6258. Resistance to carbapenems was multifactorial with co-existence of blaNDM-5 and blaOXA-181 in six CRKP, and blaNDM-5 and blaOXA-232 in one isolate, and chromosomal mutation of ompK36 and ompK37 in all twelve isolates. All the CRKP carried genes conferring resistance to 3rd generation cephalosporins, penicillin, aminoglycosides, fosfomycin, trimethoprim-sulfamethoxazole, and quinolones. The hybrid assemblies of 001BS and 002PS2 revealed that they harbored seven and six different plasmids, respectively. The 001BS carried two blaNDM-5 on distinct plasmids. The first blaNDM-5 gene was carried on an IncFIB(K) plasmid; and the second blaNDM-5 co-existed with blaOXA-181 on the ColPK3-IncX3 plasmid. In contrast, in 002PS2 the blaNDM-5 and blaOXA-181 were carried on the IncFIB(K)-IncFII(K) and ColPK3-IncX3 plasmids, respectively. The genetic environment of the blaNDM-5 gene on both plasmids was flanked by the same genetic core IS26-IS30-blaNDM-5 -ble-trpF-DsbD-ISCR1-sul1- QacE-IS3000. CONCLUSION Clonally related CRKP ST437 with multiple co-existing carbapenemase genes were detected for the first time at the tertiary hospital in Tanzania. The existence of this high-risk clone poses a great risk for further spread at our facility.
Collapse
Affiliation(s)
- Lawrence Mapunda
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Anthon Mwingwa
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania; Kilimanjaro Clinical Research Institute, Moshi, Tanzania
| | - Doreen Kamori
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Happiness Kumburu
- Kilimanjaro Clinical Research Institute, Moshi, Tanzania; Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | | | - Bjorn Blomberg
- Department of Clinical Science, University of Bergen, Bergen, Norway; National Centre for Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Joel Manyahi
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania; Department of Clinical Science, University of Bergen, Bergen, Norway.
| |
Collapse
|
3
|
Heinz E, Pearse O, Zuza A, Bilima S, Msefula C, Musicha P, Siyabu P, Tewesa E, Graf FE, Lester R, Lissauer S, Cornick J, Lewis JM, Kawaza K, Thomson NR, Feasey NA. Longitudinal analysis within one hospital in sub-Saharan Africa over 20 years reveals repeated replacements of dominant clones of Klebsiella pneumoniae and stresses the importance to include temporal patterns for vaccine design considerations. Genome Med 2024; 16:67. [PMID: 38711148 PMCID: PMC11073982 DOI: 10.1186/s13073-024-01342-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/30/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Infections caused by multidrug-resistant gram-negative bacteria present a severe threat to global public health. The WHO defines drug-resistant Klebsiella pneumoniae as a priority pathogen for which alternative treatments are needed given the limited treatment options and the rapid acquisition of novel resistance mechanisms by this species. Longitudinal descriptions of genomic epidemiology of Klebsiella pneumoniae can inform management strategies but data from sub-Saharan Africa are lacking. METHODS We present a longitudinal analysis of all invasive K. pneumoniae isolates from a single hospital in Blantyre, Malawi, southern Africa, from 1998 to 2020, combining clinical data with genome sequence analysis of the isolates. RESULTS We show that after a dramatic increase in the number of infections from 2016 K. pneumoniae becomes hyperendemic, driven by an increase in neonatal infections. Genomic data show repeated waves of clonal expansion of different, often ward-restricted, lineages, suggestive of hospital-associated transmission. We describe temporal trends in resistance and surface antigens, of relevance for vaccine development. CONCLUSIONS Our data highlight a clear need for new interventions to prevent rather than treat K. pneumoniae infections in our setting. Whilst one option may be a vaccine, the majority of cases could be avoided by an increased focus on and investment in infection prevention and control measures, which would reduce all healthcare-associated infections and not just one.
Collapse
Affiliation(s)
- Eva Heinz
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke PlaceLiverpool, L3 5QA, UK.
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke PlaceLiverpool, L3 5QA, UK.
| | - Oliver Pearse
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke PlaceLiverpool, L3 5QA, UK
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Allan Zuza
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Sithembile Bilima
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | | | - Patrick Musicha
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke PlaceLiverpool, L3 5QA, UK
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | | | - Edith Tewesa
- Queen Elizabeth Central Hospital, Blantyre, Malawi
| | - Fabrice E Graf
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke PlaceLiverpool, L3 5QA, UK
| | - Rebecca Lester
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Division of Infection & Immunity, University College London, London, UK
| | - Samantha Lissauer
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK
| | - Jennifer Cornick
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK
| | - Joseph M Lewis
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke PlaceLiverpool, L3 5QA, UK
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK
| | - Kondwani Kawaza
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Nicholas R Thomson
- Parasites and Microbes Program, Wellcome Sanger Institute, Hinxton, UK
- London School of Hygiene and Tropical Medicine, London, UK
| | - Nicholas A Feasey
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke PlaceLiverpool, L3 5QA, UK.
