1
|
Zhang X, Zhang R, Wang J, Sui N, Xu G, Yan H, Zhu Y, Xie Z, Jiang S. Construction of Recombinant Lactococcus lactis Strain Expressing VP1 Fusion Protein of Duck Hepatitis A Virus Type 1 and Evaluation of Its Immune Effect. Vaccines (Basel) 2021; 9:vaccines9121479. [PMID: 34960225 PMCID: PMC8709260 DOI: 10.3390/vaccines9121479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/19/2021] [Accepted: 12/10/2021] [Indexed: 11/26/2022] Open
Abstract
With the continuous development of duck farming and the increasing breeding density, the incidence of duck hepatitis A virus type 1 (DHAV-1) has been on the rise, seriously endangering the development of duck farming. To reduce the use of antibiotics in duck breeding, susceptibility risks and mortality, and avoid virulence recovery and immune failure risk, this study aims to develop a new type of mucosal immune probiotics and make full use of molecular biology techniques, on the level of genetic engineering, to modify Lactococcus lactis (L. lactis). In this study, a secretory recombinant L. lactis named MG1363-VP1 with an enhanced Green Fluorescent Protein (eGFP) and translation enhancer T7g10L was constructed, which could express the VP1-eGFP fusion protein of DHAV-1. The animal experiment in ducklings was performed to detect the immune response and protection effect of oral microecologics by recombinant L. lactis. The results showed that oral L. lactis MG1363-VP1 significantly induced the body’s humoral immune system and mucosal immune system to produce specific anti-VP1 IgG antibodies and mucosal secretory immunoglobulin A (sIgA) for DHAV-1 in ducklings, and cytokines including interleukin-2 (IL-2), interleukin-4 (IL-4), interleukin-10 (IL-10), and interferon gamma (IFN-γ). The mortality rate was monitored simultaneously by the natural infestation in the process of production and breeding; notably, the ducklings vaccinated with L. lactis MG1363-VP1 were effectively protected against the nature infection of DHAV-1. The recombinant L. lactis MG1363-VP1 constructed in this study provides a new means of preventing and controlling DHAV-1 infection in the future.
Collapse
Affiliation(s)
- Xiaoting Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; (X.Z.); (R.Z.); (J.W.); (N.S.); (G.X.); (H.Y.); (Y.Z.); (Z.X.)
- Shandong Key Laboratory of Animal Microecological Preparations, Taian 271000, China
| | - Ruihua Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; (X.Z.); (R.Z.); (J.W.); (N.S.); (G.X.); (H.Y.); (Y.Z.); (Z.X.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271000, China
| | - Jingyu Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; (X.Z.); (R.Z.); (J.W.); (N.S.); (G.X.); (H.Y.); (Y.Z.); (Z.X.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271000, China
| | - Nana Sui
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; (X.Z.); (R.Z.); (J.W.); (N.S.); (G.X.); (H.Y.); (Y.Z.); (Z.X.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271000, China
| | - Guige Xu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; (X.Z.); (R.Z.); (J.W.); (N.S.); (G.X.); (H.Y.); (Y.Z.); (Z.X.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271000, China
| | - Hui Yan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; (X.Z.); (R.Z.); (J.W.); (N.S.); (G.X.); (H.Y.); (Y.Z.); (Z.X.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271000, China
| | - Yanli Zhu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; (X.Z.); (R.Z.); (J.W.); (N.S.); (G.X.); (H.Y.); (Y.Z.); (Z.X.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271000, China
| | - Zhijing Xie
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; (X.Z.); (R.Z.); (J.W.); (N.S.); (G.X.); (H.Y.); (Y.Z.); (Z.X.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271000, China
| | - Shijin Jiang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; (X.Z.); (R.Z.); (J.W.); (N.S.); (G.X.); (H.Y.); (Y.Z.); (Z.X.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271000, China
