1
|
Takeuchi N, Ohkusu M, Hoshino T, Yamamoto S, Segawa S, Murata S, Ishiwada N. Emergence of Haemophilus influenzae with low susceptibility to quinolones isolated from pediatric patients in Japan. J Infect Chemother 2021; 27:1020-1026. [PMID: 33658143 DOI: 10.1016/j.jiac.2021.02.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/21/2021] [Accepted: 02/17/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION In 2010, oral fluoroquinolone tosufloxacin (TFX) granules were released as the first oral respiratory quinolone for children in Japan. METHODS To investigate the recent trend of H. influenzae strains with low susceptibility to quinolones in children, we analyzed the gene sequences of quinolone resistance-determining regions (QRDRs) of gyrA, gyrB, parC, and parE of 23 clinical isolates from 15 patients aged <15 years with an MIC of ≥0.5 μg/mL for TFX from 2010 to 2018. RESULTS Amino acid substitutions were observed in both GyrA and ParC in 13 strains (81%, 13/16), except two strains with a TFX MIC of 0.5 μg/mL with amino acid substitution in only GyrA and one strain with a TFX MIC of 1 μg/mL with no amino acid substitution. Four ST422 strains were observed in 2018, the detection age range was wide (0-7 years), and the residential city was varied. A total of 3/15 patients had a clear history of TFX treatment. CONCLUSIONS Even for the strain with an MIC of 0.5 μg/mL for TFX, it is highly possible that it harbors a mutation in gyrA, which is the first step toward quinolone resistance, and it may also harbor mutations in both gyrA and parC. Furthermore, several specific sequence type quinolone-resistant H. influenzae strains, particularly ST422, may be widespread among children in Japan. It is necessary to investigate changes in resistance both at the MIC and gene levels. The continuous monitoring of strains and the use of antimicrobial drugs in treatment should be carefully observed.
Collapse
Affiliation(s)
- Noriko Takeuchi
- Department of Infectious Diseases, Medical Mycology Research Center, Chiba University, Chiba, Japan.
| | - Misako Ohkusu
- Department of Infectious Diseases, Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Tadashi Hoshino
- Division of Infectious Diseases, Chiba Children's Hospital, Chiba, Japan
| | - Shota Yamamoto
- Division of Infectious Diseases, Chiba Children's Hospital, Chiba, Japan
| | - Shunsuke Segawa
- Division of Clinical Laboratory, Chiba University Hospital, Chiba, Japan
| | - Shota Murata
- Division of Clinical Laboratory, Chiba University Hospital, Chiba, Japan
| | - Naruhiko Ishiwada
- Department of Infectious Diseases, Medical Mycology Research Center, Chiba University, Chiba, Japan
| |
Collapse
|
2
|
Hoang VT, Dao TL, Ly TDA, Belhouchat K, Larbi Chaht K, Yezli S, Alotaibi B, Raoult D, Parola P, Pommier de Santi V, Fournier PE, Gautret P. Dynamics and genetic diversity of Haemophilus influenzae carriage among French pilgrims during the 2018 Hajj: A prospective cohort survey. Travel Med Infect Dis 2020; 38:101883. [PMID: 32956850 DOI: 10.1016/j.tmaid.2020.101883] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 07/01/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND To investigate the genetic diversity of Haemophilus influenzae positive samples among French pilgrims attending the 2018 Hajj pilgrimage. METHOD After screening by qPCR, multilocus sequence typing was performed for all H. influenzae-positive samples. The following housekeeping genes were amplified and assigned: adk, atpG, frdB, fucK, mdh, pgi and recA. RESULTS 121 pilgrims were included. H. influenzae was positive in 35.5% pre-Hajj samples, 12.4% at day five post-arrival, 15.7% at day 12 post-arrival, and 43.0% post-Hajj. Of the 129 positive swabs for H. influenzae, only one sample at D12 was negative for all seven genes amplified by standard PCR. The adk, atpG, frdB, mdh, pgi, recA and fucK genes were positive in 123, 107, 122, 70, 127, 118 and 69 samples, respectively. One sequence of atpG and two of recA genes were not possible to assign. None of the sequences of fucK gene was successfully obtained. Consequently, a complete sequence type characterisation was not possible. Of the 128 obtained strains, 111 had distinct patterns of alleles. CONCLUSION H. influenzae genotypes acquired were completely different from those present at pre-Hajj. We observed a great biodiversity and a lack of clonality of H. influenzae among French pilgrims during the 2018 Hajj. Further studies aiming at studying the genome of Hajj-acquired H. influenzae isolates are needed to define the clinical burden of H. influenzae infection during Hajj and to evaluate the potential interest of vaccination in Hajj pilgrims.
Collapse
Affiliation(s)
- Van-Thuan Hoang
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France; Thai Binh University of Medicine and Pharmacy, Thai Binh, Viet Nam
| | - Thi-Loi Dao
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France; Thai Binh University of Medicine and Pharmacy, Thai Binh, Viet Nam
| | - Tran Duc Anh Ly
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France
| | - Khadidja Belhouchat
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France
| | - Kamel Larbi Chaht
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France
| | - Saber Yezli
- The Global Centre for Mass Gatherings Medicine, Ministry of Health, Riyadh, Saudi Arabia
| | - Badriah Alotaibi
- The Global Centre for Mass Gatherings Medicine, Ministry of Health, Riyadh, Saudi Arabia
| | - Didier Raoult
- IHU-Méditerranée Infection, Marseille, France; Aix Marseille Univ, MEPHI, Marseille, France
| | - Philippe Parola
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France
| | - Vincent Pommier de Santi
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France; French Military Center for Epidemiology and Public Health Marseille, France
| | - Pierre-Edouard Fournier
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France
| | - Philippe Gautret
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France.
