1
|
Ashcroft T, McSwiggan E, Agyei-Manu E, Nundy M, Atkins N, Kirkwood JR, Ben Salem Machiri M, Vardhan V, Lee B, Kubat E, Ravishankar S, Krishan P, De Silva U, Iyahen EO, Rostron J, Zawiejska A, Ogarrio K, Harikar M, Chishty S, Mureyi D, Evans B, Duval D, Carville S, Brini S, Hill J, Qureshi M, Simmons Z, Lyell I, Kavoi T, Dozier M, Curry G, Ordóñez-Mena JM, de Lusignan S, Sheikh A, Theodoratou E, McQuillan R. Effectiveness of non-pharmaceutical interventions as implemented in the UK during the COVID-19 pandemic: a rapid review. J Public Health (Oxf) 2025:fdaf017. [PMID: 40037637 DOI: 10.1093/pubmed/fdaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/14/2025] [Accepted: 01/26/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Although non-pharmaceutical inventions (NPIs) were used globally to control the spread of COVID-19, their effectiveness remains uncertain. We aimed to assess the evidence on NPIs as implemented in the UK, to allow public health bodies to prepare for future pandemics. METHODS We used rapid systematic methods (search date: January 2024) to identify, critically appraise and synthesize interventional, observational and modelling studies reporting on NPI effectiveness in the UK. RESULTS Eighty-five modelling, nine observational and three interventional studies were included. Modelling studies had multiple quality issues; six of the 12 non-modelling studies were high quality. The best available evidence was for test and release strategies for case contacts (moderate certainty), which was suggestive of a protective effect. Although evidence for school-related NPIs and universal lockdown was also suggestive of a protective effect, this evidence was considered low certainty. Evidence certainty for the remaining NPIs was very low or inconclusive. CONCLUSION The validity and reliability of evidence on the effectiveness of NPIs as implemented in the UK during the COVID-19 pandemic is weak. To improve evidence generation and support decision-making during future pandemics or other public health emergencies, it is essential to build evaluation into the design of public health interventions.
Collapse
Affiliation(s)
- T Ashcroft
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - E McSwiggan
- Usher Institute, Centre for Population Health Sciences, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - E Agyei-Manu
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - M Nundy
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - N Atkins
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - J R Kirkwood
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
- Usher Institute, Centre for Medical Informatics, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - M Ben Salem Machiri
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - V Vardhan
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - B Lee
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - E Kubat
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - S Ravishankar
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - P Krishan
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - U De Silva
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - E O Iyahen
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - J Rostron
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - A Zawiejska
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - K Ogarrio
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
- School of Public Health and Tropical Medicine-Department of Social, Behavioral, and Population Sciences, Tulane University, New Orleans, LA 70112, USA
| | - M Harikar
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - S Chishty
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - D Mureyi
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - B Evans
- Science Evidence Review Team, Research, Evidence and Knowledge Division, UKHSA, London E14 4PU, UK
| | - D Duval
- Science Evidence Review Team, Research, Evidence and Knowledge Division, UKHSA, London E14 4PU, UK
| | - S Carville
- Clinical and Public Health Response Evidence Review Team, Clinical and Public Health, UKHSA, London E14 4PU, UK
| | - S Brini
- Clinical and Public Health Response Evidence Review Team, Clinical and Public Health, UKHSA, London E14 4PU, UK
| | - J Hill
- Clinical and Public Health Response Evidence Review Team, Clinical and Public Health, UKHSA, London E14 4PU, UK
| | - M Qureshi
- Clinical and Public Health Response Evidence Review Team, Clinical and Public Health, UKHSA, London E14 4PU, UK
| | - Z Simmons
- Science Evidence Review Team, Research, Evidence and Knowledge Division, UKHSA, London E14 4PU, UK
| | - I Lyell
- Health Protection Operation, UKHSA, London E14 4PU, UK
| | - T Kavoi
- Clinical and Public Health Response Evidence Review Team, Clinical and Public Health, UKHSA, London E14 4PU, UK
| | - M Dozier
- Information Services, University of Edinburgh, Edinburgh EH3 9DR, UK
| | - G Curry