- Correspondence: ; Tel.: +86-538-8245799
| |
Collapse
|
2
|
Davarpanah E, Seyed N, Bahrami F, Rafati S, Safaralizadeh R, Taheri T. Lactococcus lactis expressing sand fly PpSP15 salivary protein confers long-term protection against Leishmania major in BALB/c mice. PLoS Negl Trop Dis 2020; 14:e0007939. [PMID: 31899767 PMCID: PMC6941807 DOI: 10.1371/journal.pntd.0007939] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/20/2019] [Indexed: 02/06/2023] Open
Abstract
Cutaneous leishmaniasisis a vector-borne disease transmitted by Leishmania infected sand flies. PpSP15 is an immunogenic salivary protein from the sand fly Phlebotomus papatasi. Immunization with PpSP15 was shown to protect against Leishmania major infection. Lactococcus lactis is a safe non-pathogenic delivery system that can be used to express antigens in situ. Here, the codon-optimized Ppsp15-egfp gene was cloned in pNZ8121 vector downstream of the PrtP signal peptide that is responsible for expression and secretion of the protein on the cell wall. Expression of PpSP15-EGFP recombinant protein was monitored by immunofluorescence, flow cytometry and Western blot. Also, expression of protein in cell wall compartment was verified using whole cell ELISA, Western blot and TEM microscopy. BALB/c mice were immunized three times with recombinant L. lactis-PpSP15-EGFPcwa, and the immune responses were followed up, at short-term (ST, 2 weeks) and long-term (LT, 6 months) periods. BALB/c mice were challenged with L. major plus P. papatasi Salivary Gland Homogenate. Evaluation of footpad thickness and parasite burden showed a delay in the development of the disease and significantly decreased parasite numbers in PpSP15 vaccinated animals as compared to control group. In addition, immunized mice showed Th1 type immune responses. Importantly, immunization with L. lactis-PpSP15-EGFPcwa stimulated the long-term memory in mice which lasted for at least 6 months.
Collapse
Affiliation(s)
- Elaheh Davarpanah
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Negar Seyed
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Fariborz Bahrami
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Sima Rafati
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Reza Safaralizadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Tahereh Taheri
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
3
|
Pharmacological Targeting of Pore-Forming Toxins as Adjunctive Therapy for Invasive Bacterial Infection. Toxins (Basel) 2018; 10:toxins10120542. [PMID: 30562923 PMCID: PMC6316385 DOI: 10.3390/toxins10120542] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/10/2018] [Accepted: 12/14/2018] [Indexed: 12/23/2022] Open
Abstract
For many of the most important human bacterial infections, invasive disease severity is fueled by the cell damaging and pro-inflammatory effects of secreted pore-forming toxins (PFTs). Isogenic PFT-knockout mutants, e.g., Staphylococcus aureus lacking α-toxin or Streptococcus pneumoniae deficient in pneumolysin, show attenuation in animal infection models. This knowledge has inspired multi-model investigations of strategies to neutralize PFTs or counteract their toxicity as a novel pharmacological approach to ameliorate disease pathogenesis in clinical disease. Promising examples of small molecule, antibody or nanotherapeutic drug candidates that directly bind and neutralize PFTs, block their oligomerization or membrane receptor interactions, plug establishment membrane pores, or boost host cell resiliency to withstand PFT action have emerged. The present review highlights these new concepts, with a special focus on β-PFTs produced by leading invasive human Gram-positive bacterial pathogens. Such anti-virulence therapies could be applied as an adjunctive therapy to antibiotic-sensitive and -resistant strains alike, and further could be free of deleterious effects that deplete the normal microflora.