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi.
- School of Medicine, St Andrews University, St Andrews, UK.
| |
Collapse
|
4
|
Chelaru EC, Muntean AA, Hogea MO, Muntean MM, Popa MI, Popa GL. The Importance of Carbapenemase-Producing Enterobacterales in African Countries: Evolution and Current Burden. Antibiotics (Basel) 2024; 13:295. [PMID: 38666971 PMCID: PMC11047529 DOI: 10.3390/antibiotics13040295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/29/2024] Open
Abstract
Antimicrobial resistance (AMR) is a worldwide healthcare problem. Multidrug-resistant organisms (MDROs) can spread quickly owing to their resistance mechanisms. Although colonized individuals are crucial for MDRO dissemination, colonizing microbes can lead to symptomatic infections in carriers. Carbapenemase-producing Enterobacterales (CPE) are among the most important MDROs involved in colonizations and infections with severe outcomes. This review aimed to track down the first reports of CPE in Africa, describe their dissemination throughout African countries and summarize the current status of CRE and CPE data, highlighting current knowledge and limitations of reported data. Two database queries were undertaken using Medical Subject Headings (MeSH), employing relevant keywords to identify articles that had as their topics beta-lactamases, carbapenemases and carbapenem resistance pertaining to Africa or African regions and countries. The first information on CPE could be traced back to the mid-2000s, but data for many African countries were established after 2015-2018. Information is presented chronologically for each country. Although no clear conclusions could be drawn for some countries, it was observed that CPE infections and colonizations are present in most African countries and that carbapenem-resistance levels are rising. The most common CPE involved are Klebsiella pneumoniae and Escherichia coli, and the most prevalent carbapenemases are NDM-type and OXA-48-type enzymes. Prophylactic measures, such as screening, are required to combat this phenomenon.
Collapse
Affiliation(s)
- Edgar-Costin Chelaru
- Department of Microbiology II, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (E.-C.C.); (A.-A.M.); (M.-O.H.); (M.-M.M.)
| | - Andrei-Alexandru Muntean
- Department of Microbiology II, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (E.-C.C.); (A.-A.M.); (M.-O.H.); (M.-M.M.)
- Department of Microbiology, Cantacuzino National Military Medical Institute for Research and Development, 050096 Bucharest, Romania
| | - Mihai-Octav Hogea
- Department of Microbiology II, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (E.-C.C.); (A.-A.M.); (M.-O.H.); (M.-M.M.)
| | - Mădălina-Maria Muntean
- Department of Microbiology II, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (E.-C.C.); (A.-A.M.); (M.-O.H.); (M.-M.M.)
| | - Mircea-Ioan Popa
- Department of Microbiology II, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (E.-C.C.); (A.-A.M.); (M.-O.H.); (M.-M.M.)
- Department of Microbiology, Cantacuzino National Military Medical Institute for Research and Development, 050096 Bucharest, Romania
| | - Gabriela-Loredana Popa
- Department of Microbiology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Parasitic Disease Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| |
Collapse
|
5
|
Lewis JM, Mphasa M, Banda R, Beale MA, Mallewa J, Anscome C, Zuza A, Roberts AP, Heinz E, Thomson NR, Feasey NA. Genomic analysis of extended-spectrum beta-lactamase (ESBL) producing Escherichia coli colonising adults in Blantyre, Malawi reveals previously undescribed diversity. Microb Genom 2023; 9:mgen001035. [PMID: 37314322 PMCID: PMC10327512 DOI: 10.1099/mgen.0.001035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/15/2023] [Indexed: 06/15/2023] Open
Abstract
Escherichia coli is one of the most prevalent Gram-negative species associated with drug resistant infections. Strains that produce extended-spectrum beta-lactamases (ESBLs) or carbapenemases are both particularly problematic and disproportionately impact resource limited healthcare settings where last-line antimicrobials may not be available. A large number of E. coli genomes are now available and have allowed insights into pathogenesis and epidemiology of ESBL E. coli but genomes from sub-Saharan Africa (sSA) are significantly underrepresented. To reduce this gap, we investigated ESBL-producing E. coli colonising adults in Blantyre, Malawi to assess bacterial diversity and AMR determinants and to place these isolates in the context of the wider population structure. We performed short-read whole-genome sequencing of 473 colonising ESBL E. coli isolated from human stool and contextualised the genomes with a previously curated multi-country collection of 10 146 E. coli genomes and sequence type (ST)-specific collections for our three most commonly identified STs. These were the globally successful ST131, ST410 and ST167, and the dominant ESBL genes were bla CTX-M, mirroring global trends. However, 37 % of Malawian isolates did not cluster with any isolates in the curated multicountry collection and phylogenies were consistent with locally spreading monophyletic clades, including within the globally distributed, carbapenemase-associated B4/H24RxC ST410 lineage. A single ST2083 isolate in this collection harboured a carbapenemase gene. Long read sequencing demonstrated the presence of a globally distributed ST410-associated carbapenemase carrying plasmid in this isolate, which was absent from the ST410 strains in our collection. We conclude there is a risk that carbapenem resistance in E. coli could proliferate rapidly in Malawi under increasing selection pressure, and that both ongoing antimicrobial stewardship and genomic surveillance are critical as local carbapenem use increases.