- Usher Institute, Centre for Population Health Sciences, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - J M Ordóñez-Mena
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford OX2 6GG, UK
| | - S de Lusignan
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford OX2 6GG, UK
- Royal College of General Practitioners (RCGP), Research and Surveillance Centre, London NW1 2FB, UK
| | - A Sheikh
- Usher Institute, Centre for Medical Informatics, University of Edinburgh, Edinburgh EH16 4UX, UK
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford OX2 6GG, UK
| | - E Theodoratou
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - R McQuillan
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
| |
Collapse
|
2
|
Davies M, Hill J, Goggins L, Peirce N, Smith J, Boulter M, Fowler TA, Buchan I, Calder JDF. Daily SARS-CoV-2 testing after travel-related close contact notifications during elite sporting events hosted in the UK: a longitudinal study. BMJ Open Respir Res 2025; 12:e001912. [PMID: 39939101 PMCID: PMC11822419 DOI: 10.1136/bmjresp-2023-001912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/10/2024] [Indexed: 02/14/2025] Open
Abstract
Isolation requirements for COVID-19 close contacts risked discouraging elite athletes and support staff from travelling to international sports events hosted in the UK during 2021. OBJECTIVES The purpose of this study, in collaboration with the UK Health Security Agency, was to develop and implement a risk assessment and workplace daily testing approach in elite sporting events, for individuals who would otherwise be excluded by quarantine. METHODS Longitudinal study of athletes and staff identified as close contacts during travel (ie, flights, train) to specific international sports events. A risk assessment was undertaken, and participants were categorised as at 'low' or 'high' risk of developing SARS-CoV-2 based on their exposure circumstances. High-risk individuals remained in 10-day isolation, whereas those of low risk underwent daily symptom and lateral flow testing, enhanced workplace mitigation and selected work activities were permitted. RESULTS Of 29 514 event personnel, 202 travel-related close contacts were reported to the study team, of which 126 were eligible from 40 events in 7 sports. Of the individuals assessed, 105 (83.3%) were classified as low risk, while 21 (16.7%) were classified as high risk. No low-risk individuals tested positive in over 280 rapid antigen tests. CONCLUSION International sports events rely on athlete and support staff availability, with economic consequences of event cancellation or postponement. Our study showed no detection of SARS-CoV-2 in low-risk close contacts, and enabled their sustained participation. This multidisciplinary intervention appears to have been effective, enabling large-scale event continuation, while minimising risk to athletes, employees and the wider public.
Collapse
Affiliation(s)
- Madeleine Davies
- Division of Surgery & Interventional Science, University College London, London, UK
- Institute of Sport Exercise and Health, London, UK
| | - Jerry Hill
- British Horseracing Authority, London, UK
- UK Health Security Agency, London, UK
| | - Luke Goggins
- Science & Medicine, England and Wales Cricket Board, Loughborough, UK
| | - Nicholas Peirce
- Science & Medicine, England and Wales Cricket Board, Loughborough, UK
- National Centre for Sport and Exercise Medicine, Loughborough University Faculty of Social Sciences and Humanities, Loughborough, UK
| | | | - Matthew Boulter
- UK Health Security Agency, London, UK
- Atlantic Medical Group, Penzance, UK
| | - Tom Alan Fowler
- UK Health Security Agency, London, UK
- Queen Mary University of London, London, UK
- Genomics England, London, England
| | | | - James D F Calder
- Department of Bioengineering, Imperial College London, London, UK
- Fortius Clinic City, London, UK
| |
Collapse
|
3
|
Futschik ME, Kulasegaran-Shylini R, Blandford E, Harper S, Chapman D, Turek E, Agrawal S, Phillips V, Fordham H, Chan L, Kidd M, Dodgson A, Klapper PE, Sudhanva M, Vipond R, Hopkins S, Peto T, Tunkel S, Fowler T. Effectiveness and user experience of nose and throat swabbing techniques for SARS-CoV-2 detection: results from the UK COVID-19 National Testing Programme. BMC GLOBAL AND PUBLIC HEALTH 2025; 3:5. [PMID: 39806484 PMCID: PMC11731392 DOI: 10.1186/s44263-024-00121-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND The UK's National Health Service Test and Trace (NHSTT) program aimed to provide the most effective and accessible SARS-CoV-2 testing approach possible. Early user feedback indicated that there were accessibility issues associated with throat swabbing. We report the results of service evaluations performed by NHSTT to assess the effectiveness and user acceptance of swabbing approaches, as well as qualitative findings of user experiences from research reports, surveys, and incident reports. Our intent is to present and summarize