| |
Collapse
|
3
|
Whyte KE, Hoang L, Sekirov I, Shuel ML, Hoang W, Tsang RSW. Emergence of a clone of invasive fucK-negative serotype e Haemophilus influenzae in British Columbia. JOURNAL OF THE ASSOCIATION OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASE CANADA = JOURNAL OFFICIEL DE L'ASSOCIATION POUR LA MICROBIOLOGIE MEDICALE ET L'INFECTIOLOGIE CANADA 2020; 5:29-34. [PMID: 36339016 PMCID: PMC9603308 DOI: 10.3138/jammi.2019-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/30/2019] [Indexed: 06/16/2023]
Abstract
BACKGROUND Introduction of the Haemophilus influenzae serotype b (Hib) conjugate vaccine has changed the epidemiology of invasive H. influenzae disease, with most infections now caused by non-typeable (non-encapsulated) and non-Hib encapsulated strains. METHODS We describe nine invasive serotype e H. influenzae (Hie) from British Columbia that were determined to have complete deletion of their fucose operon genes. These nine isolates were recovered from blood cultures of three female and six male patients during 2011-2018, with eight recovered in the past 4 years. RESULTS All nine isolates were biotype IV, with eight showing identical pulsed field gel electrophoresis (PFGE) profiles, whereas the ninth showed 95% similarity. PFGE analysis also showed these fucose operon-negative Hie to be most (94%) similar to the multi-locus sequence type (ST)-18, the most common ST among Hie in British Columbia. These nine fucose operon-negative Hie represented 27.3% of the 33 invasive Hie isolated in British Columbia from 2010 to 2018. CONCLUSION Deletion of the fucose operon did not appear to impact the transmission ability of these strains or their ability to cause invasive disease.
Collapse
Affiliation(s)
- Kathleen E Whyte
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Linda Hoang
- BC Public Health Microbiology and Reference Laboratory, Vancouver, British Columbia, Canada
| | - Inna Sekirov
- BC Public Health Microbiology and Reference Laboratory, Vancouver, British Columbia, Canada
| | - Michelle L Shuel
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - William Hoang
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Raymond SW Tsang
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| |
Collapse
|
4
|
Hoshino T, Takeuchi N, Ohkusu M, Hachisu Y, Hirose S, Fukasawa C, Kubota T, Ishida M, Watanabe H, Oishi K, Ishiwada N. Identification of Haemophilus influenzae serotype e strains missing the fucK gene in clinical isolates from Japan. J Med Microbiol 2019; 68:1534-1539. [PMID: 31368885 DOI: 10.1099/jmm.0.001055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Introduction. Certain nontypeable Haemophilus influenzae cannot be assigned a sequence type (ST) by Multilocus Sequence Typing (MLST) due to the lack of the fucK gene, one of seven MLST loci in H. influenzae, which encodes a fucose-operon enzyme.Aims. To confirm whether the loss of fucK is also found in the encapsulated strains, we analysed clinical isolates of H. influenzae serotype e (Hie).Methodology. We conducted MLST, PFGE, and antimicrobial susceptibility tests of 45 Hie strains; the majority (n=43) were derived from respiratory samples of pediatric patients at Chiba Children's Hospital between 2000 and 2016. The two remaining strains were obtained from the blood of elderly patients with invasive H. influenzae diseases (IHiDs) between 2015 and 2016 at general hospitals. For the fucK-negative strains, PCR analysis for fucose operon was also performed.Results. Four STs (ST18, 122, 621 and 1758) were assigned to 13 strains, and remaining 32 (including one associated with IHiD) were fucK-negative, completely missing the fucose operon. The allelic profiles of six other loci were identical among 31 strains and to that of ST18, 122 and 621, and these strains were genetically closely related. Forty of 45 isolates were ampicillin-sensitive.Conclusions. The loss of fucK was frequently observed in clinical isolates of Hie from children. Moreover, fucK-negative Hie may be the cause of IHiD in adult patients. The majority of Hie, including fucK-negative strains, were shown to be clonally related and were ampicillin sensitive. This represents the first report examining fucK losses in encapsulated H. influenzae.
Collapse
Affiliation(s)
- Tadashi Hoshino
- Division of Infectious Diseases, Chiba Children's Hospital, 579-1, Heta-cho, Midori-ku, Chiba-city, Chiba 266-0007, Japan
| | - Noriko Takeuchi
- Department of Infectious Diseases, Medical Mycology Research Center, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba-city, Chiba 260-8673, Japan
| | - Misako Ohkusu
- Department of Infectious Diseases, Medical Mycology Research Center, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba-city, Chiba 260-8673, Japan
| | - Yushi Hachisu
- Chiba Prefectural Institute of Public Health, 666-2, Nitona-cho, Chuo-ku, Chiba-city, Chiba 260-8715, Japan
| | - Shoko Hirose
- Department of Pediatrics, Tokyo Women's Medical University Yachiyo Medical Center, 477-96, Owadashinden, Yachiyo-city, Chiba 276-8524, Japan.,Division of Infectious Diseases, Chiba Children's Hospital, 579-1, Heta-cho, Midori-ku, Chiba-city, Chiba 266-0007, Japan
| | - Chie Fukasawa
- Division of Infectious Diseases, Chiba Children's Hospital, 579-1, Heta-cho, Midori-ku, Chiba-city, Chiba 266-0007, Japan
| | - Tetsuya Kubota
- Department of Hematology and Respiratory Medicine, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku-city, Kochi 783-8505, Japan
| | - Masayuki Ishida
- Department of Infectious Diseases, Chikamori Hospital, 1-1-16, Okawasuji, Kochi-city, Kochi 780-8522, Japan
| | - Hiroshi Watanabe
- Department of Infectious Control and Prevention, Kurume University School of Medicine, 67, Asahi-machi, Kurume-city, Fukuoka 830-0011, Japan
| | - Kazunori Oishi
- Toyama Institute of Health, 1-17 Nakataikouyama, Imizu, Toyama, 930-0363, Japan
| | - Naruhiko Ishiwada
- Department of Infectious Diseases, Medical Mycology Research Center, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba-city, Chiba 260-8673, Japan
| |
Collapse
|
5
|
Osman KL, Jefferies JMC, Woelk CH, Devos N, Pascal TG, Mortier MC, Devaster JM, Wilkinson TMA, Cleary DW, Clarke SC. Patients with Chronic Obstructive Pulmonary Disease harbour a variation of Haemophilus species. Sci Rep 2018; 8:14734. [PMID: 30282975 PMCID: PMC6170463 DOI: 10.1038/s41598-018-32973-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/19/2018] [Indexed: 02/04/2023] Open
Abstract
H. haemolyticus is often misidentified as NTHi due to their close phylogenetic relationship. Differentiating between the two is important for correct identification and appropriate treatment of infective organism and to ensure any role of H. haemolyticus in disease is not being overlooked. Speciation however is not completely reliable by culture and PCR methods due to the loss of haemolysis by H. haemolyticus and the heterogeneity of NTHi. Haemophilus isolates from COPD as part of the AERIS study (ClinicalTrials - NCT01360398) were speciated by analysing sequence data for the presence of molecular markers. Further investigation into the genomic relationship was carried out using average nucleotide identity and phylogeny of allelic and genome alignments. Only 6.3% were identified as H. haemolyticus. Multiple in silico methods were able to distinguish H. haemolyticus from NTHi. However, no single gene target was found to be 100% accurate. A group of omp2 negative NTHi were observed to be phylogenetically divergent from H. haemolyticus and remaining NTHi. The presence of an atypical group from a geographically and disease limited set of isolates supports the theory that the heterogeneity of NTHi may provide a genetic continuum between NTHi and H. haemolyticus.