Collapse
Affiliation(s)
- Joseph M. Lewis
- Malawi-Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK
- Wellcome Sanger Institute, Hinxton, UK
| | - Madalitso Mphasa
- Malawi-Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Rachel Banda
- Malawi-Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | | | - Jane Mallewa
- Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Catherine Anscome
- Malawi-Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Allan Zuza
- Malawi-Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Adam P. Roberts
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Eva Heinz
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Nicholas R. Thomson
- Wellcome Sanger Institute, Hinxton, UK
- London School of Hygiene and Tropical Medicine, London, UK
| | - Nicholas A. Feasey
- Malawi-Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
- London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
6
|
Venne DM, Hartley DM, Malchione MD, Koch M, Britto AY, Goodman JL. Review and analysis of the overlapping threats of carbapenem and polymyxin resistant E. coli and Klebsiella in Africa. Antimicrob Resist Infect Control 2023; 12:29. [PMID: 37013626 PMCID: PMC10071777 DOI: 10.1186/s13756-023-01220-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/18/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Carbapenem-resistant Enterobacterales are among the most serious antimicrobial resistance (AMR) threats. Emerging resistance to polymyxins raises the specter of untreatable infections. These resistant organisms have spread globally but, as indicated in WHO reports, the surveillance needed to identify and track them is insufficient, particularly in less resourced countries. This study employs comprehensive search strategies with data extraction, meta-analysis and mapping to help address gaps in the understanding of the risks of carbapenem and polymyxin resistance in the nations of Africa. METHODS Three comprehensive Boolean searches were constructed and utilized to query scientific and medical databases as well as grey literature sources through the end of 2019. Search results were screened to exclude irrelevant results and remaining studies were examined for relevant information regarding carbapenem and/or polymyxin(s) susceptibility and/or resistance amongst E. coli and Klebsiella isolates from humans. Such data and study characteristics were extracted and coded, and the resulting data was analyzed and geographically mapped. RESULTS Our analysis yielded 1341 reports documenting carbapenem resistance in 40 of 54 nations. Resistance among E. coli was estimated as high (> 5%) in 3, moderate (1-5%) in 8 and low (< 1%) in 14 nations with at least 100 representative isolates from 2010 to 2019, while present in 9 others with insufficient isolates to support estimates. Carbapenem resistance was generally higher among Klebsiella: high in 10 nations, moderate in 6, low in 6, and present in 11 with insufficient isolates for estimates. While much less information was available concerning polymyxins, we found 341 reports from 33 of 54 nations, documenting resistance in 23. Resistance among E. coli was high in 2 nations, moderate in 1 and low in 6, while present in 10 with insufficient isolates for estimates. Among Klebsiella, resistance was low in 8 nations and present in 8 with insufficient isolates for estimates. The most widespread associated genotypes were, for carbapenems, blaOXA-48, blaNDM-1 and blaOXA-181 and, for polymyxins, mcr-1, mgrB, and phoPQ/pmrAB. Overlapping carbapenem and polymyxin resistance was documented in 23 nations. CONCLUSIONS While numerous data gaps remain, these data show that significant carbapenem resistance is widespread in Africa and polymyxin resistance is also widely distributed, indicating the need to support robust AMR surveillance, antimicrobial stewardship and infection control in a manner that also addresses broader animal and environmental health dimensions.
Collapse
Affiliation(s)
- Danielle M Venne
- Center on Medical Product Access, Safety and Stewardship, Georgetown University, 3900 Reservoir Road, Washington, DC, 20057, USA
| | - David M Hartley
- James M. Anderson Center for Health Systems Excellence, Cincinnati Children's Hospital, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Marissa D Malchione
- Center on Medical Product Access, Safety and Stewardship, Georgetown University, 3900 Reservoir Road, Washington, DC, 20057, USA
- Sabin Vaccine Institute, Influenza Vaccine Innovation, 2175 K St NW, Washington, DC, 20037, USA
| | - Michala Koch
- Center on Medical Product Access, Safety and Stewardship, Georgetown University, 3900 Reservoir Road, Washington, DC, 20057, USA
| | - Anjali Y Britto
- Center on Medical Product Access, Safety and Stewardship, Georgetown University, 3900 Reservoir Road, Washington, DC, 20057, USA
| | - Jesse L Goodman
- Center on Medical Product Access, Safety and Stewardship, Georgetown University, 3900 Reservoir Road, Washington, DC, 20057, USA.