our findings about the application of alternative swabbing approaches during the COVID-19 pandemic in the UK. METHODS From May 2020 to December 2021, NHSTT conducted a series of service evaluations assessing self-swabbing and assisted swabbing of the nose and throat, and nose only (anterior nares/mid-turbinate) using polymerase chain reaction (PCR) and lateral flow devices (LFDs), for diagnostic suitability within the COVID-19 National Testing Programme. Outcomes included observational user feedback on swabbing approaches and quantitative testing performance (concordance, sensitivity, and specificity). A post-hoc indirect comparison of swabbing approaches was also performed. Additionally, an analysis of existing cross-service research was conducted in April 2021 to determine user feedback regarding swabbing approaches. RESULTS Observational data from cross-service research indicated a user preference for nose swabbing over throat swabbing. Significantly more users reported that nose swabbing was easier to perform than throat swabbing (50% vs. 12%) and there were significantly fewer reported incidents. In the service evaluations, while there was reduced sensitivity for nose-only swabbing for PCR (88%) compared with nose and throat swabbing, similar sensitivities were observed for nose-only and nose and throat swabbing for LFDs. The sensitivity of nose-only swabbing for LFDs was higher for individuals with higher viral concentrations. CONCLUSIONS User experience analyses supported a preference for nose-only swabbing. Nose-only swabbing for LFDs provided sufficient diagnostic accuracy, supporting its use as a viable option in the COVID-19 National Testing Programme. Less invasive swabbing approaches are important to maximize testing accessibility and alongside other behavioral interventions, increase user uptake.
Collapse
Affiliation(s)
- Matthias E Futschik
- UK Health Security Agency, London, UK
- School of Biomedical Sciences, Faculty of Health, University of Plymouth, Plymouth, UK
| | | | | | | | - David Chapman
- UK Health Security Agency, London, UK
- Deloitte MCS Ltd, London, UK
| | - Elena Turek
- UK Health Security Agency, London, UK
- Deloitte MCS Ltd, London, UK
| | | | | | | | - Lee Chan
- UK Health Security Agency, London, UK
| | - Mike Kidd
- UK Health Security Agency, London, UK
| | | | - Paul E Klapper
- UK Health Security Agency, London, UK
- School of Biological Sciences, University of Manchester, Manchester, UK
| | - Malur Sudhanva
- UK Health Security Agency, London, UK
- Kings College Hospital NHS Foundation Trust, London, UK
| | | | - Susan Hopkins
- UK Health Security Agency, London, UK
- Health Protection Research Unit in Healthcare Associate Infections and Antimicrobial Resistance, National Institute for Health Research, Oxford, UK
| | - Tim Peto
- Health Protection Research Unit in Healthcare Associate Infections and Antimicrobial Resistance, National Institute for Health Research, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Tom Fowler
- UK Health Security Agency, London, UK.
- William Harvey Research Institute and the Barts Cancer Institute, Queen Mary University of London, London, UK.
- Public Health Wales, Cardiff, Wales, UK.
| |
Collapse
|
4
|
Duval D, Evans B, Sanders A, Hill J, Simbo A, Kavoi T, Lyell I, Simmons Z, Qureshi M, Pearce-Smith N, Arevalo CR, Beck CR, Bindra R, Oliver I. Non-pharmaceutical interventions to reduce COVID-19 transmission in the UK: a rapid mapping review and interactive evidence gap map. J Public Health (Oxf) 2024; 46:e279-e293. [PMID: 38426578 PMCID: PMC11141784 DOI: 10.1093/pubmed/fdae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Non-pharmaceutical interventions (NPIs) were crucial in the response to the COVID-19 pandemic, although uncertainties about their effectiveness remain. This work aimed to better understand the evidence generated during the pandemic on the effectiveness of NPIs implemented in the UK. METHODS We conducted a rapid mapping review (search date: 1 March 2023) to identify primary studies reporting on the effectiveness of NPIs to reduce COVID-19 transmission. Included studies were displayed in an interactive evidence gap map. RESULTS After removal of duplicates, 11 752 records were screened. Of these, 151 were included, including 100 modelling studies but only 2 randomized controlled trials and 10 longitudinal observational studies.Most studies reported on NPIs to identify and isolate those who are or may become infectious, and on NPIs to reduce the number of contacts. There was an evidence gap for hand and respiratory hygiene, ventilation and cleaning. CONCLUSIONS Our findings show that despite the large number of studies published, there is still a lack of robust evaluations of the NPIs implemented in the UK. There is a need to build evaluation into the design and implementation of public health interventions and policies from the start of any future pandemic or other public health emergency.
