1
|
Favaretto F, Matsumura EE, Ferriol I, Chitarra W, Nerva L. The four Ws of viruses: Where, Which, What and Why - A deep dive into viral evolution. Virology 2025; 606:110476. [PMID: 40073500 DOI: 10.1016/j.virol.2025.110476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/05/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025]
Abstract
For centuries, humanity has been captivated by evolution, seeking to unravel the origins of life and identify past patterns with future applications. Viruses, despite their obligate parasitic nature, are the most adaptable biological entities, surpassing cellular life in their variability and adaptability. While many theories about viral evolution exist, a consensus on their origins remains elusive. The quasispecies theory, however, has emerged as a leading framework for understanding viral evolution and, indirectly, their variability and adaptability. This theory illuminates how viruses regulate behaviours such as host range and their symbiotic or antagonistic interactions with hosts. This review delves into the most substantiated theories of viral evolution, addressing four fundamental questions relevant to virus ecology: Where did viruses originate? What factors drive viral evolution? What determines the virus host range? And why do viruses adopt pathogenic or mutualistic strategies? We will provide a comprehensive and up-to-date analysis that integrates diverse theoretical perspectives with empirical data, providing a holistic view of viral evolution and its implications for viral behaviour.
Collapse
Affiliation(s)
- Francesco Favaretto
- Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology (CREA-VE), Via XXVIII Aprile, 26, 31015, Conegliano, TV, Italy; University of Padua, Department of Agronomy, Food, Natural Resources, Animals and Environment, Agripolis, Viale dell'Università 16, 35020, Legnaro, Pd, Italy
| | - Emilyn E Matsumura
- Laboratory of Virology, Wageningen University and Research, 6700 AA 8 Wageningen, the Netherlands
| | - Inmaculada Ferriol
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, ICA-CSIC, Calle Serrano 115 apdo, 28006, Madrid, Spain
| | - Walter Chitarra
- Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology (CREA-VE), Via XXVIII Aprile, 26, 31015, Conegliano, TV, Italy; National Research Council of Italy - Institute for Sustainable Plant Protection (IPSP-CNR), Strada delle Cacce, 73, 10135, Torino, TO, Italy
| | - Luca Nerva
- Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology (CREA-VE), Via XXVIII Aprile, 26, 31015, Conegliano, TV, Italy; National Research Council of Italy - Institute for Sustainable Plant Protection (IPSP-CNR), Strada delle Cacce, 73, 10135, Torino, TO, Italy.
| |
Collapse
|
2
|
Lankarani KB, Yaghobi R, Pourkarim MR, Moayedi J, Mohammadi ZA, Thijssen M, Geramizadeh B, Malekhosseini SA, Maharlouei N, Shahraki HR. Tissue presentation of human pegivirus infection in liver transplanted recipients. Microb Pathog 2022; 167:105571. [PMID: 35550845 DOI: 10.1016/j.micpath.2022.105571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/16/2022] [Accepted: 05/05/2022] [Indexed: 02/08/2023]
Abstract
Human pegivirus-1 (HPgV-1) is known for its protective role in HIV co-infected individuals. This immunomodulatory effect raised questions concerning the possible role of HPgV-1 infection and the risk of rejection in liver transplanted patients. We aimed to evaluate the possible protective effect of HPgV-1 on graft outcome of liver transplanted patients. A total of 283 patients were recruited. Formalin-fixed paraffin-embedded tissue samples were collected from the explanted liver. HBV-DNA, HCV-RNA, and HPgV-1-RNA were determined using PCR and multiplex RT-PCR assays. The clinical course of patients including the occurrence of acute cellular rejection was compared between HPgV-1-infected vs. uninfected patients. HBV-DNA, HCV-RNA and HPgV-1-RNA were detected in 42.6%, 4.9%, and 7.8% of samples, respectively. None of the HPgV-1-infected patients experienced graft rejection. Group LASSO logistic regression revealed that HPgV-1 infection was the only factor which significantly reduced the odds of graft rejection (OR = 0.5, 95% CI = 0.29-0.89). No significant association was found between the presence of HPgV-1 with HBV and HCV infections. The lack of graft rejection in HPgV-1-infected liver transplanted patients might indicate a possible role of this virus for graft surveillance. Since these are still preliminary findings, prospective studies should further elucidate the role of HPgV-1 in liver transplantation outcomes.