| |
Collapse
|
7
|
Choonara FE, Haldorsen BC, Janice J, Mbanga J, Ndhlovu I, Saulosi O, Maida T, Lampiao F, Simonsen GS, Essack SY, Sundsfjord A. Molecular Epidemiological Characterisation of ESBL- and Plasmid-Mediated AmpC-Producing Escherichia coli and Klebsiella pneumoniae at Kamuzu Central Hospital, Lilongwe, Malawi. Trop Med Infect Dis 2022; 7:245. [PMID: 36136656 PMCID: PMC9501462 DOI: 10.3390/tropicalmed7090245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
The global rise in infections caused by multidrug resistant (MDR) Enterobacterales poses a public health problem. We have performed a molecular epidemiological characterisation of representative plasmid-mediated AmpC (pAmpC) and ESBL-positive clinical isolates of Escherichia coli (n = 38) and Klebsiella pneumoniae (n = 17) from a tertiary hospital in Malawi collected in 2017. BlaCTX-M-15 was the most prevalent ESBL-determinant in E. coli (n = 30/38) and K. pneumoniae (n = 17/17), whereas blaCMY-2 was detected in nearly all AmpC-phenotype E. coli (n = 15/17). Whole genome sequencing revealed dominant globally disseminated E. coli sequence types (STs); ST410 (n = 16), ST131 (n = 7), and ST617 (n = 6). The ST distribution in K. pneumoniae was more diverse but included ST101 (n = 2), ST14 (n = 2), and ST340 (n = 2), all considered high-risk MDR clones. The isolates expressed an MDR profile, including resistance against commonly used antibiotics, such as fluoroquinolones, aminoglycosides, and/or trimethoprim-sulfamethoxazole, and harboured corresponding resistance determinants. Clonal analyses of the major STs of E. coli revealed closely related genetic clusters within ST410, ST131, and ST617 supporting within-hospital transmission between patients and/or via a common reservoir. The overall findings add to the limited knowledge on the molecular epidemiology of MDR E. coli and K. pneumoniae in Malawi and may help health policy makers to identify areas to target when addressing this major threat of antibiotic resistance.
Collapse
Affiliation(s)
- Faheema Ebrahim Choonara
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4041, South Africa
- Microbiology Laboratory, Kamuzu Central Hospital, Lilongwe P.O. Box 149, Malawi
- Africa Centre of Excellence in Public Health and Herbal Medicine, College of Medicine, University of Malawi, Private Bag 360, Blantyre 3, Malawi
| | - Bjørg Christina Haldorsen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance (K-res), Department of Microbiology and Infection Control, University Hospital of North Norway, 9038 Tromsø, Norway
| | - Jessin Janice
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance (K-res), Department of Microbiology and Infection Control, University Hospital of North Norway, 9038 Tromsø, Norway
| | - Joshua Mbanga
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4041, South Africa
- Department of Applied Biology and Biochemistry, National University of Science and Technology, Corner Cecil & Gwanda Road, Private Bag 939, Bulwayo P.O. Box AC939, Zimbabwe
| | - Isaac Ndhlovu
- Microbiology Laboratory, Kamuzu Central Hospital, Lilongwe P.O. Box 149, Malawi
| | - Osborne Saulosi
- Microbiology Laboratory, Kamuzu Central Hospital, Lilongwe P.O. Box 149, Malawi
| | - Tarsizio Maida
- Microbiology Laboratory, Kamuzu Central Hospital, Lilongwe P.O. Box 149, Malawi
| | - Fanuel Lampiao
- Africa Centre of Excellence in Public Health and Herbal Medicine, College of Medicine, University of Malawi, Private Bag 360, Blantyre 3, Malawi
| | - Gunnar Skov Simonsen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance (K-res), Department of Microbiology and Infection Control, University Hospital of North Norway, 9038 Tromsø, Norway
- Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Sabiha Yusuf Essack
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4041, South Africa
| | - Arnfinn Sundsfjord
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance (K-res), Department of Microbiology and Infection Control, University Hospital of North Norway, 9038 Tromsø, Norway
- Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| |
Collapse
|
8
|
Lewis JM, Mphasa M, Banda R, Beale MA, Mallewa J, Heinz E, Thomson NR, Feasey NA. Genomic and antigenic diversity of colonizing Klebsiella pneumoniae isolates mirrors that of invasive isolates in Blantyre, Malawi. Microb Genom 2022; 8:000778. [PMID: 35302438 PMCID: PMC9176273 DOI: 10.1099/mgen.0.000778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/12/2022] [Indexed: 12/24/2022] Open
Abstract
Members of the Klebsiella pneumoniae species complex, particularly K. pneumoniae subsp. pneumoniae are antimicrobial resistance (AMR) associated pathogens of global importance, and polyvalent vaccines targeting Klebsiella O-antigens are in development. Whole-genome sequencing has provided insight into O-antigen distribution in the K. pneumoniae species complex, as well as population structure and virulence determinants, but genomes from sub-Saharan Africa are underrepresented in global sequencing efforts. We therefore carried out a genomic analysis of extended-spectrum beta-lactamase (ESBL)-producing K. pneumoniae species complex isolates colonizing adults in Blantyre, Malawi. We placed these isolates in a global genomic context, and compared colonizing to invasive isolates from the main public hospital in Blantyre. In total, 203 isolates from stool and rectal swabs from adults were whole-genome sequenced and compared to a publicly available multicounty collection and previously sequenced Malawian and Kenyan isolates from blood or sterile sites. We inferred phylogenetic relationships and analysed the diversity of genetic loci linked to AMR, virulence, capsule and LPS O-antigen (O-types). We find that the diversity of Malawian K. pneumoniae subsp. pneumoniae isolates represents the species' population structure, but shows distinct local signatures concerning clonal expansions. Siderophore and hypermucoidy genes were more frequent in invasive versus colonizing isolates (present in 13 % vs 1 %) but still generally lacking in most invasive isolates. O-antigen population structure and distribution was similar in invasive and colonizing isolates, with O4 more common (14%) than in previously published studies (2-5 %). We conclude that host factors, pathogen opportunity or alternate virulence loci not linked to invasive disease elsewhere are likely to be the major determinants of invasive disease in Malawi. Distinct ST and O-type distributions in Malawi highlight the need to sample locations where the burden of invasive Klebsiella disease is greatest to robustly define secular trends in Klebsiella diversity to assist in the development of a useful vaccine. Colonizing and invasive isolates in Blantyre are similar, hence O-typing of colonizing Klebsiella isolates may be a rapid and cost-effective approach to describe global diversity and guide vaccine development.