Collapse
Affiliation(s)
- D Duval
- Research, Evidence and Knowledge Division, UK Health Security Agency (UKHSA), London E14 5EA, UK
| | - B Evans
- Research, Evidence and Knowledge Division, UK Health Security Agency (UKHSA), London E14 5EA, UK
| | - A Sanders
- Research, Evidence and Knowledge Division, UK Health Security Agency (UKHSA), London E14 5EA, UK
| | - J Hill
- Clinical and Public Health Response Division, UKHSA, London E14 5EA, UK
| | - A Simbo
- Evaluation and Epidemiological Science Division, UKHSA, Colindale NW9 5EQ, UK
| | - T Kavoi
- Cheshire and Merseyside Health Protection Team, UKHSA, Liverpool L3 1DS, UK
| | - I Lyell
- Greater Manchester Health Protection Team, UKHSA, Manchester M1 3BN, UK
| | - Z Simmons
- Research, Evidence and Knowledge Division, UK Health Security Agency (UKHSA), London E14 5EA, UK
| | - M Qureshi
- Clinical and Public Health Response Division, UKHSA, London E14 5EA, UK
| | - N Pearce-Smith
- Research, Evidence and Knowledge Division, UK Health Security Agency (UKHSA), London E14 5EA, UK
| | - C R Arevalo
- Research, Evidence and Knowledge Division, UK Health Security Agency (UKHSA), London E14 5EA, UK
| | - C R Beck
- Evaluation and Epidemiological Science Division, UKHSA, Salisbury SP4 0JG, UK
| | - R Bindra
- Clinical and Public Health Response Division, UKHSA, London E14 5EA, UK
| | - I Oliver
- Director General Science and Research and Chief Scientific Officer, UKHSA, London E14 5EA, UK
| |
Collapse
|
5
|
Karlafti E, Tsavdaris D, Kotzakioulafi E, Kaiafa G, Savopoulos C, Netta S, Michalopoulos A, Paramythiotis D. The Diagnostic Accuracy of SARS-CoV-2 Nasal Rapid Antigen Self-Test: A Systematic Review and Meta-Analysis. Life (Basel) 2023; 13:281. [PMID: 36836639 PMCID: PMC9961889 DOI: 10.3390/life13020281] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
INTRODUCTION Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of coronavirus disease 2019 (COVID-19), a disease that quickly spread into a pandemic. As such, management of the COVID-19 pandemic is deemed necessary, and it can be achieved by using reliable diagnostic tests for SARS-CoV-2. The gold standard for the diagnosis of SARS-CoV-2 is a molecular detection test using the reverse transcription polymerase chain reaction technique (rt-PCR), which is characterized by various disadvantages in contrast with the self-taken nasal rapid antigen tests that produce results faster, have lower costs and do not require specialized personnel. Therefore, the usefulness of self-taken rapid antigen tests is indisputable in disease management, facilitating both the health system and the examinees. Our systematic review aims to access the diagnostic accuracy of the self-taken nasal rapid antigen tests. METHODS This systematic review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, and the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool was used to assess the risk of bias in the included studies. All the studies included in this systematic review were found after searching the two databases, Scopus and PubΜed. All but original articles were excluded from this systematic review, while all the studies concerning self-taken rapid antigen tests with a nasal sample and using rt-PCR as a reference test were included. Meta-analysis results and plots were obtained using RevMan software and the MetaDTA website. RESULTS All 22 studies included in this meta-analysis demonstrated a specificity of self-taken rapid antigen tests greater than 98%, which exceeds the minimum required yield for the diagnosis of SARS-CoV-2, according to the WHO. Notwithstanding, the sensitivity varies (from 40% to 98.7%), which makes them in some cases unsuitable for the diagnosis of positive cases. In the majority of the studies, the minimum required performance set by the WHO was achieved, which is 80% compared with rt-PCR tests. The pooled sensitivity of self-taken nasal rapid antigen tests was calculated as 91.1% and the pooled specificity was 99.5%. CONCLUSIONS In conclusion, self-taken nasal rapid antigen tests have many advantages over rt-PCR tests, such as those related to the rapid reading of the results and their low cost. They also have considerable specificity and some self-taken rapid antigen test kits also have remarkable sensitivity. Consequently, self-taken rapid antigen tests have a wide range of utility but are not able to completely replace rt-PCR tests.