Collapse
|
4
|
Gifre-Renom L, Cano-Garrido O, Fàbregas F, Roca-Pinilla R, Seras-Franzoso J, Ferrer-Miralles N, Villaverde A, Bach À, Devant M, Arís A, Garcia-Fruitós E. A new approach to obtain pure and active proteins from Lactococcus lactis protein aggregates. Sci Rep 2018; 8:13917. [PMID: 30224788 PMCID: PMC6141594 DOI: 10.1038/s41598-018-32213-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/15/2018] [Indexed: 11/25/2022] Open
Abstract
The production of pure and soluble proteins is a complex, protein-dependent and time-consuming process, in particular for those prone-to-aggregate and/or difficult-to-purify. Although Escherichia coli is widely used for protein production, recombinant products must be co-purified through costly processes to remove lipopolysaccharide (LPS) and minimize adverse effects in the target organism. Interestingly, Lactococcus lactis, which does not contain LPS, could be a promising alternative for the production of relevant proteins. However, to date, there is no universal strategy to produce and purify any recombinant protein, being still a protein-specific process. In this context and considering that L. lactis is also able to form functional protein aggregates under overproduction conditions, we explored the use of these aggregates as an alternative source of soluble proteins. In this study, we developed a widely applicable and economically affordable protocol to extract functional proteins from these nanoclusters. For that, two model proteins were used: mammary serum amyloid A3 (M-SAA3) and metalloproteinase 9 (MMP-9), a difficult-to-purify and a prone-to-aggregate protein, respectively. The results show that it is possible to obtain highly pure, soluble, LPS-free and active recombinant proteins from L. lactis aggregates through a cost-effective and simple protocol with special relevance for difficult-to-purify or highly aggregated proteins.
Collapse
Affiliation(s)
- L Gifre-Renom
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08140, Caldes de Montbui, Spain
| | - O Cano-Garrido
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain.,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193, Cerdanyola del Vallès, Spain
| | - F Fàbregas
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08140, Caldes de Montbui, Spain
| | - R Roca-Pinilla
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08140, Caldes de Montbui, Spain
| | - J Seras-Franzoso
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain.,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193, Cerdanyola del Vallès, Spain.,Cibbim-Nanomedicine, Hospital Vall d'Hebron, Institut de Recerca de la Vall d'Hebron (VHIR), 08035, Barcelona, Spain
| | - N Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain.,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193, Cerdanyola del Vallès, Spain
| | - A Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain.,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193, Cerdanyola del Vallès, Spain
| | - À Bach
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08140, Caldes de Montbui, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - M Devant
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08140, Caldes de Montbui, Spain
| | - A Arís
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08140, Caldes de Montbui, Spain.
| | - E Garcia-Fruitós
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08140, Caldes de Montbui, Spain.
| |
Collapse
|
5
|
Dowd GC, Bahey-El-Din M, Casey PG, Joyce SA, Hill C, Gahan CGM. Listeria monocytogenes mutants defective in gallbladder replication represent safety-enhanced vaccine delivery platforms. Hum Vaccin Immunother 2016; 12:2059-2063. [PMID: 26905522 DOI: 10.1080/21645515.2016.1154248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The Gram positive intracellular pathogen Listeria monocytogenes represents a promising vaccine or therapeutic DNA delivery vector that has been successfully administered to humans in clinical trials. However in generating Listeria mutants with therapeutic potential it is important to balance safety attenuation with efficacy. Here we show that L. monocytogenes mutants with a reduced capacity for murine gallbladder replication are capable of stimulating T cell responses in mice and protecting vaccinated animals from secondary challenge. Mutation of L. monocytogenes genes lmo2566 or lmo0598 resulted in significant attenuation in the murine model yet mutants retained a capacity for intracellular growth and stimulation of T cell responses against key Listeria epitopes (LLO91-99 and P60217-225). Importantly the mutants showed a reduced capacity for growth in the gallbladders of vaccinated mice as well as significantly reduced faecal shedding indicating that this approach generates live Listeria-based vector delivery systems with a reduced capacity for the spread of live genetically modified microorganisms into the natural environment.