Collapse
Affiliation(s)
- Karen L Osman
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, Hants, SO16 6YD, UK
| | - Johanna M C Jefferies
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, Hants, SO16 6YD, UK
| | - Christopher H Woelk
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, Hants, SO16 6YD, UK.,Merck Exploratory Science Center, Merck Research Laboratories, Cambridge, MA, USA
| | | | | | | | | | - Tom M A Wilkinson
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, Hants, SO16 6YD, UK.,NIHR Southampton Respiratory Biomedical Research Unit, Southampton, United Kingdom.,Wessex Investigational Sciences Hub, University of Southampton, Southampton, United Kingdom
| | - David W Cleary
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, Hants, SO16 6YD, UK.,NIHR Southampton Respiratory Biomedical Research Unit, Southampton, United Kingdom
| | - Stuart C Clarke
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, Hants, SO16 6YD, UK. .,NIHR Biomedical Research Centre, University of Southampton, Southampton, United Kingdom. .,Wessex Investigational Sciences Hub, University of Southampton, Southampton, United Kingdom. .,Institute for Life Sciences, University of Southampton, Southampton, United Kingdom. .,Global Health Research Institute, University of Southampton, Southampton, United Kingdom.
| | | |
Collapse
|
6
|
Clinical and Bacteriologic Analysis of Nontypeable Haemophilus influenzae Strains Isolated from Children with Invasive Diseases in Japan from 2008 to 2015. J Clin Microbiol 2018; 56:JCM.00141-18. [PMID: 29720429 DOI: 10.1128/jcm.00141-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/24/2018] [Indexed: 12/30/2022] Open
Abstract
Haemophilus influenzae type b (Hib) conjugate vaccines have led to dramatic reductions in Hib disease among young children worldwide. Nontypeable H. influenzae (NTHi) is now the major cause of invasive H. influenzae infections. We investigated the clinical characteristics of invasive NTHi diseases among children in Japan, to clarify the pathogenicity of isolated NTHi strains. The mortality rate was 10.7%, with deaths occurring mainly among children with underlying comorbidities. Biotypes II and III were the most common, and most strains (64.3%) had multiple amino acid substitutions at the Asp-350, Ser-357, Ser-385, and/or Met-377 sites of penicillin-binding protein 3. Two strains were β-lactamase positive and ampicillin-clavulanate resistant. Biofilm indices varied widely, and IS1016 was detected in 10.7% of the strains tested. Moreover, there was wide variation in the characteristics of invasive NTHi strains. NTHi strains, showing great genetic diversity, are responsible for most invasive H. influenzae infections in children in the postvaccine era. Continuous monitoring of NTHi strains responsible for invasive diseases in children is important to detect changes in the epidemiology of invasive H. influenzae infections in the postvaccine era.
Collapse
|
7
|
Price EP, Harris TM, Spargo J, Nosworthy E, Beissbarth J, Chang AB, Smith-Vaughan HC, Sarovich DS. Simultaneous identification of Haemophilus influenzae and Haemophilus haemolyticus using real-time PCR. Future Microbiol 2017; 12:585-593. [PMID: 28604066 DOI: 10.2217/fmb-2016-0215] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
AIM To design a highly specific and sensitive multiplex real-time PCR assay for the differentiation of the pathogen Haemophilus influenzae from its nonpathogenic near-neighbor Haemophilus haemolyticus. MATERIALS & METHODS A comparison of 380 Haemophilus spp. genomes was used to identify loci specific for each species. Novel PCR assays targeting H. haemolyticus (hypD) and H. influenzae (siaT) were designed. RESULTS & DISCUSSION PCR screening across 143 isolates demonstrated 100% specificity for hypD and siaT. These two assays were multiplexed with the recently described fucP assay for further differentiation among H. influenzae. CONCLUSION The triplex assay provides rapid, unambiguous, sensitive and highly specific genotyping results for the simultaneous detection of hypD and siaT, including fucose-positive H. influenzae (fucP), in a single PCR.