Collapse
Affiliation(s)
- Eleni Karlafti
- Emergency Department, University General Hospital of Thessaloniki AHEPA, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
- 1st Propaedeutic Department of Internal Medicine, AHEPA University General Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Dimitrios Tsavdaris
- First Propaedeutic Surgery Department, University General Hospital of Thessaloniki AHEPA, 54636 Thessaloniki, Greece
| | - Evangelia Kotzakioulafi
- 1st Propaedeutic Department of Internal Medicine, AHEPA University General Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Georgia Kaiafa
- 1st Propaedeutic Department of Internal Medicine, AHEPA University General Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Christos Savopoulos
- 1st Propaedeutic Department of Internal Medicine, AHEPA University General Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Smaro Netta
- First Propaedeutic Surgery Department, University General Hospital of Thessaloniki AHEPA, 54636 Thessaloniki, Greece
| | - Antonios Michalopoulos
- First Propaedeutic Surgery Department, University General Hospital of Thessaloniki AHEPA, 54636 Thessaloniki, Greece
| | - Daniel Paramythiotis
- First Propaedeutic Surgery Department, University General Hospital of Thessaloniki AHEPA, 54636 Thessaloniki, Greece
| |
Collapse
|
6
|
Karlafti E, Tsavdaris D, Kotzakioulafi E, Kaiafa G, Savopoulos C, Netta S, Michalopoulos A, Paramythiotis D. The Diagnostic Accuracy of SARS-CoV-2 Nasal Rapid Antigen Self-Test: A Systematic Review and Meta-Analysis. Life (Basel) 2023; 13:281. [DOI: https:/doi.org/10.3390/life13020281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025] Open
Abstract
Introduction: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of coronavirus disease 2019 (COVID-19), a disease that quickly spread into a pandemic. As such, management of the COVID-19 pandemic is deemed necessary, and it can be achieved by using reliable diagnostic tests for SARS-CoV-2. The gold standard for the diagnosis of SARS-CoV-2 is a molecular detection test using the reverse transcription polymerase chain reaction technique (rt-PCR), which is characterized by various disadvantages in contrast with the self-taken nasal rapid antigen tests that produce results faster, have lower costs and do not require specialized personnel. Therefore, the usefulness of self-taken rapid antigen tests is indisputable in disease management, facilitating both the health system and the examinees. Our systematic review aims to access the diagnostic accuracy of the self-taken nasal rapid antigen tests. Methods: This systematic review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, and the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool was used to assess the risk of bias in the included studies. All the studies included in this systematic review were found after searching the two databases, Scopus and PubΜed. All but original articles were excluded from this systematic review, while all the studies concerning self-taken rapid antigen tests with a nasal sample and using rt-PCR as a reference test were included. Meta-analysis results and plots were obtained using RevMan software and the MetaDTA website. Results: All 22 studies included in this meta-analysis demonstrated a specificity of self-taken rapid antigen tests greater than 98%, which exceeds the minimum required yield for the diagnosis of SARS-CoV-2, according to the WHO. Notwithstanding, the sensitivity varies (from 40% to 98.7%), which makes them in some cases unsuitable for the diagnosis of positive cases. In the majority of the studies, the minimum required performance set by the WHO was achieved, which is 80% compared with rt-PCR tests. The pooled sensitivity of self-taken nasal rapid antigen tests was calculated as 91.1% and the pooled specificity was 99.5%. Conclusions: In conclusion, self-taken nasal rapid antigen tests have many advantages over rt-PCR tests, such as those related to the rapid reading of the results and their low cost. They also have considerable specificity and some self-taken rapid antigen test kits also have remarkable sensitivity. Consequently, self-taken rapid antigen tests have a wide range of utility but are not able to completely replace rt-PCR tests.
