1
|
Williams MD, Smith L. Streptococcus salivarius and Ligilactobacillus salivarius: Paragons of Probiotic Potential and Reservoirs of Novel Antimicrobials. Microorganisms 2025; 13:555. [PMID: 40142448 PMCID: PMC11944278 DOI: 10.3390/microorganisms13030555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
This review highlights several basic problems associated with bacterial drug resistance, including the decreasing efficacy of commercially available antimicrobials as well as the related problem of microbiome irregularity and dysbiosis. The article explains that this present situation is addressable through LAB species, such as Streptococcus salivarius and Ligilactobacillus salivarius, which are well established synthesizers of both broad- and narrow-spectrum antimicrobials. The sheer number of antimicrobials produced by LAB species and the breadth of their biological effects, both in terms of their bacteriostatic/bactericidal abilities and their immunomodulation, make them prime candidates for new probiotics and antibiotics. Given the ease with which several of the molecules can be biochemically engineered and the fact that many of these compounds target evolutionarily constrained target sites, it seems apparent that these compounds and their producing organisms ought to be looked at as the next generation of robust dual action symbiotic drugs.
Collapse
Affiliation(s)
| | - Leif Smith
- Department of Biology, Texas A&M University, College Station, TX 77843, USA;
- Antimicrobial Division, Sano Chemicals Inc., Bryan, TX 77808, USA
| |
Collapse
|
2
|
Vernon JJ. Modulation of the Human Microbiome: Probiotics, Prebiotics, and Microbial Transplants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1472:277-294. [PMID: 40111698 DOI: 10.1007/978-3-031-79146-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The balance between health and disease is intrinsically linked to the interactions between microbial communities and the host. This complex environment of antagonism and synergy involves both prokaryotic and eukaryotic cells, whose collaborative metabolic pathways and immunomodulatory elements influence system homeostasis. As with the gut and other niches, the oral microbiome has the capacity to affect distal host sites. The ability to manipulate this environment holds the potential to impact local and systemic disease.With the increasing threat of antimicrobial resistance, novel approaches to reduce the burden of disease are essential. The use of probiotics and prebiotics is one such strategy. Probiotics introduce non-pathogenic bacteria into the environment to compete with pathogens for nutrients and attachment sites, or to produce metabolites that counteract disease aetiologies. Prebiotic compounds enhance the growth of health-associated organisms, offering additional benefits, whilst a conjunctive approach with probiotics potentially holds even greater promise. Though widely studied in the gastrointestinal context, their potential for treating oral diseases, such as dental caries and periodontitis, is less understood. Additionally, the use of microbial transplantations has demonstrated efficacy in other areas, reducing systemic inflammation and recolonising with commensal bacteria. Here we evaluate their use in the oral context and their modulatory impact on overall health.In this chapter, we discuss how pro- and prebiotic strategies seek to modulate both the oral and gut environments to promote oral health and prevent disease. We assess novel approaches for utilising health-associated microorganisms to combat oral disorders, either administered locally in the mouth or imparting influence through immune modulation via the oral-gut axis. By examining available clinical trial data, we aim to further understand the intricacies involved in this discipline. Furthermore, we consider the challenges facing the research community, including optimal candidate organism/compound selection and colonisation retention, as well as considerations for future research.
Collapse
Affiliation(s)
- Jon J Vernon
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, UK.