Collapse
Affiliation(s)
- Georgina C Dowd
- a APC Microbiome Institute, University College Cork , Cork , Ireland.,b School of Microbiology, University College Cork , Cork , Ireland
| | - Mohammed Bahey-El-Din
- a APC Microbiome Institute, University College Cork , Cork , Ireland.,b School of Microbiology, University College Cork , Cork , Ireland
| | - Pat G Casey
- a APC Microbiome Institute, University College Cork , Cork , Ireland.,b School of Microbiology, University College Cork , Cork , Ireland
| | - Susan A Joyce
- a APC Microbiome Institute, University College Cork , Cork , Ireland.,c School of Biochemistry & Cell Biology, University College Cork , Cork , Ireland
| | - Colin Hill
- a APC Microbiome Institute, University College Cork , Cork , Ireland.,b School of Microbiology, University College Cork , Cork , Ireland
| | - Cormac G M Gahan
- a APC Microbiome Institute, University College Cork , Cork , Ireland.,b School of Microbiology, University College Cork , Cork , Ireland.,d School of Pharmacy, University College Cork , Cork , Ireland
| |
Collapse
|
6
|
Lin J, Zou Y, Ma C, Liang Y, Ge X, Chen Z, She Q. Construction and characterization of three protein-targeting expression system in Lactobacillus casei. FEMS Microbiol Lett 2016; 363:fnw041. [PMID: 26892019 DOI: 10.1093/femsle/fnw041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2016] [Indexed: 12/28/2022] Open
Abstract
We previously reported that the β-1,4-Mannanase (manB) gene from Bacillus pumilus functions as a good reporter gene in Lactobacillus casei. Two vectors were constructed. One carries the signal peptide of secretion protein Usp45 (SPUsp45) from Lactococcus lactis (pELSH), and the other carries the full-length S-layer protein, SlpA, from L. acidophilus (pELWH). In this work, another vector, pELSPH, was constructed to include the signal peptide of protein SlpA (SPSlpA), and the capacity of all three vectors to drive expression of the manB gene in L. casei was evaluated. The results showed that SPUsp45 is functionally recognized and processed by the L. casei secretion machinery. The SPUsp45-mediated secretion efficiency was ∼87%, and SPSlpA drove the export of secreted ManB with ∼80% efficiency. SPSlpA secretion was highly efficient, and expressed SlpA was anchored to the cell wall by an unknown secretion mechanism. Full-length SlpA drove the cell wall-anchored expression of an SlpA-ManB fusion protein but at a much lower level than that of protein SlpA.
Collapse
Affiliation(s)
- Jinzhong Lin
- State Key Laboratory of Dairy Biotechnology, Technology Center of Bright Dairy and Food Co., Ltd., 1518 Jiangchang Road (W), Shanghai 200436, China
| | - Yexia Zou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengjie Ma
- State Key Laboratory of Dairy Biotechnology, Technology Center of Bright Dairy and Food Co., Ltd., 1518 Jiangchang Road (W), Shanghai 200436, China
| | - Yunxiang Liang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangyang Ge
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhengjun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qunxin She
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China Department of Biology, University of Copenhagen, Biocenter, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
7
|
Domain function dissection and catalytic properties of Listeria monocytogenes p60 protein with bacteriolytic activity. Appl Microbiol Biotechnol 2015; 99:10527-37. [PMID: 26363556 DOI: 10.1007/s00253-015-6967-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/12/2015] [Accepted: 08/23/2015] [Indexed: 02/07/2023]
Abstract
The major extracellular protein p60 of Listeria monocytogenes (Lm-p60) is an autolysin that can hydrolyze the peptidoglycan of bacterial cell wall and has been shown to be required for L. monocytogenes virulence. The predicted three-dimensional structure of Lm-p60 showed that Lm-p60 could be split into two independent structural domains at the amino acid residue 270. Conserved motif analysis showed that V30, D207, S395, and H444 are the key amino acid residues of the corresponding motifs. However, not only the actual functions of these two domains but also the catalytic properties of Lm-p60 are unclear. We try to express recombinant Lm-p60 and identify the functions of two domains by residue substitution (V30A, D207A, S395A, and H444A) and peptide truncation. The C-terminal domain was identified as catalytic element and N-terminal domain as substrate recognition and binding element. Either N-terminal domain truncation or C-terminal domain truncation presents corresponding biological activity. The catalytic activity of Lm-p60 with a malfunctioned substrate-binding domain was decreased, while the substrate binding was not affected by a mulfunctioned catalytic domain. With turbidimetric method, we determined the optimal conditions for the bacteriolytic activity of Lm-p60 against Micrococcus lysodeikficus. The assay for the effect of Lm-p60 on the bacteriolytic activity of lysozyme revealed that the combined use of Lm-p60 protein with lysozyme showed a strong synergistic effect on the bacteriolytic activity.