Collapse
Affiliation(s)
- Erin P Price
- Child Health Division, Menzies School of Health Research, Darwin, NT, Australia.,Centre for Animal Health Innovation, Faculty of Science, Health, Education & Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Tegan M Harris
- Child Health Division, Menzies School of Health Research, Darwin, NT, Australia
| | - Jessie Spargo
- Child Health Division, Menzies School of Health Research, Darwin, NT, Australia
| | - Elizabeth Nosworthy
- Child Health Division, Menzies School of Health Research, Darwin, NT, Australia
| | - Jemima Beissbarth
- Child Health Division, Menzies School of Health Research, Darwin, NT, Australia
| | - Anne B Chang
- Child Health Division, Menzies School of Health Research, Darwin, NT, Australia
| | | | - Derek S Sarovich
- Child Health Division, Menzies School of Health Research, Darwin, NT, Australia.,Centre for Animal Health Innovation, Faculty of Science, Health, Education & Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| |
Collapse
|
8
|
Comparative Genomic Analysis of Haemophilus haemolyticus and Nontypeable Haemophilus influenzae and a New Testing Scheme for Their Discrimination. J Clin Microbiol 2016; 54:3010-3017. [PMID: 27707939 DOI: 10.1128/jcm.01511-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/26/2016] [Indexed: 01/26/2023] Open
Abstract
Haemophilus haemolyticus has been recently discovered to have the potential to cause invasive disease. It is closely related to nontypeable Haemophilus influenzae (NT H. influenzae). NT H. influenzae and H. haemolyticus are often misidentified because none of the existing tests targeting the known phenotypes of H. haemolyticus are able to specifically identify H. haemolyticus Through comparative genomic analysis of H. haemolyticus and NT H. influenzae, we identified genes unique to H. haemolyticus that can be used as targets for the identification of H. haemolyticus A real-time PCR targeting purT (encoding phosphoribosylglycinamide formyltransferase 2 in the purine synthesis pathway) was developed and evaluated. The lower limit of detection was 40 genomes/PCR; the sensitivity and specificity in detecting H. haemolyticus were 98.9% and 97%, respectively. To improve the discrimination of H. haemolyticus and NT H. influenzae, a testing scheme combining two targets (H. haemolyticus purT and H. influenzae hpd, encoding protein D lipoprotein) was also evaluated and showed 96.7% sensitivity and 98.2% specificity for the identification of H. haemolyticus and 92.8% sensitivity and 100% specificity for the identification of H. influenzae, respectively. The dual-target testing scheme can be used for the diagnosis and surveillance of infection and disease caused by H. haemolyticus and NT H. influenzae.
Collapse
|
9
|
Duplex Quantitative PCR Assay for Detection of Haemophilus influenzae That Distinguishes Fucose- and Protein D-Negative Strains. J Clin Microbiol 2016; 54:2380-3. [PMID: 27335148 DOI: 10.1128/jcm.00982-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/13/2016] [Indexed: 12/22/2022] Open
Abstract
We have developed a specific Haemophilus influenzae quantitative PCR (qPCR) that also identifies fucose-negative and protein D-negative strains. Analysis of 100 H. influenzae isolates, 28 Haemophilus haemolyticus isolates, and 14 other bacterial species revealed 100% sensitivity (95% confidence interval [CI], 96% to 100%) and 100% specificity (95% CI, 92% to 100%) for this assay. The evaluation of 80 clinical specimens demonstrated a strong correlation between semiquantitative culture and the qPCR (P < 0.001).
Collapse
|
10
|
Molecular Epidemiology of Ampicillin-resistant Haemophilus influenzae Causing Acute Otitis Media in Japanese Infants and Young Children. Pediatr Infect Dis J 2016; 35:501-6. [PMID: 26808724 DOI: 10.1097/inf.0000000000001066] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Nontypeable Haemophilus influenzae is a particularly important cause of acute otitis media (AOM). There is a high prevalence of β-lactamase-nonproducing ampicillin-resistant (BLNAR) strains in Japanese children, which is associated with recurrent AOM and prolonged treatment. The aim of this study was to investigate the antimicrobial susceptibility profile, mechanisms of ampicillin resistance and molecular epidemiology of ampicillin resistance in H. influenzae strains causing AOM in Japanese children. METHODS One hundred fifty-seven strains of H. influenzae isolated from the middle ear fluid of pediatric patients (aged 0-3 years) with AOM from various areas of Japan were studied. The antimicrobial susceptibility profile, genes encoding β-lactamase and alterations of penicillin-binding protein 3 were investigated. Genetic relatedness among ampicillin-resistant isolates was examined by multilocus sequence typing and pulsed-field gel electrophoresis. RESULTS Of 157 isolates, 108 (68.8%) demonstrated reduced susceptibility to ampicillin, including 95 (60.5%) of β-lactamase-nonproducing isolates and 13 (8.3%) of β-lactamase-producing isolates. All BLNAR (minimum inhibitory concentration of ampicillin ≥ 4 mg/L) isolates had amino acid substitutions related to ampicillin resistance. Multilocus sequence typing and pulsed-field gel electrophoresis demonstrated genetic diversity although there were 2 clusters of highly resistant isolates with identical STs (sequence types; ST161 and 549). CONCLUSIONS Alterations of penicillin-binding protein 3 represented the most prevalent mechanism of ampicillin resistance among H. influenzae isolates causing AOM in Japanese children. BLNAR isolates from children with AOM demonstrated genetic diversity. This study identified for the first time ST clones associated with BLNAR H. influenzae causing AOM in Japanese children.
Collapse
|
11
|
Mohd-Zain Z, Kamsani NH, Ahmad N, Clarke SC. Phylogenetic relationship of non-typeable Haemophilus influenzae isolated in Malaysia. INFECTION GENETICS AND EVOLUTION 2015; 36:240-243. [PMID: 26394107 DOI: 10.1016/j.meegid.2015.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 09/09/2015] [Accepted: 09/17/2015] [Indexed: 10/23/2022]
Abstract
The epidemiology of non-typeable Haemophilus influenzae (NTHi) remains poorly understood. We therefore sought to determine the genetic relationship of 25 NTHi isolated from various states in Malaysia using multilocus sequence typing (MLST). The majority of isolates were obtained from sputum. There were 24 novel sequence types (STs). Eight isolates were single-locus variants, the remainder being singletons. Clustering was not based on clinical site of isolation or geographical origin. Despite the limited number of isolates examined in this study, we demonstrate that NTHi isolates in Malaysia are diverse and warrant further investigation.