| |
Collapse
|
3
|
Boonpethkaew S, Charoensuksira S, Meephansan J, Sirithanabadeekul P, Chueachavalit C, Ingkaninanda P, Visedthorn S, Chanchaem P, Sivapornnukul P, Payungporn S. The influence of air pollution on skin microbiome: a link to skin barrier dysfunction. Arch Dermatol Res 2024; 316:710. [PMID: 39460761 DOI: 10.1007/s00403-024-03448-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/22/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024]
Abstract
An equilibrium of skin microbiome is crucial for maintaining skin barrier function. However, external factors such as air pollution have the potential to disrupt this equilibrium. Hence, further investigation into the influence of air pollution on the skin microbiome emerges as a critical imperative. Healthy women matched for age from two different ambient air cities in Thailand: Bangkok, characterized by highly polluted air (HPA) (n = 33), and Songkhla, characterized by less polluted air (LPA) (n = 33) were recruited. Skin barrier physiological parameters were measured on the forehead skin. Microbiome samples were collected via the scraping and swabbing technique from the forehead skin and analyzed for microbiome profiles using amplicon sequencing. We found that the abundant microbiome at the phylum level was comparable between HPA- and LPA-exposed skin. However, microbiome diversity was decreased at genus level of fungus and species level of bacteria on HPA-exposed skin. Interestingly, some relatively higher enriched microbiome correlated with skin barrier physiological parameters. Specifically, a higher enrichment of Streptococcus parasanguinis on LPA-exposed skin correlated with both lower skin pH and higher stratum corneum (SC) hydration. Conversely, a higher enrichment of Malassezia spp. and Aureobasidum spp. on HPA-exposed skin was correlated with increased transepidermal water loss and decreased SC hydration, respectively. In conclusion, air pollution potentially affects the skin microbiome by reducing its diversity, disrupting its beneficial correlations with barrier physiology, and promoting the overgrowth of pathogenic microbiome, resulting in decreased hydration and increased pH levels. These factors could ultimately lead to skin barrier dysfunction.
Collapse
Affiliation(s)
- Suphagan Boonpethkaew
- Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Rangsit Campus, Klong Luang, Pathum Thani, 12120, Thailand
- Thammasat University, Pattaya Campus, Chonburi, 20150, Thailand
| | - Sasin Charoensuksira
- Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Rangsit Campus, Klong Luang, Pathum Thani, 12120, Thailand
| | - Jitlada Meephansan
- Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Rangsit Campus, Klong Luang, Pathum Thani, 12120, Thailand.
- Samitivej Sukhumvit Hospital, Bangkok Dusit Medical Services PLC, Bangkok, 10310, Thailand.
| | - Punyaphat Sirithanabadeekul
- Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Rangsit Campus, Klong Luang, Pathum Thani, 12120, Thailand
- Samitivej Sukhumvit Hospital, Bangkok Dusit Medical Services PLC, Bangkok, 10310, Thailand
| | - Chutinan Chueachavalit
- Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Rangsit Campus, Klong Luang, Pathum Thani, 12120, Thailand
| | - Patlada Ingkaninanda
- Division of Dermatology, Department of Medicine, Rajavithi Hospital, Ministry of Public Health, Bangkok, 10400, Thailand
| | - Suthida Visedthorn
- Research Unit of Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Prangwalai Chanchaem
- Research Unit of Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pavaret Sivapornnukul
- Research Unit of Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sunchai Payungporn
- Research Unit of Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
4
|
Goeteyn E, Taylor SL, Dicker A, Bollé L, Wauters M, Joossens M, Van Braeckel E, Simpson JL, Burr L, Chalmers JD, Rogers GB, Crabbé A. Aggregatibacter is inversely associated with inflammatory mediators in sputa of patients with chronic airway diseases and reduces inflammation in vitro. Respir Res 2024; 25:368. [PMID: 39395980 PMCID: PMC11471032 DOI: 10.1186/s12931-024-02983-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 09/18/2024] [Indexed: 10/14/2024] Open
Abstract
BACKGROUND Chronic airway disease (CAD) is characterized by chronic airway inflammation and colonization of the lungs by pro-inflammatory pathogens. However, while various other bacterial species are present in the lower airways, it is not fully understood how they influence inflammation. We aimed to identify novel anti-inflammatory species present in lower airway samples of patients with CAD. METHODS Paired sputum microbiome and inflammatory marker data of adults with CAD across three separate cohorts (Australian asthma and bronchiectasis, Scottish bronchiectasis) was analyzed using Linear discriminant analysis Effect Size (LEfSE) and Spearman correlation analysis to identify species associated with a low inflammatory profile in patients. RESULTS We identified the genus Aggregatibacter as more abundant in patients with lower levels of airway inflammatory markers in two CAD cohorts (Australian asthma and bronchiectasis). In addition, the relative abundance of Aggregatibacter was inversely correlated with sputum IL-8 (Australian bronchiectasis) and IL-1β levels (Australian asthma and bronchiectasis). Subsequent in vitro testing, using a physiologically relevant three-dimensional lung epithelial cell model, revealed that Aggregatibacter spp. (i.e. A. actinomycetemcomitans, A. aphrophilus) and their cell-free supernatant exerted anti-inflammatory activity without influencing host cell viability. CONCLUSIONS These findings suggest that Aggregatibacter spp. might act to reduce airway inflammation in CAD patients.