Collapse
|
8
|
Huynh E, Li J. Generation of Lactococcus lactis capable of coexpressing epidermal growth factor and trefoil factor to enhance in vitro wound healing. Appl Microbiol Biotechnol 2015; 99:4667-77. [PMID: 25833182 DOI: 10.1007/s00253-015-6542-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/11/2015] [Accepted: 03/13/2015] [Indexed: 01/12/2023]
Abstract
Epidermal growth factor (EGF) and trefoil factor 3 (TFF3) are peptides that actively support the restitution and repair of mucosal epithelial barriers. Previous studies have shown that TFF3 enhanced EGF effect in wound healing, suggesting that the combined application of the two factors may be advantageous in clinical tissue repair. Expression of multiple proteins in a single host is a desirable approach in a biotechnological process, allowing to reduce cost and increase production efficiency. The aim of the present study was to study the feasibility of coexpressing EGF and TFF3 in food grade bacteria, Lactococcus lactis (L. lactis). Using an expression construct allowing simultaneous translation of two separate recombinant peptides, we generated a L. lactis that coexpressed and secreted EGF and TFF3 dually (LL-ET). Western blot analysis revealed that LL-ET secreted 45-54 % more total recombinant peptides (EGF+TFF3) per flask fermentation and 21-37 % more total recombinant proteins in bioreactor fermentation compared to their single factor expressing L. lactis counterparts (LL-EGF and LL-TFF3, respectively). The resulted recombinant EGF and TFF3 showed enhancement in wound healing activity in vitro. Our data suggest that the dual expression and secretion of EGF and TFF3 by L. lactis effectively accelerated cell migration, demonstrating potential future oral application of L. lactis fermentation product containing dual factors or a cocktail of factors to potentially treat intestinal damage and inflammation.
Collapse
Affiliation(s)
- Evanna Huynh
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | | |
Collapse
|
9
|
Airways microbiota: Hidden Trojan horses in asbestos exposed individuals? Med Hypotheses 2014; 83:537-40. [PMID: 25262213 DOI: 10.1016/j.mehy.2014.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 08/28/2014] [Accepted: 09/10/2014] [Indexed: 11/23/2022]
Abstract
Malignant pleura mesothelioma (MPM) is a rare type of cancer with devastating prognosis, which develops in the pleural cavity from transformed mesothelium. MPM has been directly associated with asbestos exposure however there are aspects of the pathophysiology involved in the translocation of asbestos fibers in the pleura that remain unclear. Here, we propose and discuss that certain proteins secreted by airways symbiotic microbiota create membrane pores to the airway epithelial cells, through which asbestos fibers can penetrate the lung parenchyma and reach the sub-pleural areas. We evaluate this hypothesis using data from the published literature regarding the airways microbiota toxins such as cholesterol-dependent cytolysins (CDCs).