Collapse
Affiliation(s)
- Zaini Mohd-Zain
- Core of Health and Wellbeing, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia; Institute of Medical Molecular Biotechnology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia.
| | - Nurul H Kamsani
- Institute of Medical Molecular Biotechnology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia.
| | - Norazah Ahmad
- Institute for Medical Research, Kuala Lumpur, Malaysia.
| | - Stuart C Clarke
- Faculty of Medicine and Institute of Life Sciences, University of Southampton, UK; Southampton NIHR Respiratory Biomedical Research Unit, University Hospital Southampton Foundation NHS Trust, Southampton, UK; University of Southampton Malaysia Campus, Nusajaya, Johor, Malaysia.
| |
Collapse
|
12
|
Complete Deletion of the Fucose Operon in Haemophilus influenzae Is Associated with a Cluster in Multilocus Sequence Analysis-Based Phylogenetic Group II Related to Haemophilus haemolyticus: Implications for Identification and Typing. J Clin Microbiol 2015; 53:3773-8. [PMID: 26378279 DOI: 10.1128/jcm.01969-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 09/09/2015] [Indexed: 11/20/2022] Open
Abstract
Nonhemolytic variants of Haemophilus haemolyticus are difficult to differentiate from Haemophilus influenzae despite a wide difference in pathogenic potential. A previous investigation characterized a challenging set of 60 clinical strains using multiple PCRs for marker genes and described strains that could not be unequivocally identified as either species. We have analyzed the same set of strains by multilocus sequence analysis (MLSA) and near-full-length 16S rRNA gene sequencing. MLSA unambiguously allocated all study strains to either of the two species, while identification by 16S rRNA sequence was inconclusive for three strains. Notably, the two methods yielded conflicting identifications for two strains. Most of the "fuzzy species" strains were identified as H. influenzae that had undergone complete deletion of the fucose operon. Such strains, which are untypeable by the H. influenzae multilocus sequence type (MLST) scheme, have sporadically been reported and predominantly belong to a single branch of H. influenzae MLSA phylogenetic group II. We also found evidence of interspecies recombination between H. influenzae and H. haemolyticus within the 16S rRNA genes. Establishing an accurate method for rapid and inexpensive identification of H. influenzae is important for disease surveillance and treatment.
Collapse
|
13
|
Reddington K, Schwenk S, Tuite N, Platt G, Davar D, Coughlan H, Personne Y, Gant V, Enne VI, Zumla A, Barry T. Comparison of Established Diagnostic Methodologies and a Novel Bacterial smpB Real-Time PCR Assay for Specific Detection of Haemophilus influenzae Isolates Associated with Respiratory Tract Infections. J Clin Microbiol 2015; 53:2854-60. [PMID: 26109443 PMCID: PMC4540933 DOI: 10.1128/jcm.00777-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 06/17/2015] [Indexed: 11/20/2022] Open
Abstract
Haemophilus influenzae is a significant causative agent of respiratory tract infections (RTI) worldwide. The development of a rapid H. influenzae diagnostic assay that would allow for the implementation of infection control measures and also improve antimicrobial stewardship for patients is required. A number of nucleic acid diagnostics approaches that detect H. influenzae in RTIs have been described in the literature; however, there are reported specificity and sensitivity limitations for these assays. In this study, a novel real-time PCR diagnostic assay targeting the smpB gene was designed to detect all serogroups of H. influenzae. The assay was validated using a panel of well-characterized Haemophilus spp. Subsequently, 44 Haemophilus clinical isolates were collected, and 36 isolates were identified as H. influenzae using a gold standard methodology that combined the results of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and a fucK diagnostic assay. Using the novel smpB diagnostic assay, 100% concordance was observed with the gold standard, demonstrating a sensitivity of 100% (95% confidence interval [CI], 90.26% to 100.00%) and a specificity of 100% (95% CI, 63.06% to 100.00%) when used on clinical isolates. To demonstrate the clinical utility of the diagnostic assay presented, a panel of lower RTI samples (n = 98) were blindly tested with the gold standard and smpB diagnostic assays. The results generated were concordant for 94/98 samples tested, demonstrating a sensitivity of 90.91% (95% CI, 78.33% to 97.47%) and a specificity of 100% (95% CI, 93.40% to 100.00%) for the novel smpB assay when used directly on respiratory specimens.
Collapse
Affiliation(s)
- Kate Reddington
- Nucleic Acid Diagnostics Research Laboratory (NADRL), Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Stefan Schwenk
- Centre for Clinical Microbiology, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Nina Tuite
- Nucleic Acid Diagnostics Research Laboratory (NADRL), Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Gareth Platt
- Centre for Clinical Microbiology, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Danesh Davar
- Centre for Clinical Microbiology, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Helena Coughlan
- Nucleic Acid Diagnostics Research Laboratory (NADRL), Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Yoann Personne
- Centre for Clinical Microbiology, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Vanya Gant
- Department of Medical Microbiology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Virve I Enne
- Centre for Clinical Microbiology, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Alimuddin Zumla
- Centre for Clinical Microbiology, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Thomas Barry
- Nucleic Acid Diagnostics Research Laboratory (NADRL), Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| |
Collapse
|
14
|
Price EP, Sarovich DS, Nosworthy E, Beissbarth J, Marsh RL, Pickering J, Kirkham LAS, Keil AD, Chang AB, Smith-Vaughan HC. Haemophilus influenzae: using comparative genomics to accurately identify a highly recombinogenic human pathogen. BMC Genomics 2015; 16:641. [PMID: 26311542 PMCID: PMC4551764 DOI: 10.1186/s12864-015-1857-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 08/18/2015] [Indexed: 11/19/2022] Open
Abstract
Background Haemophilus influenzae is an opportunistic bacterial pathogen that exclusively colonises humans and is associated with both acute and chronic disease. Despite its clinical significance, accurate identification of H. influenzae is a non-trivial endeavour. H. haemolyticus can be misidentified as H. influenzae from clinical specimens using selective culturing methods, reflecting both the shared environmental niche and phenotypic similarities of these species. On the molecular level, frequent genetic exchange amongst Haemophilus spp. has confounded accurate identification of H. influenzae, leading to both false-positive and false-negative results with existing speciation assays. Results Whole-genome single-nucleotide polymorphism data from 246 closely related global Haemophilus isolates, including 107 Australian isolate genomes generated in this study, were used to construct a whole-genome phylogeny. Based on this phylogeny, H. influenzae could be differentiated from closely related species. Next, a H. influenzae-specific locus, fucP, was identified, and a novel TaqMan real-time PCR assay targeting fucP was designed. PCR specificity screening across a panel of clinically relevant species, coupled with in silico analysis of all species within the order Pasteurellales, demonstrated that the fucP assay was 100 % specific for H. influenzae; all other examined species failed to amplify. Conclusions This study is the first of its kind to use large-scale comparative genomic analysis of Haemophilus spp. to accurately delineate H. influenzae and to identify a species-specific molecular signature for this species. The fucP assay outperforms existing H. influenzae targets, most of which were identified prior to the next-generation genomics era and thus lack validation across a large number of Haemophilus spp. We recommend use of the fucP assay in clinical and research laboratories for the most accurate detection and diagnosis of H. influenzae infection and colonisation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1857-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Erin P Price
- Child Health Division, Menzies School of Health Research, Darwin, NT, Australia. .,Menzies School of Health Research, PO Box 41096, Casuarina, NT, 0811, Australia.