Collapse
Affiliation(s)
- Kamran Bagheri Lankarani
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ramin Yaghobi
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mahmoud Reza Pourkarim
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, Laboratory for Clinical and Epidemiological Virology, Leuven, Belgium, Herestraat 49, BE-3000 Leuven, Belgium; Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion Medicine, Hemmat Exp. Way, 14665-1157, Tehran, Iran
| | - Javad Moayedi
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Zohreh Ali Mohammadi
- Department of Microbiology, Fars Science and Research Branch, Islamic Azad University, Fars, Iran
| | - Marijn Thijssen
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, Laboratory for Clinical and Epidemiological Virology, Leuven, Belgium, Herestraat 49, BE-3000 Leuven, Belgium
| | - Bita Geramizadeh
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Najmeh Maharlouei
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hadi Raeisi Shahraki
- Department of Epidemiology and Biostatistics, Faculty of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
3
|
Berdahl A, Brelsford C, Bacco CD, Dumas M, Ferdinand V, Grochow JA, Hébert-Dufresne L, Kallus Y, Kempes CP, Kolchinsky A, Larremore DB, Libby E, Power EA, Stern CA, Tracey BD. Dynamics of beneficial epidemics. Sci Rep 2019; 9:15093. [PMID: 31641147 PMCID: PMC6805938 DOI: 10.1038/s41598-019-50039-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/28/2019] [Indexed: 11/08/2022] Open
Abstract
Pathogens can spread epidemically through populations. Beneficial contagions, such as viruses that enhance host survival or technological innovations that improve quality of life, also have the potential to spread epidemically. How do the dynamics of beneficial biological and social epidemics differ from those of detrimental epidemics? We investigate this question using a breadth-first modeling approach involving three distinct theoretical models. First, in the context of population genetics, we show that a horizontally-transmissible element that increases fitness, such as viral DNA, spreads superexponentially through a population, more quickly than a beneficial mutation. Second, in the context of behavioral epidemiology, we show that infections that cause increased connectivity lead to superexponential fixation in the population. Third, in the context of dynamic social networks, we find that preferences for increased global infection accelerate spread and produce superexponential fixation, but preferences for local assortativity halt epidemics by disconnecting the infected from the susceptible. We conclude that the dynamics of beneficial biological and social epidemics are characterized by the rapid spread of beneficial elements, which is facilitated in biological systems by horizontal transmission and in social systems by active spreading behavior of infected individuals.
Collapse
Affiliation(s)
- Andrew Berdahl
- Santa Fe Institute, Santa Fe, NM, 87501, USA
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, 98105, USA
| | - Christa Brelsford
- Santa Fe Institute, Santa Fe, NM, 87501, USA
- Arizona State University, Tempe, AZ, 85281, USA
- Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Caterina De Bacco
- Santa Fe Institute, Santa Fe, NM, 87501, USA
- Max Planck Institute for Intelligent Systems, Tübingen, Germany
| | - Marion Dumas
- Santa Fe Institute, Santa Fe, NM, 87501, USA
- London School of Economics and Political Science, London, United Kingdom
| | - Vanessa Ferdinand
- Santa Fe Institute, Santa Fe, NM, 87501, USA
- Melbourne School of Psychological Sciences, Melbourne, Australia
| | - Joshua A Grochow
- Santa Fe Institute, Santa Fe, NM, 87501, USA
- Departments of Computer Science and Mathematics, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Laurent Hébert-Dufresne
- Santa Fe Institute, Santa Fe, NM, 87501, USA
- Vermont Complex Systems Center, University of Vermont, Burlington, VT, 05401, USA
| | - Yoav Kallus
- Santa Fe Institute, Santa Fe, NM, 87501, USA
| | | | - Artemy Kolchinsky
- Santa Fe Institute, Santa Fe, NM, 87501, USA
- Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Daniel B Larremore
- Santa Fe Institute, Santa Fe, NM, 87501, USA
- Department of Computer Science and BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Eric Libby
- Santa Fe Institute, Santa Fe, NM, 87501, USA
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, 901 87, Sweden
| | - Eleanor A Power
- Santa Fe Institute, Santa Fe, NM, 87501, USA
- Department of Methodology, London School of Economics and Political Science, London, United Kingdom
| | | | - Brendan D Tracey
- Santa Fe Institute, Santa Fe, NM, 87501, USA
- Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
4
|