Collapse
Affiliation(s)
- Joseph M. Lewis
- Malawi-Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, UK
- University of Liverpool, Liverpool, UK
- Wellcome Sanger Institute, Hinxton, UK
| | - Madalitso Mphasa
- Malawi-Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Rachel Banda
- Malawi-Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | | | - Jane Mallewa
- Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Eva Heinz
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - Nicholas R. Thomson
- Wellcome Sanger Institute, Hinxton, UK
- London School of Hygiene and Tropical Medicine, London, UK
| | - Nicholas A. Feasey
- Malawi-Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, UK
- Kamuzu University of Health Sciences, Blantyre, Malawi
- London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
9
|
Manyahi J, Moyo SJ, Kibwana U, Goodman RN, Allman E, Hubbard ATM, Blomberg B, Langeland N, Roberts AP. First identification of bla
NDM-5 producing Escherichia coli from neonates and a HIV infected adult in Tanzania. J Med Microbiol 2022; 71. [PMID: 35225760 PMCID: PMC8941953 DOI: 10.1099/jmm.0.001513] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Introduction. Carbapenem-resistant members of the family Enterobacteriaceae are emerging as a global public-health threat and cause substantial challenges in clinical practice. Gap Statement. There is a need for increased and continued genomic surveillance of antimicrobial resistance genes globally in order to detect outbreaks and dissemination of clinically important resistance genes and their associated mobile genetic elements in human pathogens. Aim. To describe the resistance mechanisms of carbapenem-resistant Escherichia coli. Methods. Rectal swabs from neonates and newly diagnosed human immunodeficiency virus (HIV) infected adults were collected between April 2017 and May 2018 and screened for faecal carriage of carbapenamases and OXA-48 producing members of the family Enterobacteriaceae. Bacterial isolates were identified using matrix assisted laser desorption ionization time of flight mass spectrometry. Antimicrobial susceptibility testing was performed by E-test. Whole genomes of carbapenem-resistant E. coli were investigated using a hybrid assembly of Illumina and Oxford Nanopore Technologies sequencing reads. Results. Three carbapenem-resistant E. coli were detected, two from neonates and one from an HIV infected adult. All three isolates carried blaNDM-5. Two E. coli from neonates belonged to ST167 and blaNDM-5 co-existed with blaCTX-M-15 and blaOXA-01, and all were carried on IncFIA type plasmids. The E. coli from the HIV infected adult belonged to ST2083, and carried blaNDM-5 on an IncX3 type plasmid and blaCMY-42 on an IncI type plasmid. All blaNDM-5 carrying plasmids contained conjugation related genes. In addition, E. coli from the HIV infected adult carried three more plasmid types; IncFIA, IncFIB and Col(BS512). One E. coli from a neonate also carried one extra plasmid Col(BS512). All three E. coli harboured resistance genes to fluoroquinolone, aminoglycosides, sulfamethoxazole, trimethoprim, macrolides and tetracycline, carried on the IncFIA type plasmid. Furthermore, E. coli from the neonates carried a chloramphenicol resistance gene (catB3), also on the IncFIA plasmid. All three isolates were susceptible to colistin. Conclusion. This is the first report, to our knowledge, from Tanzania detecting blaNDM-5 producing E. coli. The carbapenemase gene was carried on an IncFIA and IncX3 type plasmids. Our findings highlight the urgent need for a robust antimicrobial resistance (AMR) surveillance system to monitor and rapidly report on the incidence and spread of emerging resistant bacteria in Tanzania.