| | - Derek S Sarovich
- Child Health Division, Menzies School of Health Research, Darwin, NT, Australia.
| | - Elizabeth Nosworthy
- Child Health Division, Menzies School of Health Research, Darwin, NT, Australia.
| | - Jemima Beissbarth
- Child Health Division, Menzies School of Health Research, Darwin, NT, Australia.
| | - Robyn L Marsh
- Child Health Division, Menzies School of Health Research, Darwin, NT, Australia.
| | | | | | - Anthony D Keil
- Department of Microbiology, PathWest Laboratory Medicine WA, Princess Margaret Hospital for Children and King Edward Memorial Hospital for Women, Perth, WA, Australia.
| | - Anne B Chang
- Child Health Division, Menzies School of Health Research, Darwin, NT, Australia.
| | | |
Collapse
|
15
|
Coughlan H, Reddington K, Tuite N, Boo TW, Cormican M, Barrett L, Smith TJ, Clancy E, Barry T. Comparative genome analysis identifies novel nucleic acid diagnostic targets for use in the specific detection of Haemophilus influenzae. Diagn Microbiol Infect Dis 2015; 83:112-6. [PMID: 26166209 DOI: 10.1016/j.diagmicrobio.2015.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/03/2015] [Accepted: 06/07/2015] [Indexed: 11/25/2022]
Abstract
Haemophilus influenzae is recognised as an important human pathogen associated with invasive infections, including bloodstream infection and meningitis. Currently used molecular-based diagnostic assays lack specificity in correctly detecting and identifying H. influenzae. As such, there is a need to develop novel diagnostic assays for the specific identification of H. influenzae. Whole genome comparative analysis was performed to identify putative diagnostic targets, which are unique in nucleotide sequence to H. influenzae. From this analysis, we identified 2H. influenzae putative diagnostic targets, phoB and pstA, for use in real-time PCR diagnostic assays. Real-time PCR diagnostic assays using these targets were designed and optimised to specifically detect and identify all 55H. influenzae strains tested. These novel rapid assays can be applied to the specific detection and identification of H. influenzae for use in epidemiological studies and could also enable improved monitoring of invasive disease caused by these bacteria.
Collapse
Affiliation(s)
- Helena Coughlan
- Nucleic Acid Diagnostics Research Laboratory (NADRL), Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland; Biomedical Diagnostics Institute Programme, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland
| | - Kate Reddington
- Nucleic Acid Diagnostics Research Laboratory (NADRL), Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Nina Tuite
- Nucleic Acid Diagnostics Research Laboratory (NADRL), Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Teck Wee Boo
- Department of Clinical Microbiology, University College Hospital, Galway, Ireland
| | - Martin Cormican
- School of Medicine, National University of Ireland, Galway, Ireland
| | - Louise Barrett
- National Centre of Sensor Research, School of Physical Sciences, Biomedical Diagnostics Institute, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Terry J Smith
- Biomedical Diagnostics Institute Programme, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland; Molecular Diagnostics Research Group (MDRG), School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Eoin Clancy
- Biomedical Diagnostics Institute Programme, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland; Molecular Diagnostics Research Group (MDRG), School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Thomas Barry
- Nucleic Acid Diagnostics Research Laboratory (NADRL), Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| |
Collapse
|
16
|
Pickering J, Richmond PC, Kirkham LAS. Molecular tools for differentiation of non-typeable Haemophilus influenzae from Haemophilus haemolyticus. Front Microbiol 2014; 5:664. [PMID: 25520712 PMCID: PMC4251515 DOI: 10.3389/fmicb.2014.00664] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 11/15/2014] [Indexed: 12/18/2022] Open
Abstract
Non-typeable Haemophilus influenzae (NTHi) and Haemophilus haemolyticus are closely related bacteria that reside in the upper respiratory tract. NTHi is associated with respiratory tract infections that frequently result in antibiotic prescription whilst H. haemolyticus is rarely associated with disease. NTHi and H. haemolyticus can be indistinguishable by traditional culture methods and molecular differentiation has proven difficult. This current review chronologically summarizes the molecular approaches that have been developed for differentiation of NTHi from H. haemolyticus, highlighting the advantages and disadvantages of each target and/or technique. We also provide suggestions for the development of new tools that would be suitable for clinical and research laboratories.