Collapse
|
10
|
Efficient production of secreted staphylococcal antigens in a non-lysing and proteolytically reduced Lactococcus lactis strain. Appl Microbiol Biotechnol 2014; 98:10131-41. [DOI: 10.1007/s00253-014-6030-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/06/2014] [Accepted: 08/21/2014] [Indexed: 01/20/2023]
|
11
|
Bahey-El-Din M, Gahan CGM. Vaccination studies: detection of a Listeria monocytogenes-specific T cell immune response using the ELISPOT technique. Methods Mol Biol 2014; 1157:263-74. [PMID: 24792565 DOI: 10.1007/978-1-4939-0703-8_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
During systemic infection by Listeria monocytogenes the host develops a robust T cell-mediated immune response against the major immunodominant antigens of the pathogen. The enzyme-linked immuno-spot (ELISPOT) test is an accurate and reproducible means of measuring the extent of this T cell response. Here we describe a detailed ELISPOT protocol for measuring an epitope-specific CD8+ T cell-mediated immune response in mice vaccinated with low doses of L. monocytogenes. The basic approach can be easily adapted for the analysis of other vaccination regimes and target epitopes.
Collapse
Affiliation(s)
- Mohammed Bahey-El-Din
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | | |
Collapse
|
12
|
Hanin A, Culligan EP, Casey PG, Bahey-El-Din M, Hill C, Gahan CGM. Two-tiered biological containment strategy for Lactococcus lactis-based vaccine or immunotherapy vectors. Hum Vaccin Immunother 2013; 10:333-7. [PMID: 24196273 DOI: 10.4161/hv.26954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The concept of biological containment was developed as a strategy to prevent environmental dissemination of engineered live vaccine or drug delivery vehicles. A mutation in the gene encoding thymidylate synthase (thyA), a key enzyme in the pyrimidine biosynthetic pathway, has previously been shown to limit growth of L. lactis vectors under restrictive conditions. We hypothesized that further mutations in the pyrimidine biosynthetic pathway might enhance the stability and safety of live L. lactis vectors. We show that a double mutation in the genes encoding ThyA and CTP synthase (PyrG) in L. lactis confers double auxotrophy for both thymidine and cytidine. However, the combination of two mutations failed to enhance the biological containment phenotype of the engineered strain. In the absence of thymine/thymidine, the thyA mutant exhibited a strong bactericidal phenotype. However, creation of the double mutant caused the loss of this phenotype, though survival in the mouse GI tract was enhanced. The implications for biological containment of live L. lactis based delivery vectors are discussed.
Collapse
Affiliation(s)
- Aurelie Hanin
- Alimentary Pharmabiotic Centre; University College Cork; Cork, Ireland; Department of Microbiology; University College Cork; Cork, Ireland
| | - Eamonn P Culligan
- Alimentary Pharmabiotic Centre; University College Cork; Cork, Ireland; Department of Microbiology; University College Cork; Cork, Ireland
| | - Pat G Casey
- Alimentary Pharmabiotic Centre; University College Cork; Cork, Ireland; Department of Microbiology; University College Cork; Cork, Ireland
| | - Mohammed Bahey-El-Din
- Department of Pharmaceutical Microbiology; Faculty of Pharmacy; Alexandria University; Alexandria, Egypt
| | - Colin Hill
- Alimentary Pharmabiotic Centre; University College Cork; Cork, Ireland; Department of Microbiology; University College Cork; Cork, Ireland
| | - Cormac G M Gahan
- Alimentary Pharmabiotic Centre; University College Cork; Cork, Ireland; Department of Microbiology; University College Cork; Cork, Ireland
| |
Collapse
|
13
|
McLaughlin HP, Bahey-El-Din M, Casey PG, Hill C, Gahan CGM. A mutant in the Listeria monocytogenes Fur-regulated virulence locus (frvA) induces cellular immunity and confers protection against listeriosis in mice. J Med Microbiol 2013; 62:185-190. [DOI: 10.1099/jmm.0.049114-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Heather P. McLaughlin
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Mohammed Bahey-El-Din
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- School of Pharmacy, University College Cork, Cork, Ireland
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Pat G. Casey
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Colin Hill
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Cormac G. M. Gahan
- School of Pharmacy, University College Cork, Cork, Ireland
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- Department of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
14
|
Saxena M, Van TTH, Baird FJ, Coloe PJ, Smooker PM. Pre-existing immunity against vaccine vectors--friend or foe? MICROBIOLOGY-SGM 2012; 159:1-11. [PMID: 23175507 PMCID: PMC3542731 DOI: 10.1099/mic.0.049601-0] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Over the last century, the successful attenuation of multiple bacterial and viral pathogens has led to an effective, robust and safe form of vaccination. Recently, these vaccines have been evaluated as delivery vectors for heterologous antigens, as a means of simultaneous vaccination against two pathogens. The general consensus from published studies is that these vaccine vectors have the potential to be both safe and efficacious. However, some of the commonly employed vectors, for example Salmonella and adenovirus, often have pre-existing immune responses in the host and this has the potential to modify the subsequent immune response to a vectored antigen. This review examines the literature on this topic, and concludes that for bacterial vectors there can in fact, in some cases, be an enhancement in immunogenicity, typically humoral, while for viral vectors pre-existing immunity is a hindrance for subsequent induction of cell-mediated responses.