Collapse
Affiliation(s)
- Eleni Karlafti
- Emergency Department, University General Hospital of Thessaloniki AHEPA, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
- 1st Propaedeutic Department of Internal Medicine, AHEPA University General Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Dimitrios Tsavdaris
- First Propaedeutic Surgery Department, University General Hospital of Thessaloniki AHEPA, 54636 Thessaloniki, Greece
| | - Evangelia Kotzakioulafi
- 1st Propaedeutic Department of Internal Medicine, AHEPA University General Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Georgia Kaiafa
- 1st Propaedeutic Department of Internal Medicine, AHEPA University General Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Christos Savopoulos
- 1st Propaedeutic Department of Internal Medicine, AHEPA University General Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Smaro Netta
- First Propaedeutic Surgery Department, University General Hospital of Thessaloniki AHEPA, 54636 Thessaloniki, Greece
| | - Antonios Michalopoulos
- First Propaedeutic Surgery Department, University General Hospital of Thessaloniki AHEPA, 54636 Thessaloniki, Greece
| | - Daniel Paramythiotis
- First Propaedeutic Surgery Department, University General Hospital of Thessaloniki AHEPA, 54636 Thessaloniki, Greece
| |
Collapse
|
7
|
Daily use of lateral flow devices by contacts of confirmed COVID-19 cases to enable exemption from isolation compared with standard self-isolation to reduce onward transmission of SARS-CoV-2 in England: a randomised, controlled, non-inferiority trial. THE LANCET. RESPIRATORY MEDICINE 2022; 10:1074-1085. [PMID: 36228640 PMCID: PMC9625116 DOI: 10.1016/s2213-2600(22)00267-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/19/2022] [Accepted: 07/12/2022] [Indexed: 11/05/2022]
Abstract
Background In the UK, during the study period (April to July, 2021), all contacts of people with COVID-19 were required to self-isolate for 10 days, which had adverse impacts on individuals and society. Avoiding the need to self-isolate for those who remain uninfected would be beneficial. We investigated whether daily use of lateral flow devices (LFDs) to test for SARS-CoV-2, with removal of self-isolation for 24 h if negative, could be a safe alternative to self-isolation as a means to minimise onward transmission of the virus. Methods We conducted a randomised, controlled, non-inferiority trial in adult contacts identified by COVID-19 contact tracing in England. Consenting participants were randomly assigned to self-isolation (single PCR test, 10-day isolation) or daily contact testing (DCT; seven LFD tests, two PCR tests, no isolation if negative on LFD); participants from a single household were assigned to the same group. Participants were prospectively followed up, with the effect of each intervention on onward transmission established from routinely collected NHS Test and Trace contact tracing data for participants who tested PCR-positive for SARS-CoV-2 during the study period and tertiary cases arising from their contacts (ie, secondary contacts). The primary outcome of the study was the attack rate, the percentage of secondary contacts (close contacts of SARS-CoV-2-positive study participants) who became COVID-19 cases (tertiary cases) in each group. Attack rates were derived from Bernoulli regression models using Huber-White (robust) sandwich estimator clustered standard errors. Attack rates were adjusted for household exposure, vaccination status, and ability to work from home. The non-inferiority margin was 1·9%. The primary analysis was a modified intention-to-treat analysis excluding those who actively withdrew from the study as data from these participants were no longer held. This study is registered with the Research Registry (number 6809). Data collection is complete; analysis is ongoing. Findings Between April 29 and July 28, 2021, 54 923 eligible individuals were enrolled in the study, with final group allocations (following withdrawals) of 26 123 (52·6%) participants in the DCT group and 23 500 (47·4%) in the self-isolation group. Overall, 4694 participants tested positive for SARS-CoV-2 by PCR (secondary cases), 2364 (10·1%) in the self-isolation group and 2330 (8·9%) in the DCT group. Adjusted attack rates (among secondary contacts) were 7·5% in the self-isolation group and 6·3% in the DCT group (difference of –1·2% [95% CI –2·3 to –0·2]; significantly lower than the non-inferiority margin of 1·9%). Interpretation DCT with 24 h exemption from self-isolation for essential activities appears to be non-inferior to self-isolation. This study, which provided evidence for the UK Government's daily lateral flow testing policy for vaccinated contacts of COVID-19 cases, indicated that daily testing with LFDs could allow individuals to reduce the risk of onward transmission while minimising the adverse effects of self-isolation. Although contacts in England are no longer required to isolate, the findings will be relevant for future policy decisions around COVID-19 or other communicable infections. Funding UK Government Department of Health and Social Care.