Collapse
Affiliation(s)
- Janessa Pickering
- School of Paediatrics and Child Health, The University of Western Australia Perth, WA, Australia
| | - Peter C Richmond
- School of Paediatrics and Child Health, The University of Western Australia Perth, WA, Australia ; Centre for Vaccine and Infectious Disease Research, Telethon Kids Institute, The University of Western Australia Perth, WA, Australia
| | - Lea-Ann S Kirkham
- School of Paediatrics and Child Health, The University of Western Australia Perth, WA, Australia ; Centre for Vaccine and Infectious Disease Research, Telethon Kids Institute, The University of Western Australia Perth, WA, Australia
| |
Collapse
|
17
|
Nørskov-Lauritsen N. Classification, identification, and clinical significance of Haemophilus and Aggregatibacter species with host specificity for humans. Clin Microbiol Rev 2014; 27:214-40. [PMID: 24696434 PMCID: PMC3993099 DOI: 10.1128/cmr.00103-13] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The aim of this review is to provide a comprehensive update on the current classification and identification of Haemophilus and Aggregatibacter species with exclusive or predominant host specificity for humans. Haemophilus influenzae and some of the other Haemophilus species are commonly encountered in the clinical microbiology laboratory and demonstrate a wide range of pathogenicity, from life-threatening invasive disease to respiratory infections to a nonpathogenic, commensal lifestyle. New species of Haemophilus have been described (Haemophilus pittmaniae and Haemophilus sputorum), and the new genus Aggregatibacter was created to accommodate some former Haemophilus and Actinobacillus species (Aggregatibacter aphrophilus, Aggregatibacter segnis, and Aggregatibacter actinomycetemcomitans). Aggregatibacter species are now a dominant etiology of infective endocarditis caused by fastidious organisms (HACEK endocarditis), and A. aphrophilus has emerged as an important cause of brain abscesses. Correct identification of Haemophilus and Aggregatibacter species based on phenotypic characterization can be challenging. It has become clear that 15 to 20% of presumptive H. influenzae isolates from the respiratory tracts of healthy individuals do not belong to this species but represent nonhemolytic variants of Haemophilus haemolyticus. Due to the limited pathogenicity of H. haemolyticus, the proportion of misidentified strains may be lower in clinical samples, but even among invasive strains, a misidentification rate of 0.5 to 2% can be found. Several methods have been investigated for differentiation of H. influenzae from its less pathogenic relatives, but a simple method for reliable discrimination is not available. With the implementation of identification by matrix-assisted laser desorption ionization-time of flight mass spectrometry, the more rarely encountered species of Haemophilus and Aggregatibacter will increasingly be identified in clinical microbiology practice. However, identification of some strains will still be problematic, necessitating DNA sequencing of multiple housekeeping gene fragments or full-length 16S rRNA genes.
Collapse
|
18
|
LaCross NC, Marrs CF, Gilsdorf JR. Population structure in nontypeable Haemophilus influenzae. INFECTION GENETICS AND EVOLUTION 2012; 14:125-36. [PMID: 23266487 DOI: 10.1016/j.meegid.2012.11.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 11/28/2012] [Accepted: 11/30/2012] [Indexed: 01/28/2023]
Abstract
Nontypeable Haemophilus influenzae (NTHi) frequently colonize the human pharynx asymptomatically, and are an important cause of otitis media in children. Past studies have identified typeable H. influenzae as being clonal, but the population structure of NTHi has not been extensively characterized. The research presented here investigated the diversity and population structure in a well-characterized collection of NTHi isolated from the middle ears of children with otitis media or the pharynges of healthy children in three disparate geographic regions. Multilocus sequence typing identified 109 unique sequence types among 170 commensal and otitis media-associated NTHi isolates from Finland, Israel, and the US. The largest clonal complex contained only five sequence types, indicating a high level of genetic diversity. The eBURST v3, ClonalFrame 1.1, and structure 2.3.3 programs were used to further characterize diversity and population structure from the sequence typing data. Little clustering was apparent by either disease state (otitis media or commensalism) or geography in the ClonalFrame phylogeny. Population structure was clearly evident, with support for eight populations when all 170 isolates were analyzed. Interestingly, one population contained only commensal isolates, while two others consisted solely of otitis media isolates, suggesting associations between population structure and disease.
Collapse
Affiliation(s)
- Nathan C LaCross
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
19
|
Low occurrence of ‘non-haemolytic Haemophilus haemolyticus’ misidentified as Haemophilus influenzae in cystic fibrosis respiratory specimens, and frequent recurrence of persistent H. influenzae clones despite antimicrobial treatment. Int J Med Microbiol 2012. [DOI: 10.1016/j.ijmm.2012.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
20
|
Meyler KL, Meehan M, Bennett D, Cunney R, Cafferkey M. Development of a diagnostic real-time polymerase chain reaction assay for the detection of invasive Haemophilus influenzae in clinical samples. Diagn Microbiol Infect Dis 2012; 74:356-62. [DOI: 10.1016/j.diagmicrobio.2012.08.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 06/29/2012] [Accepted: 08/19/2012] [Indexed: 11/26/2022]
|
21
|
Evaluation of new biomarker genes for differentiating Haemophilus influenzae from Haemophilus haemolyticus. J Clin Microbiol 2012; 50:1422-4. [PMID: 22301020 DOI: 10.1128/jcm.06702-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PCR detecting the protein D (hpd) and fuculose kinase (fucK) genes showed high sensitivity and specificity for identifying Haemophilus influenzae and differentiating it from H. haemolyticus. Phylogenetic analysis using the 16S rRNA gene demonstrated two distinct groups for H. influenzae and H. haemolyticus.
Collapse
|
22
|
|
23
|
Shuel ML, Karlowsky KE, Law DKS, Tsang RSW. Nonencapsulated or nontypeable Haemophilus influenzae are more likely than their encapsulated or serotypeable counterparts to have mutations in their fucose operon. Can J Microbiol 2011; 57:982-6. [PMID: 22107351 DOI: 10.1139/w11-017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Population biology of Haemophilus influenzae can be studied by multilocus sequence typing (MLST), and isolates are assigned sequence types (STs) based on nucleotide sequence variations in seven housekeeping genes, including fucK. However, the ST cannot be assigned if one of the housekeeping genes is absent or cannot be detected by the current protocol. Occasionally, strains of H. influenzae have been reported to lack the fucK gene. In this study, we examined the prevalence of this mutation among our collection of H. influenzae isolates. Of the 704 isolates studied, including 282 encapsulated and 422 nonencapsulated isolates, nine were not typeable by MLST owing to failure to detect the fucK gene. All nine fucK-negative isolates were nonencapsulated and belonged to various biotypes. DNA sequencing of the fucose operon region confirmed complete deletion of genes in the operon in seven of the nine isolates, while in the remaining two isolates, some of the genes were found intact or in parts. The significance of these findings is discussed.