Collapse
Affiliation(s)
- Manvendra Saxena
- Ludwig Institute for Cancer Research, Heidelberg, Victoria, Australia
| | - Thi Thu Hao Van
- School of Applied Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Fiona J Baird
- Comparative Genomics Centre, School of Pharmacy and Molecular Sciences, James Cook University, Townsville, Queensland, Australia
| | - Peter J Coloe
- School of Applied Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Peter M Smooker
- School of Applied Sciences, RMIT University, Bundoora, Victoria, Australia
| |
Collapse
|
15
|
PpiA, a surface PPIase of the cyclophilin family in Lactococcus lactis. PLoS One 2012; 7:e33516. [PMID: 22442694 PMCID: PMC3307742 DOI: 10.1371/journal.pone.0033516] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 02/10/2012] [Indexed: 12/05/2022] Open
Abstract
Background Protein folding in the envelope is a crucial limiting step of protein export and secretion. In order to better understand this process in Lactococcus lactis, a lactic acid bacterium, genes encoding putative exported folding factors like Peptidyl Prolyl Isomerases (PPIases) were searched for in lactococcal genomes. Results In L. lactis, a new putative membrane PPIase of the cyclophilin subfamily, PpiA, was identified and characterized. ppiA gene was found to be constitutively expressed under normal and stress (heat shock, H2O2) conditions. Under normal conditions, PpiA protein was synthesized and released from intact cells by an exogenously added protease, showing that it was exposed at the cell surface. No obvious phenotype could be associated to a ppiA mutant strain under several laboratory conditions including stress conditions, except a very low sensitivity to H2O2. Induction of a ppiA copy provided in trans had no effect i) on the thermosensitivity of an mutant strain deficient for the lactococcal surface protease HtrA and ii) on the secretion and stability on four exported proteins (a highly degraded hybrid protein and three heterologous secreted proteins) in an otherwise wild-type strain background. However, a recombinant soluble form of PpiA that had been produced and secreted in L. lactis and purified from a culture supernatant displayed both PPIase and chaperone activities. Conclusions Although L. lactis PpiA, a protein produced and exposed at the cell surface under normal conditions, displayed a very moderate role in vivo, it was found, as a recombinant soluble form, to be endowed with folding activities in vitro.
Collapse
|
16
|
Wells J. Mucosal vaccination and therapy with genetically modified lactic acid bacteria. Annu Rev Food Sci Technol 2012; 2:423-45. [PMID: 22129390 DOI: 10.1146/annurev-food-022510-133640] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lactic acid bacteria (LAB) have proved to be effective mucosal delivery vehicles that overcome the problem of delivering functional proteins to the mucosal tissues. By the intranasal route, both live and killed LAB vaccine strains have been shown to elicit mucosal and systemic immune responses that afford protection against infectious challenges. To be effective via oral administration, frequent dosing over several weeks is required but new targeting and adjuvant strategies have clearly demonstrated the potential to increase the immunogenicity and protective immunity of LAB vaccines. Oral administration of Lactococcus lactis has been shown to induce antigen-specific oral tolerance (OT) to secreted recombinant antigens. LAB delivery is more efficient at inducing OT than the purified antigen, thus avoiding the need for purification of large quantities of antigen. This approach holds promise for new therapeutic interventions in allergies and antigen-induced autoimmune diseases. Several clinical and research reports demonstrate considerable progress in the application of genetically modified L. lactis for the treatment of inflammatory bowel disease (IBD). New medical targets are on the horizon, and the approval by several health authorities and biosafety committees of a containment system for a genetically modified L. lactis that secretes Il-10 should pave the way for new LAB delivery applications in the future.