Collapse
|
8
|
Dinnes J, Sharma P, Berhane S, van Wyk SS, Nyaaba N, Domen J, Taylor M, Cunningham J, Davenport C, Dittrich S, Emperador D, Hooft L, Leeflang MM, McInnes MD, Spijker R, Verbakel JY, Takwoingi Y, Taylor-Phillips S, Van den Bruel A, Deeks JJ. Rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection. Cochrane Database Syst Rev 2022; 7:CD013705. [PMID: 35866452 PMCID: PMC9305720 DOI: 10.1002/14651858.cd013705.pub3] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Accurate rapid diagnostic tests for SARS-CoV-2 infection would be a useful tool to help manage the COVID-19 pandemic. Testing strategies that use rapid antigen tests to detect current infection have the potential to increase access to testing, speed detection of infection, and inform clinical and public health management decisions to reduce transmission. This is the second update of this review, which was first published in 2020. OBJECTIVES To assess the diagnostic accuracy of rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection. We consider accuracy separately in symptomatic and asymptomatic population groups. Sources of heterogeneity investigated included setting and indication for testing, assay format, sample site, viral load, age, timing of test, and study design. SEARCH METHODS We searched the COVID-19 Open Access Project living evidence database from the University of Bern (which includes daily updates from PubMed and Embase and preprints from medRxiv and bioRxiv) on 08 March 2021. We included independent evaluations from national reference laboratories, FIND and the Diagnostics Global Health website. We did not apply language restrictions. SELECTION CRITERIA We included studies of people with either suspected SARS-CoV-2 infection, known SARS-CoV-2 infection or known absence of infection, or those who were being screened for infection. We included test accuracy studies of any design that evaluated commercially produced, rapid antigen tests. We included evaluations of single applications of a test (one test result reported per person) and evaluations of serial testing (repeated antigen testing over time). Reference standards for presence or absence of infection were any laboratory-based molecular test (primarily reverse transcription polymerase chain reaction (RT-PCR)) or pre-pandemic respiratory sample. DATA COLLECTION AND ANALYSIS We used standard screening procedures with three people. Two people independently carried out quality assessment (using the QUADAS-2 tool) and extracted study results. Other study characteristics were extracted by one review author and checked by a second. We present sensitivity and specificity with 95% confidence intervals (CIs) for each test, and pooled data using the bivariate model. We investigated heterogeneity by including indicator variables in the random-effects logistic regression models. We tabulated results by test manufacturer and compliance with manufacturer instructions for use and according to symptom status. MAIN RESULTS We included 155 study cohorts (described in 166 study reports, with 24 as preprints). The main results relate to 152 evaluations of single test applications including 100,462 unique samples (16,822 with confirmed SARS-CoV-2). Studies were mainly conducted in Europe (101/152, 66%), and evaluated 49 different commercial antigen assays. Only 23 studies compared two or more brands of test. Risk of bias was high because of participant selection (40, 26%); interpretation of the index test (6, 4%); weaknesses in the reference standard for absence of infection (119, 78%); and participant flow and timing 41 (27%). Characteristics of participants (45, 30%) and index test delivery (47, 31%) differed from the way in which and in whom the test was intended to be used. Nearly all studies (91%) used a single RT-PCR result to define presence or absence of infection. The 152 studies of single test applications reported 228 evaluations of antigen tests. Estimates of sensitivity varied considerably between studies, with consistently high specificities. Average sensitivity was higher in symptomatic (73.0%, 95% CI 69.3% to 76.4%; 109 evaluations; 50,574 samples, 11,662 cases) compared to asymptomatic participants (54.7%, 95% CI 47.7% to 61.6%; 50 evaluations; 40,956 samples, 2641 cases). Average sensitivity was higher in the first week after symptom onset (80.9%, 95% CI 76.9% to 84.4%; 30 evaluations, 2408 cases) than in the second week of symptoms (53.8%, 95% CI 48.0% to 59.6%; 40 evaluations, 1119 cases). For those who were asymptomatic at the time of testing, sensitivity was higher when an epidemiological