Collapse
Affiliation(s)
- Ellen Goeteyn
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Steven L Taylor
- Microbiome and Host Health Programme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Alison Dicker
- Scottish Centre for Respiratory Research, University of Dundee, Dundee, UK
| | - Laura Bollé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
- Respiratory Infection and Defense Lab (RIDL), Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Merel Wauters
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
| | - Marie Joossens
- Laboratory of Microbiology, Ghent University, Ghent, Belgium
| | - Eva Van Braeckel
- Respiratory Infection and Defense Lab (RIDL), Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Jodie L Simpson
- Faculty of Health and Medicine, Priority Research Centre for Healthy Lungs, University of Newcastle, Newcastle, NSW, Australia
| | - Lucy Burr
- Department of Respiratory Medicine, Mater Health Sciences, South Brisbane, QLD, Australia
- Mater Research - University of Queensland, Aubigny Place, South Brisbane, QLD, Australia
| | - James D Chalmers
- Scottish Centre for Respiratory Research, University of Dundee, Dundee, UK
| | - Geraint B Rogers
- Microbiome and Host Health Programme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium.
| |
Collapse
|
5
|
Senthil Kumar S, Johnson MDL, Wilson JE. Insights into the enigma of oral streptococci in carcinogenesis. Microbiol Mol Biol Rev 2024; 88:e0009523. [PMID: 38506551 PMCID: PMC11338076 DOI: 10.1128/mmbr.00095-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
SUMMARYThe genus Streptococcus consists of a taxonomically diverse group of Gram-positive bacteria that have earned significant scientific interest due to their physiological and pathogenic characteristics. Within the genus Streptococcus, viridans group streptococci (VGS) play a significant role in the oral ecosystem, constituting approximately 80% of the oral biofilm. Their primary role as pioneering colonizers in the oral cavity with multifaceted interactions like adherence, metabolic signaling, and quorum sensing contributes significantly to the complex dynamics of the oral biofilm, thus shaping oral health and disease outcomes. Perturbations in oral streptococci composition drive oral dysbiosis and therefore impact host-pathogen interactions, resulting in oral inflammation and representing VGS as an opportunistic pathogen. The association of oral streptococci in tumors across distant organs, spanning the esophagus, stomach, pancreas, and colon, illuminates a potential association between oral streptococci, inflammation, and tumorigenesis. This finding emphasizes the need for further investigations into the role of oral streptococci in mucosal homeostasis and their involvement in carcinogenesis. Hence, here, we review the significance of oral streptococci in biofilm dynamics and how the perturbation may impact mucosal immunopathogenesis in the context of cancer, with a vision of exploiting oral streptococci for cancer intervention and for the development of non-invasive cancer diagnosis.
Collapse
Affiliation(s)
- Sangeetha Senthil Kumar
- Department of
Immunobiology, The University of
Arizona, Tucson,
Arizona, USA
- The University of
Arizona Cancer Center,
Tucson, Arizona, USA
| | - Michael D. L. Johnson
- Department of
Immunobiology, The University of
Arizona, Tucson,
Arizona, USA
- Valley Fever Center
for Excellence, The University of Arizona College of
Medicine, Tucson,
Arizona, USA
- BIO5 Institute, The
University of Arizona College of
Medicine, Tucson,
Arizona, USA
- Asthma and Airway
Disease Research Center, The University of Arizona College of
Medicine, Tucson,
Arizona, USA
| | - Justin E. Wilson
- Department of
Immunobiology, The University of
Arizona, Tucson,
Arizona, USA
- The University of
Arizona Cancer Center,
Tucson, Arizona, USA
| |
Collapse
|
6
|
Bloch S, Hager-Mair FF, Andrukhov O, Schäffer C. Oral streptococci: modulators of health and disease. Front Cell Infect Microbiol 2024; 14:1357631. [PMID: 38456080 PMCID: PMC10917908 DOI: 10.3389/fcimb.2024.1357631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
Streptococci are primary colonizers of the oral cavity where they are ubiquitously present and an integral part of the commensal oral biofilm microflora. The role oral streptococci play in the interaction with the host is ambivalent. On the one hand, they function as gatekeepers of homeostasis and are a prerequisite for the maintenance of oral health - they shape the oral microbiota, modulate the immune system to enable bacterial survival, and antagonize pathogenic species. On the other hand, also recognized pathogens, such as oral Streptococcus mutans and Streptococcus sobrinus, which trigger the onset of dental caries belong to the genus Streptococcus. In the context of periodontitis, oral streptococci as excellent initial biofilm formers have an accessory function, enabling late biofilm colonizers to inhabit gingival pockets and cause disease. The pathogenic potential of oral streptococci fully unfolds when their dissemination into the bloodstream occurs; streptococcal infection can cause extra-oral diseases, such as infective endocarditis and hemorrhagic stroke. In this review, the taxonomic diversity of oral streptococci, their role and prevalence in the oral cavity and their contribution to oral health and disease will be discussed, focusing on the virulence factors these species employ for interactions at the host interface.