Collapse
Affiliation(s)
- Joel Manyahi
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, MUHAS, Dar es Salaam, Tanzania
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Norwegian National Advisory Unit for Tropical Infectious Diseases, Haukeland University Hospital, Bergen, Norway
| | - Sabrina J. Moyo
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, MUHAS, Dar es Salaam, Tanzania
| | - Upendo Kibwana
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, MUHAS, Dar es Salaam, Tanzania
| | - Richard N. Goodman
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Ellie Allman
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Alasdair T. M. Hubbard
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Bjørn Blomberg
- Norwegian National Advisory Unit for Tropical Infectious Diseases, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Nina Langeland
- Norwegian National Advisory Unit for Tropical Infectious Diseases, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Adam P. Roberts
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| |
Collapse
|
10
|
Hammer-Dedet F, Aujoulat F, Jumas-Bilak E, Licznar-Fajardo P. Persistence and Dissemination Capacities of a BlaNDM-5-Harboring IncX-3 Plasmid in Escherichia coli Isolated from an Urban River in Montpellier, France. Antibiotics (Basel) 2022; 11:antibiotics11020196. [PMID: 35203799 PMCID: PMC8868147 DOI: 10.3390/antibiotics11020196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 02/01/2023] Open
Abstract
To investigate the capacities of persistence and dissemination of blaNDM-5 within Escherichia coli and in aquatic environment, we characterized E. coli (sequence type 636) strains B26 and B28 isolated one month apart from the same urban river in Montpellier, France. The two isolates carried a pTsB26 plasmid, which sized 45,495 Kb, harbored blaNDM-5 gene and belonged to IncX-3 incompatibility group. pTsB26 was conjugative in vitro at high frequency, it was highly stable after 400 generations and it exerted no fitness cost on its host. blaNDM-5harboring plasmids are widely dispersed in E. coli all around the world, with no lineage specialization. The genomic comparison between B26 and B28 stated that the two isolates probably originated from the same clone, suggesting the persistence of pTsB26 in an E. coli host in aquatic environment.
Collapse
Affiliation(s)
- Florence Hammer-Dedet
- HSM, University Montpellier, CNRS, IRD, 34090 Montpellier, France; (F.H.-D.); (F.A.)
| | - Fabien Aujoulat
- HSM, University Montpellier, CNRS, IRD, 34090 Montpellier, France; (F.H.-D.); (F.A.)
| | - Estelle Jumas-Bilak
- HSM, University of Montpellier, CNRS, IRD, CHU Montpellier, 34090 Montpellier, France;
| | - Patricia Licznar-Fajardo
- HSM, University of Montpellier, CNRS, IRD, CHU Montpellier, 34090 Montpellier, France;
- Correspondence:
| |
Collapse
|
11
|
Cornick J, Musicha P, Peno C, Seager E, Iroh Tam PY, Bilima S, Bennett A, Kennedy N, Feasey N, Heinz E, Cain AK. Genomic investigation of a suspected Klebsiella pneumoniae outbreak in a neonatal care unit in sub-Saharan Africa. Microb Genom 2021; 7. [PMID: 34793293 PMCID: PMC8743538 DOI: 10.1099/mgen.0.000703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A special-care neonatal unit from a large public hospital in Malawi was noted as having more frequent, difficult-to-treat infections, and a suspected outbreak of multi-drug-resistant Klebsiella pneumoniae was investigated using genomic characterisation. All K. pneumoniae bloodstream infections (BSIs) from patients in the neonatal ward (n=62), and a subset of K. pneumoniae BSI isolates (n=38) from other paediatric wards in the hospital, collected over a 4 year period were studied. After whole genome sequencing, the strain sequence types (STs), plasmid types, virulence and resistance genes were identified. One ST340 clone, part of clonal complex 258 (CC258) and an ST that drives hospital outbreaks worldwide, harbouring numerous resistance genes and plasmids, was implicated as the likely cause of the outbreak. This study contributes molecular information necessary for tracking and characterizing this important hospital pathogen in sub-Saharan Africa.