Collapse
Affiliation(s)
- Jerry Wells
- Host-Microbe-Interactomics, University of Wageningen, Animal Sciences Department, 6700 AH, Wageningen, The Netherlands.
| |
Collapse
|
17
|
Guirnalda P, Wood L, Paterson Y. Listeria monocytogenes and its products as agents for cancer immunotherapy. Adv Immunol 2012; 113:81-118. [PMID: 22244580 DOI: 10.1016/b978-0-12-394590-7.00004-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review covers the use of Listeria monocytogenes and its virulence factors as cancer immunotherapeutics. We describe their development as vectors to carry protein tumor antigen and eukaryotic DNA plasmids to antigen-presenting cells and efforts to harness their tumor-homing properties. We also describe their use as vectors of angiogenic molecules to induce an immune response that will destroy tumor vasculature. The background knowledge necessary to understand the biology behind the rationale to develop Listeria as a vaccine vector for tumor immunotherapy is included as well as a brief summary of the major therapies that have used this approach thus far.
Collapse
Affiliation(s)
- Patrick Guirnalda
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
18
|
Bahey-El-Din M. Lactococcus lactis-based vaccines from laboratory bench to human use: an overview. Vaccine 2011; 30:685-90. [PMID: 22154771 DOI: 10.1016/j.vaccine.2011.11.098] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 11/19/2011] [Accepted: 11/25/2011] [Indexed: 02/07/2023]
Abstract
Developing effective vaccines is an important weapon in the battle against potential pathogens and their evolving antibiotic resistance trends. Several vaccine delivery vectors have been investigated among which the generally regarded as safe (GRAS) Lactococcus lactis has a distinguished position. In this review, different factors affecting the efficacy of L. lactis-based vaccines are discussed. In addition, the issues of biological containment and pharmaceutical quality assurance of L. lactis vaccines are highlighted. These issues are critical for the success of medical translation of L. lactis-based vaccines from research laboratories to clinical use by ensuring consistent manufacturing of safe and efficacious vaccines.
Collapse
|
19
|
Peterbauer C, Maischberger T, Haltrich D. Food-grade gene expression in lactic acid bacteria. Biotechnol J 2011; 6:1147-61. [PMID: 21858927 DOI: 10.1002/biot.201100034] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 07/13/2011] [Accepted: 07/13/2011] [Indexed: 11/09/2022]
Abstract
In the 1990s, significant efforts were invested in the research and development of food-grade expression systems in lactic acid bacteria (LAB). At this time, Lactococcus lactis in particular was demonstrated to be an ideal cell factory for the food-grade production of recombinant proteins. Steady progress has since been made in research on LAB, including Lactococcus, Lactobacillus and Streptococcus, in the areas of recombinant enzyme production, industrial food fermentation, and gene and metabolic pathway regulation. Over the past decade, this work has also led to new approaches on chromosomal integration vectors and host/vector systems. These newly constructed food-grade gene expression systems were designed with specific attention to self-cloning strategies, food-grade selection markers, plasmid replication and chromosomal gene replacements. In this review, we discuss some well-characterized chromosomal integration and food-grade host/vector systems used in LAB, with a special focus on sustainability, stability and overall safety, and give some attractive examples of protein expression that are based on these systems.
Collapse
Affiliation(s)
- Clemens Peterbauer
- Food Biotechnology Laboratory, BOKU University of Natural Resources and Life Sciences, Vienna, Austria
| | | | | |
Collapse
|