Collapse
Affiliation(s)
- Susanne Bloch
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Department of Chemistry, Institute of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria
| | - Fiona F. Hager-Mair
- Department of Chemistry, Institute of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria
| | - Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Christina Schäffer
- Department of Chemistry, Institute of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria
| |
Collapse
|
7
|
Taylor SL, Crabbé A, Hoffman LR, Chalmers JD, Rogers GB. Understanding the clinical implications of the "non-classical" microbiome in chronic lung disease: a viewpoint. Eur Respir J 2024; 63:2302281. [PMID: 38387999 DOI: 10.1183/13993003.02281-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/21/2024] [Indexed: 02/24/2024]
Affiliation(s)
- Steven L Taylor
- Microbiome and Host Health, South Australia Health and Medical Research Institute, Adelaide, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Luke R Hoffman
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
- Pulmonary and Sleep Medicine, Seattle Children's Hospital, Seattle, WA, USA
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| | - Geraint B Rogers
- Microbiome and Host Health, South Australia Health and Medical Research Institute, Adelaide, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| |
Collapse
|
8
|
Yu X, Devine D, Vernon J. Manipulating the diseased oral microbiome: the power of probiotics and prebiotics. J Oral Microbiol 2024; 16:2307416. [PMID: 38304119 PMCID: PMC10833113 DOI: 10.1080/20002297.2024.2307416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 02/03/2024] Open
Abstract
Dental caries and periodontal disease are amongst the most prevalent global disorders. Their aetiology is rooted in microbial activity within the oral cavity, through the generation of detrimental metabolites and the instigation of potentially adverse host immune responses. Due to the increasing threat of antimicrobial resistance, alternative approaches to readdress the balance are necessary. Advances in sequencing technologies have established relationships between disease and oral dysbiosis, and commercial enterprises seek to identify probiotic and prebiotic formulations to tackle preventable oral disorders through colonisation with, or promotion of, beneficial microbes. It is the metabolic characteristics and immunomodulatory capabilities of resident species which underlie health status. Research emphasis on the metabolic environment of the oral cavity has elucidated relationships between commensal and pathogenic organisms, for example, the sequential metabolism of fermentable carbohydrates deemed central to acid production in cariogenicity. Therefore, a focus on the preservation of an ecological homeostasis in the oral environment may be the most appropriate approach to health conservation. In this review we discuss an ecological approach to the maintenance of a healthy oral environment and debate the potential use of probiotic and prebiotic supplementation, specifically targeted at sustaining oral niches to preserve the delicately balanced microbiome.