Collapse
Affiliation(s)
- Jennifer Cornick
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi.,Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Patrick Musicha
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi.,Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Chikondi Peno
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi.,Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Ezgi Seager
- Birmingham Heartlands Hospital, University Hospitals Birmingham NHS Foundation Trust, Bordesley Green East, Birmingham, B9 5SS, UK
| | - Pui-Ying Iroh Tam
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi.,Liverpool School of Tropical Medicine, Liverpool, UK
| | - Sithembile Bilima
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Aisleen Bennett
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi.,Institute for Infection and Immunity, St George's, University of London, London, UK
| | - Neil Kennedy
- Centre for Medical Education, Queen's University Belfast, Belfast, Ireland.,Department of Paediatrics, College of Medicine, University of Malawi, Zomba, Malawi
| | - Nicholas Feasey
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi.,Liverpool School of Tropical Medicine, Liverpool, UK
| | - Eva Heinz
- Pathogen Genomics, Wellcome Sanger Institute, Cambridge, UK.,Liverpool School of Tropical Medicine, Liverpool, UK
| | - Amy K Cain
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi.,Pathogen Genomics, Wellcome Sanger Institute, Cambridge, UK.,Department of Molecular Sciences, Macquarie University, Sydney, Australia.,Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
12
|
Nwabor OF, Terbtothakun P, Voravuthikunchai SP, Chusri S. A Bibliometric Meta-Analysis of Colistin Resistance in Klebsiella pneumoniae. Diseases 2021; 9:44. [PMID: 34202931 PMCID: PMC8293170 DOI: 10.3390/diseases9020044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022] Open
Abstract
Colistin is a last resort antibiotic medication for the treatment of infections caused by carbapenem-resistant Klebsiella pneumoniae. In recent years, various mechanisms have been reported to mediate colistin resistance in K. pneumoniae. This study reports a bibliometric analysis of published articles retrieved from the Scopus database relating to colistin resistance in K. pneumoniae. The research trends in colistin resistance and mechanisms of resistance were considered. A total of 1819 research articles published between 1995 and 2019 were retrieved, and the results indicated that 50.19% of the documents were published within 2017-2019. The USA had the highest participation with 340 (14.31%) articles and 14087 (17.61%) citations. Classification based on the WHO global epidemiological regions showed that the European Region contributed 42% of the articles while the American Region contributed 21%. The result further indicated that 45 countries had published at least 10 documents with strong international collaborations amounting to 272 links and a total linkage strength of 735. A total of 2282 keywords were retrieved; however, 57 keywords had ≥15 occurrences with 764 links and a total linkage strength of 2388. Furthermore, mcr-1, colistin resistance, NDM, mgrB, ceftazidime-avibactam, MDR, combination therapy, and carbapenem-resistant Enterobacteriaceae were the trending keywords. Concerning funders, the USA National Institute of Health funded 9.1% of the total research articles, topping the list. The analysis indicated poor research output, collaboration, and funding from Africa and South-East Asia and demands for improvement in international research collaboration.
Collapse
Affiliation(s)
- Ozioma Forstinus Nwabor
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; (O.F.N.); (P.T.)
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand;
| | - Pawarisa Terbtothakun
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; (O.F.N.); (P.T.)
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand;
| | - Supayang P. Voravuthikunchai
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand;
| | - Sarunyou Chusri
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; (O.F.N.); (P.T.)
| |
Collapse
|
13
|
Sumbana JJ, Santona A, Fiamma M, Taviani E, Deligios M, Zimba T, Lucas G, Sacarlal J, Rubino S, Paglietti B. Extraintestinal Pathogenic Escherichia coli ST405 Isolate Coharboring blaNDM-5 and blaCTXM-15: A New Threat in Mozambique. Microb Drug Resist 2021; 27:1633-1640. [PMID: 34077257 DOI: 10.1089/mdr.2020.0334] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The development of carbapenem resistance in extraintestinal pathogenic Escherichia coli (ExPEC) has significant clinical implications, particularly in countries where second-line antimicrobials are not readily available, rendering treatments ineffective, and ExPEC infections untreatable. Thus, early detection of high-risk ExPEC lineages and raising awareness of the specific mechanisms underlying carbapenem resistance are mandatory for the selection of appropriate treatment options and the prevention of E. coli spread. This study aims to investigate the phenotypic and genotypic features of the first NDM-5 carbapenemase-producing ExPEC strain isolated from the blood of a patient admitted to the Maputo Central Hospital (MCH), in Mozambique. E. coli SSM100 isolate was identified by MALDI-TOF, it displayed high-level resistance to third generation cephalosporins, carbapenems, fluoroquinolones, and aminoglycosides, performing antimicrobial susceptibilities testing by VITEK 2 system. E. coli SSM100 isolate was classified through whole-genome sequencing as ST405-D-O102: H6, a globally distributed lineage associated with antimicrobial resistance, carrying the blaNDM-5 gene located on an F1:A1:B49 plasmid, coharboring blaCTX-M-15, blaTEM-1, aadA2, sul1, and dfrA12 genes. In addition, mutations in gyrA (S83L and D87N), parC (S80I and E84V), and parE (I529L) conferring fluoroquinolone resistance were also found. Moreover, SSM100 isolate carried 88 virulence genes, of which 28 are reported to be associated with UPEC. The emergence of NDM-5 carbapenemase in a pandemic ST405-D-O102:H6 clone in Mozambique is of great concern. Locations of extended-spectrum β-lactamase determinants and NDM-5 carbapenemase gene on IncF-plasmid can increase their spread reinforcing the need for antimicrobial surveillance and the urgent introduction of carbapenemase detection tests in diagnostic laboratories of the country.