Collapse
Affiliation(s)
- Michelle L Shuel
- Vaccine Preventable Bacterial Diseases, National Microbiology Laboratory, 1015 Arlington Street, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | | | | | | |
Collapse
|
24
|
The N-acylneuraminate cytidyltransferase gene, neuA, is heterogenous in Legionella pneumophila strains but can be used as a marker for epidemiological typing in the consensus sequence-based typing scheme. J Clin Microbiol 2011; 49:4052-8. [PMID: 21956982 DOI: 10.1128/jcm.00687-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sequence-based typing (SBT) is the internationally recognized standard method for genotyping Legionella pneumophila. To date all strains of serogroup 1 (SG1) and some of SGs 2 to 14 yield a seven-allele profile and can be assigned a sequence type (ST). However, for some strains belonging to SGs 2 to 14, the targeted region of the neuA gene could not be amplified using the published standard primers. We determined the DNA sequence of a neuA gene homolog located in the lipopolysaccharide synthesis locus of strain Dallas-1E. By using newly designed degenerate consensus primers based on the neuA homolog in strains Dallas-1E, Philadelphia-1, Paris, Lens, and Corby, we were able to obtain DNA sequences for all 48 non-SG1 strains which were untypeable by the standard method. Our data show that the neuA gene is present in all L. pneumophila strains but differs significantly in some non-SG1 strains at both the DNA and amino acid levels. The new primers can be used to amplify and sequence the neuA gene in all strains and can substitute for the standard primers. This offers the possibility of assigning an ST to all strains of L. pneumophila.
Collapse
|
25
|
Harrison OB, Brueggemann AB, Caugant DA, van der Ende A, Frosch M, Gray S, Heuberger S, Krizova P, Olcen P, Slack M, Taha MK, Maiden MCJ. Molecular typing methods for outbreak detection and surveillance of invasive disease caused by Neisseria meningitidis, Haemophilus influenzae and Streptococcus pneumoniae, a review. MICROBIOLOGY (READING, ENGLAND) 2011; 157:2181-2195. [PMID: 21622526 PMCID: PMC3980633 DOI: 10.1099/mic.0.050518-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Invasive disease caused by the encapsulated bacteria Neisseria meningitidis, Haemophilus influenzae and Streptococcus pneumoniae remains an important cause of morbidity and mortality worldwide, despite the introduction of successful conjugate polysaccharide vaccines that target disease-associated strains. In addition, resistance, or more accurately reduced susceptibility, to therapeutic antibiotics is spreading in populations of these organisms. There is therefore a continuing requirement for the surveillance of vaccine and non-vaccine antigens and antibiotic susceptibilities among isolates from invasive disease, which is only partially met by conventional methods. This need can be met with molecular and especially nucleotide sequence-based typing methods, which are fully developed in the case of N. meningitidis and which could be more widely deployed in clinical laboratories for S. pneumoniae and H. influenzae.
Collapse
Affiliation(s)
- Odile B. Harrison
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | | | - Dominique A. Caugant
- Department of Bacteriology and Immunology, Norwegian Institute of Public Health, PO Box 4404 Nydalen, NO-0403 Oslo, Norway
| | - Arie van der Ende
- Academic Medical Center, Department of Medical Microbiology, Reference Laboratory for Bacterial Meningitis, PO Box 22660, 1100 DD Amsterdam, The Netherlands
| | - Matthias Frosch
- Institut für Hygiene und Mikrobiologie, Universität Würzburg, Josef-Schneider Strasse 2, 97080 Würzburg, Germany
| | - Stephen Gray
- Meningococcal Reference Unit, Health Protection Agency, PO Box 209, Clinical Sciences Building 2, Manchester Royal Infirmary, Oxford Road, Manchester M13 9WZ, UK
| | - Sigrid Heuberger
- Österreichische Agentur für Gesundheit und Ernährungssicherheit GmbH, Bereich Humanmedizin, Institut für medizinische Mikrobiologie und Hygiene, Beethovenstraße 6, A-8010 Graz, Austria
| | - Paula Krizova
- National Reference Laboratory for Meningococcal Infections, National Institute of Public Health, Srobarova 48, Prague, Czech Republic
| | - Per Olcen
- Department of Laboratory Medicine, Clinical Microbiology and Immunology, Orebro University Hospital, SE-701 85 Orebro, Sweden
| | - Mary Slack
- Respiratory and Systemic Infection Laboratory, Health Protection Agency Centre for Infections, 61 Colindale Avenue, London NW9 5EQ, UK
| | | | - Martin C. J Maiden
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| |
Collapse
|
26
|
Nørskov-Lauritsen N. Increased level of intragenomic 16S rRNA gene heterogeneity in commensal strains closely related to Haemophilus influenzae. MICROBIOLOGY-SGM 2011; 157:1050-1055. [PMID: 21310788 DOI: 10.1099/mic.0.047233-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The 16S rRNA gene sequence of strains closely related to, but excluded from, Haemophilus influenzae was investigated and a conspicuously high number of polymorphic nucleotide positions due to intragenomic 16S rRNA gene heterogeneity was observed. The average frequency of 16S rRNA gene polymorphic nucleotide positions in 31 variant strains was 7.0×10(-3), which is approximately ten times the level observed in validated strains of H. influenzae. Sixty-seven polymorphic nucleotide positions in seven strains most likely originated from the simultaneous presence of two distinct types of helix 18 as a consequence of prior recombinatorial events. The increased level of 16S rRNA gene polymorphism in commensal taxa excluded from the pathogenic species H. influenzae is unexplained. The heterogeneity imposes difficulties on rRNA gene-based classification and systematics.
Collapse
Affiliation(s)
- Niels Nørskov-Lauritsen
- Department of Clinical Microbiology, Aarhus University Hospital Skejby, DK-8200 Aarhus N, Denmark
| |
Collapse
|