Collapse
Affiliation(s)
- X. Yu
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, UK
| | - D.A. Devine
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, UK
| | - J.J. Vernon
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, UK
| |
Collapse
|
9
|
Liu Q, Guo T, Dang W, Song Z, Wen Y, Luo H, Wang A. Correlation between salivary cytokine profiles and white spot lesions in adolescent patients receiving clear aligner orthodontic treatment. BMC Oral Health 2023; 23:857. [PMID: 37957648 PMCID: PMC10641999 DOI: 10.1186/s12903-023-03561-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND To explore the relationship between changes in salivary cytokine levels and the occurrence of white spot lesions in adolescents receiving clear aligner orthodontic treatment and investigate the predictive value of various factors for lesion occurrence. METHODS We retrospectively analyzed sixthy eight adolescent in the permanent dentition period, who received clear aligner orthodontics in our hospital were randomly divided into two groups according to the occurrence or aggravation of white spot lesions after treatment. The general condition of the oral cavity was analyzed, saliva was collected, and inflammation-related cytokines with varying transcription levels between groups were screened by transcriptome analysis. The expression levels of inflammatory cytokines in the saliva of the patients in the two groups were measured, and the risk factors for white spot lesions were screened by correlation analysis and binary logistic regression analysis. The value of the independent and combined application of risk factors for predicting the occurrence of white spot lesions in adolescent patients after invisible orthodontic treatment was analyzed by receiver operating characteristic (ROC) curve analysis. RESULTS Transcriptome and GO and KEGG pathway analyses showed that there were differences in the transcription levels of inflammatory cytokines such as CXCL1, CXCL2, CXCL8, CCL3, CCL4, IL-1β and IL-2 between groups. The levels of CXCL8, CCL3, CCL4, IL-1β and IL-2 in the saliva of patients with white spot lesions were significantly higher in patients after invisible orthodontic treatment (P < 0.05). Correlation analysis and binary logistic regression analysis showed that elevated levels of CXCL8, IL-1β and IL-2 were independent risk factors for the occurrence of white spot lesions (P < 0.05). CXCL8 had the highest independent predictive value for the occurrence of white spot lesions (AUC = 0.773, P < 0.05), and the combination of IL-1β and IL-2 was also of high value in predicting the occurrence of white spot lesions. CONCLUSION After invisible orthodontic treatment, the oral microenvironment, including inflammatory cytokine levels, in adolescent patients changes; in particular, the levels of inflammatory cytokines such as CXCLs and ILs change. CXCL8 expression is significantly associated with the occurrence of white spot lesions and is an important potential target for the prevention and treatment of white spot lesions in the future.
Collapse
Affiliation(s)
- Qian Liu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an, China
| | - Tao Guo
- Department of Orthodontics, TaiKang Shanghai Bybo Dental Hospital, Shanghai, China
| | - Wei Dang
- Shaanxi Provincial Key Laboratory of Craniomaxillofacial Precision Medicine Research, Department of Prosthodontics, Stomatological Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Zhixin Song
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an, China
| | - Yi Wen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an, China
| | - Houzhuo Luo
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an, China.
| | - Axian Wang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an, China.
| |
Collapse
|
10
|
Goeteyn E, Grassi L, Van den Bossche S, Rigauts C, Vande Weygaerde Y, Van Braeckel E, Maes T, Bracke KR, Crabbé A. Commensal bacteria of the lung microbiota synergistically inhibit inflammation in a three-dimensional epithelial cell model. Front Immunol 2023; 14:1176044. [PMID: 37168857 PMCID: PMC10164748 DOI: 10.3389/fimmu.2023.1176044] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/30/2023] [Indexed: 05/13/2023] Open
Abstract
Patients with chronic lung disease suffer from persistent inflammation and are typically colonized by pro-inflammatory pathogenic bacteria. Besides these pathogens, a wide variety of commensal species is present in the lower airways but their role in inflammation is unclear. Here, we show that the lung microbiota contains several species able to inhibit activation of the pro-inflammatory NF-κB pathway and production of interleukin 8 (IL-8), triggered by lipopolysaccharide (LPS) or H2O2, in a physiologically relevant three-dimensional (3D) lung epithelial cell model. We demonstrate that the minimal dose needed for anti-inflammatory activity differs between species (with the lowest dose needed for Rothia mucilaginosa), and depends on the type of pro-inflammatory stimulus and read out. Furthermore, we evaluated synergistic activity between pairs of anti-inflammatory bacteria on the inhibition of the NF-κB pathway and IL-8 secretion. Synergistic anti-inflammatory activity was observed for 4/10 tested consortia. These findings indicate that various microbiota members can influence lung inflammation either alone or as a consortium. This information can contribute to a better understanding of the lung microbiota in chronic lung disease development and process, and could open up new avenues for treatment.