Mirahmadizadeh A, Yaghobi R, Soleimanian S. Viral ecosystem: An epidemiological hypothesis. Rev Med Virol 2019; 29:e2053. [PMID: 31206234 DOI: 10.1002/rmv.2053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 12/22/2022]
Abstract
Viruses are incomplete elements that require other organisms to survive and multiply, hence constantly mutate during its evolution, resulting from adaptations in response to environmental changes such as the immune response of the host. In this line, they are responsible for many diseases, but today, there is evidence that viruses have many benefits and even have a unique ecosystem to control the different species or strain of themselves. While highlighting the benefits of some viruses and the undesirable effects of their eradication, the present review expresses the idea of the viral ecosystem and its importance, which has been supported in several studies. There are countless articles about virus-related illnesses and the undesirable effects of therapeutic interventions in eliminating the less pathogenic viruses or manipulating viral ecosystems. By simulating the viral ecosystem with an ecosystem found among the snakes, it can be assumed that the viruses have concentric zones, which its inner zone includes the most dangerous viruses for humans and each zone is surrounded and controlled by an outer zone of less dangerous viruses for humans. The outermost zone consists of viruses that are least dangerous to humans such as common cold that protect humans and possibly other living organisms against more dangerous viruses in inner zone, causing the activation of immune system by playing a unique and pivotal role in the ecosystems. Therefore, manipulating the ecosystem and disrupting the balance might have epidemics and harmful consequences for the plants, animals, and human.
Collapse
Affiliation(s)
- Alireza Mirahmadizadeh
- Non-communicable Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ramin Yaghobi
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeede Soleimanian
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Xu P, Liu Y, Graham RI, Wilson K, Wu K. Densovirus is a mutualistic symbiont of a global crop pest (Helicoverpa armigera) and protects against a baculovirus and Bt biopesticide. PLoS Pathog 2014; 10:e1004490. [PMID: 25357125 PMCID: PMC4214819 DOI: 10.1371/journal.ppat.1004490] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 09/26/2014] [Indexed: 01/01/2023] Open
Abstract
Mutualistic associations between symbiotic bacteria and their hosts are common within insect systems. However, viruses are often considered as pathogens even though some have been reported to be beneficial to their hosts. Herein, we report a novel densovirus, Helicoverpa armigera densovirus-1 (HaDNV-1) that appears to be beneficial to its host. HaDNV-1 was found to be widespread in wild populations of H. armigera adults (>67% prevalence between 2008 and 2012). In wild larval populations, there was a clear negative interaction between HaDNV-1 and H. armigera nucleopolyhedrovirus (HaNPV), a baculovirus that is widely used as a biopesticide. Laboratory bioassays revealed that larvae hosting HaDNV-1 had significantly enhanced resistance to HaNPV (and lower viral loads), and that resistance to Bacillus thuringiensis (Bt) toxin was also higher at low doses. Laboratory assays indicated that the virus was mainly distributed in the fat body, and could be both horizontally- and vertically-transmitted, though the former occurred only at large challenge doses. Densovirus-positive individuals developed more quickly and had higher fecundity than uninfected insects. We found no evidence for a negative effect of HaDNV-1 infection on H. armigera fitness-related traits, strongly suggesting a mutualistic interaction between the cotton bollworm and its densovirus. The old world cotton bollworm, Helicoverpa armigera, is one of the most significant pests of crops throughout Asia, Europe, Africa and Australia. Herein, we report a novel densovirus (HaDNV-1) which was widely distributed in wild populations of H. armigera and was beneficial to its host by increasing larval and pupal development rates, female lifespan and fecundity, suggesting a mutualistic interaction between the cotton bollworm and HaDNV-1. The cotton bollworm is currently widely controlled by the biopesticides Bacillus thuringiensis (Bt) toxin and the baculovirus HaNPV. It is therefore important to estimate the risk that the symbiotic virus will negatively impact on the efficiency of these biopesticides. Field and laboratory results suggest that HaDNV-1 infection significantly increases larval resistance to HaNPV and Bt toxin. These results have important implications for the selection of biopesticides for this species, and highlight the need for greater research into the elegant microbial interactions that may impact host individual and population dynamics.