exposure to SARS-CoV-2 was suspected (64.3%, 95% CI 54.6% to 73.0%; 16 evaluations; 7677 samples, 703 cases) compared to where COVID-19 testing was reported to be widely available to anyone on presentation for testing (49.6%, 95% CI 42.1% to 57.1%; 26 evaluations; 31,904 samples, 1758 cases). Average specificity was similarly high for symptomatic (99.1%) or asymptomatic (99.7%) participants. We observed a steady decline in summary sensitivities as measures of sample viral load decreased. Sensitivity varied between brands. When tests were used according to manufacturer instructions, average sensitivities by brand ranged from 34.3% to 91.3% in symptomatic participants (20 assays with eligible data) and from 28.6% to 77.8% for asymptomatic participants (12 assays). For symptomatic participants, summary sensitivities for seven assays were 80% or more (meeting acceptable criteria set by the World Health Organization (WHO)). The WHO acceptable performance criterion of 97% specificity was met by 17 of 20 assays when tests were used according to manufacturer instructions, 12 of which demonstrated specificities above 99%. For asymptomatic participants the sensitivities of only two assays approached but did not meet WHO acceptable performance standards in one study each; specificities for asymptomatic participants were in a similar range to those observed for symptomatic people. At 5% prevalence using summary data in symptomatic people during the first week after symptom onset, the positive predictive value (PPV) of 89% means that 1 in 10 positive results will be a false positive, and around 1 in 5 cases will be missed. At 0.5% prevalence using summary data for asymptomatic people, where testing was widely available and where epidemiological exposure to COVID-19 was suspected, resulting PPVs would be 38% to 52%, meaning that between 2 in 5 and 1 in 2 positive results will be false positives, and between 1 in 2 and 1 in 3 cases will be missed. AUTHORS' CONCLUSIONS Antigen tests vary in sensitivity. In people with signs and symptoms of COVID-19, sensitivities are highest in the first week of illness when viral loads are higher. Assays that meet appropriate performance standards, such as those set by WHO, could replace laboratory-based RT-PCR when immediate decisions about patient care must be made, or where RT-PCR cannot be delivered in a timely manner. However, they are more suitable for use as triage to RT-PCR testing. The variable sensitivity of antigen tests means that people who test negative may still be infected. Many commercially available rapid antigen tests have not been evaluated in independent validation studies. Evidence for testing in asymptomatic cohorts has increased, however sensitivity is lower and there is a paucity of evidence for testing in different settings. Questions remain about the use of antigen test-based repeat testing strategies. Further research is needed to evaluate the effectiveness of screening programmes at reducing transmission of infection, whether mass screening or targeted approaches including schools, healthcare setting and traveller screening.
Collapse
Affiliation(s)
- Jacqueline Dinnes
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Pawana Sharma
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Sarah Berhane
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Susanna S van Wyk
- Centre for Evidence-based Health Care, Epidemiology and Biostatistics, Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Nicholas Nyaaba
- Infectious Disease Unit, 37 Military Hospital, Cantonments, Ghana
| | - Julie Domen
- Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Melissa Taylor
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Jane Cunningham
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | - Clare Davenport
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | | | | | - Lotty Hooft
- Cochrane Netherlands, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Mariska Mg Leeflang
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | | | - René Spijker
- Cochrane Netherlands, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Medical Library, Amsterdam UMC, University of Amsterdam, Amsterdam Public Health, Amsterdam, Netherlands
| | - Jan Y Verbakel
- Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Yemisi Takwoingi
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Sian Taylor-Phillips
- Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Ann Van den Bruel
- Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Jonathan J Deeks
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| |
Collapse
|