Collapse
Affiliation(s)
- José João Sumbana
- Department of Biological Sciences, Eduardo Mondlane University, Maputo, Mozambique.,Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Antonella Santona
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Maura Fiamma
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Elisa Taviani
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy.,Center of Biotechnology, Eduardo Mondlane University, Maputo, Mozambique
| | - Massimo Deligios
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | | | | | - Jahit Sacarlal
- Department of Microbiology, Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique
| | - Salvatore Rubino
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Bianca Paglietti
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
14
|
Elbadawi HS, Elhag KM, Mahgoub E, Altayb HN, Ntoumi F, Elton L, McHugh TD, Tembo J, Ippolito G, Osman AY, Zumla A, Hamid MMA. Detection and characterization of carbapenem resistant Gram-negative bacilli isolates recovered from hospitalized patients at Soba University Hospital, Sudan. BMC Microbiol 2021; 21:136. [PMID: 33947325 PMCID: PMC8094518 DOI: 10.1186/s12866-021-02133-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
Background Antimicrobial resistance (AMR) poses a complex threat to global health security and universal health coverage. Recently, nosocomial infections with carbapenemase-producing Gram-negative bacilli (GNB) is increasing worldwide. We report the molecular characterization and detection of genes associated with carbapenemase producing Gram negative bacteria isolated from hospitalized patients at Soba University Hospital (SUH) in Khartoum State, Sudan. Results Between October 2016 and February 2017, a total of 206 GNB clinical specimens were collected from hospitalized patients in SUH. Of 206 carbapenem resistance isolates, 171 (83 %) were confirmed as phenotypically resistant and 121 (58.7 %) isolates harboured one or more carbapenemase genes. New Delhi metallo-β-lactamase (NDM) types were the most predominant genes, blaNDM 107(52 %), followed by blaIMP 7 (3.4 %), blaOXA-48 5(2.4 %) and blaVIM 2 (0.9 %). Co-resistance genes with NDM producing GNB were detected in 87 (81.3 %) of all blaNDM producing isolates. NDM-1 was the most frequent subtype observed in 75 (70 %) blaNDM producing isolates. The highest percentage of resistance was recorded in ampicillin (98 %), cephalexin (93.5 %) amoxicillin clavulanic acid (90 %), cefotaxime (89.7 %), ceftriaxone (88.4 %), ceftazidime (84.2 %), sulfamethoxazole-trimethoprim (78.4 %) and nitrofurantoin (75.2 %), aztreonam (66 %) and temocillin (64 %). A close correlation between phenotypic and carbapenemase genes detection in all GNB was observed. Conclusions The frequency of carbapenemase producing bacilli was found to be high in SUH. NDM was found to be the most prevalent carbapenemase gene among clinical isolates. Close surveillance across all hospitals in Sudan is required. The relative distribution of carbapenemase genes among GNB in nosocomial infections in Africa needs to be defined.
Collapse
Affiliation(s)
- Hana S Elbadawi
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan. .,Soba University Hospital, University of Khartoum, Khartoum, Sudan.
| | - Kamal M Elhag
- Soba University Hospital, University of Khartoum, Khartoum, Sudan.,Ahfad University for Women, Omdurman, Sudan
| | - Elsheikh Mahgoub
- Department of Microbiology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Hisham N Altayb
- Department of Biochemistry, College of Sciences, King Abdul-Aziz University, Jeddah, Kingdom of Saudi Arabia
| | - Francine Ntoumi
- Université Marien NGouabi, Fondation Congolaise pour la Recherche Médicale (FCRM), Brazzaville, Congo.,Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Linzy Elton
- Center for Clinical Microbiology, University College London, Royal Free Campus, Rowland Hill Street, NW3 2PF, London, United Kingdom
| | - Timothy D McHugh
- Center for Clinical Microbiology, University College London, Royal Free Campus, Rowland Hill Street, NW3 2PF, London, United Kingdom
| | - John Tembo
- UNZA-UCLMS and HERPEZ Research and training programs, University teaching Hospital, Lusaka, Zambia
| | - Giuseppe Ippolito
- National Institute for Infectious Diseases, IRCCS, Via Portuense 292, 00149, Lazzaro Spallanzani, Rome, Italy
| | - Abdinasir Yusuf Osman
- The Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire, UK
| | - Alimuddin Zumla
- Center for Clinical Microbiology, University College London, Royal Free Campus, Rowland Hill Street, NW3 2PF, London, United Kingdom.,UCL Hospitals NIHR Biomedical Research Centre London, London, UK
| | | |
Collapse
|
15
|
Kumwenda GP, Sugawara Y, Akeda Y, Matsumoto Y, Motooka D, Tomono K, Hamada S. Genomic features of plasmids coding for KPC-2, NDM-5 or OXA-48 carbapenemases in Enterobacteriaceae from Malawi. J Antimicrob Chemother 2021; 76:267-270. [PMID: 32929493 DOI: 10.1093/jac/dkaa387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Geoffrey Peterkins Kumwenda
- Japan-Thailand Research Collaboration Center on Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Department of Infection Control and Prevention, Osaka University Graduate School of Medicine, Osaka, Japan
- Microbiology Department, National Reference Laboratory, Community Health Sciences Unit, Ministry of Health, Lilongwe, Malawi
| | - Yo Sugawara
- Japan-Thailand Research Collaboration Center on Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yukihiro Akeda
- Japan-Thailand Research Collaboration Center on Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Department of Infection Control and Prevention, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuki Matsumoto
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Daisuke Motooka
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Kazunori Tomono
- Department of Infection Control and Prevention, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shigeyuki Hamada
- Japan-Thailand Research Collaboration Center on Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| |
Collapse
|