Collapse
Affiliation(s)
- Pengjun Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, People's Republic of China
| | - Yongqiang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Robert I. Graham
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Kenneth Wilson
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- * E-mail:
| |
Collapse
|
6
|
Guo JY, Dong SZ, Yang XL, Cheng L, Wan FH, Liu SS, Zhou XP, Ye GY. Enhanced vitellogenesis in a whitefly via feeding on a begomovirus-infected plant. PLoS One 2012; 7:e43567. [PMID: 22937062 PMCID: PMC3427354 DOI: 10.1371/journal.pone.0043567] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 07/25/2012] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND The MEAM1 (B biotype) Bemisia tabaci (Gennadius) is one of the most widespread and damaging whitefly cryptic species. Our previous studies discovered that the MEAM1 whitefly indirectly benefits from interactions with the tomato yellow leaf curl China virus (TYLCCNV) via accelerated ovarian development and increased fecundity. However, the physiological mechanism of begomoviruse-infected plants acting on the reproduction of the insect vector was unknown. METHODOLOGY/PRINCIPAL FINDINGS Biochemical and molecular properties of vitellogenin (Vg) and vitellin (Vt) were characterized in the MEAM1 whitefly. In addition, kinetics of Vt levels in ovary and Vg levels in hemolymph in different stages were detected using a sandwich ELISA. The level of hemolymph Vg increased rapidly after eclosion. A significantly higher level of hemolymph Vg and ovary Vt were observed in whiteflies feeding on virus-infected tobacco plants than those feeding on uninfected plants. In order to detect the levels of Vg mRNA transcription, complete vitellogenin (Vg) mRNA transcripts of 6474 bp were sequenced. Vg mRNA level in whiteflies feeding on virus-infected plants was higher than those feeding on uninfected plants. However, virus-infection of the whiteflies per se, as demonstrated using an artificial diet system, did not produce significant changes in Vg mRNA level. CONCLUSIONS/SIGNIFICANCE In MEAM1 whitefly, increased levels of both vitellin and vitellogenin as well as increased transcription of Vg mRNA are associated with feeding on begomovirus-infected plants, thus providing a mechanism for accelerated vitellogenesis. We conclude that MEAM1 whitefly profits from feeding on begomovirus-infected plants for yolk protein synthesis and uptake, and thereby increases its fecundity. These results not only provide insights into the molecular and physiological mechanisms underlying the elevated reproduction of a whitefly species through its association with a begomovirus-infected plant, but also provide a better understanding of the molecular mechanisms related to whitefly reproduction.
Collapse
Affiliation(s)
- Jian-Yang Guo
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Sheng-Zhang Dong
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Xiu-ling Yang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Lu Cheng
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Fang-Hao Wan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xue-ping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Gong-Yin Ye
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Abstract
Although viruses are most often studied as pathogens, many are beneficial to their hosts, providing essential functions in some cases and conditionally beneficial functions in others. Beneficial viruses have been discovered in many different hosts, including bacteria, insects, plants, fungi and animals. How these beneficial interactions evolve is still a mystery in many cases but, as discussed in this Review, the mechanisms of these interactions are beginning to be understood in more detail.
Collapse
Affiliation(s)
- Marilyn J Roossinck
- Samuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401, USA.
| |
Collapse
|