Collapse
Affiliation(s)
- Ellen Goeteyn
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Lucia Grassi
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | | | - Charlotte Rigauts
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Yannick Vande Weygaerde
- Cystic Fibrosis Reference Centre, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Eva Van Braeckel
- Cystic Fibrosis Reference Centre, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Lung Research Lab, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Tania Maes
- Lung Research Lab, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Ken R. Bracke
- Lung Research Lab, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
- *Correspondence: Aurélie Crabbé,
| |
Collapse
|
11
|
Bamashmous S, Kotsakis GA, Jain S, Chang AM, McLean JS, Darveau RP. Clinically Healthy Human Gingival Tissues Show Significant Inter-individual Variability in GCF Chemokine Expression and Subgingival Plaque Microbial Composition. FRONTIERS IN ORAL HEALTH 2021; 2:689475. [PMID: 35048035 PMCID: PMC8757716 DOI: 10.3389/froh.2021.689475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/31/2021] [Indexed: 01/02/2023] Open
Abstract
Aim: Clinically healthy gingival tissue is maintained through controlled regulation of host defense mechanisms against plaque biofilm overgrowth. One key component is the transit of neutrophils from the vasculature into gingival tissue where the expression of different neutrophil chemokines are tightly regulated. This cross-sectional study examines the inter-individual variability in chemokine profiles within gingival crevicular fluid (GCF) in relation to the subgingival bacterial community in a state of gingival health. Methods: Gingival crevicular fluid and subgingival plaque samples were collected from mesiobuccal surfaces of all six Ramfjord teeth of 20 systemically healthy individuals (14.55 ± 1.67 years). A multiplex immunoassay was carried out to quantify the expression of 40 different chemokines in the healthy gingival tissue. Neutrophils were assessed indirectly by myeloperoxidase (MPO) in GCF using traditional ELISA. Characterization of healthy subgingival plaque was conducted with the Illumina Miseq targeting the 16S rRNA gene. Results: In health, there are distinct variations within individual gingival crevicular fluid chemokine expression profiles, as well as in the concentration of neutrophils, that divided the participants into high or low chemokine expressing groups. Specifically, key differences were identified within MIF (2683.54 ± 985.82 pg per 30-s sample), IL-8/CXCL8 (170.98 ± 176.96 pg per 30-s sample), Gro-α/CXCL1 (160.42 ± 94.21 pg per 30-s sample), ENA-78/CXCL5 (137.76 ± 76.02 pg per 30-s sample), IL-1β (51.39 ± 37.23 pg per 30-s sample), TNF-α (1.76 ± 1.79 pg per 30-s sample), and IFN-γ (0.92 ± 0.54 pg per 30-s sample). Of these identified chemokines, the highest correlation was associated between IL-8/CXCL8 and neutrophils (r = 0.54, p = 0.014). Furthermore, species characterization of healthy subgingival plaque revealed significant inter-individual variability that identified two unique groups unrelated to the previously identified chemokine groups. Conclusion: The lack of concordance between the microbial composition and chemokine profile during health may be a reflection of the unique microbial composition of each individual coupled with variations within their host response, emphasizing the vast complexity of the defense mechanisms in place to maintain gingival health.
Collapse
Affiliation(s)
- Shatha Bamashmous
- Department of Periodontics, University of Washington, Seattle, WA, United States
- Department of Oral Health Sciences, University of Washington, Seattle, WA, United States
- Department of Periodontology, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Georgios A. Kotsakis
- Department of Periodontics, University of Texas Health Science Center, San Antonio, TX, United States
| | - Sumita Jain
- Department of Periodontics, University of Washington, Seattle, WA, United States
| | - Ana M. Chang
- Department of Periodontics, University of Washington, Seattle, WA, United States
- Department of Oral Health Sciences, University of Washington, Seattle, WA, United States
| | - Jeffrey S. McLean
- Department of Periodontics, University of Washington, Seattle, WA, United States
- Department of Oral Health Sciences, University of Washington, Seattle, WA, United States
- Department of Microbiology, University of Washington, Seattle, WA, United States
| | - Richard P. Darveau
- Department of Periodontics, University of Washington, Seattle, WA, United States
- Department of Oral Health Sciences, University of Washington, Seattle, WA, United States
- Department of Microbiology, University of Washington, Seattle, WA, United States
| |
Collapse
|