1
|
Monogue ML, Sanders JM, Pybus CA, Kim J, Zhan X, Clark AE, Greenberg DE. Ceftolozane/tazobactam heteroresistance in cystic fibrosis-related Pseudomonas aeruginosa infections. JAC Antimicrob Resist 2023; 5:dlad083. [PMID: 37441352 PMCID: PMC10333726 DOI: 10.1093/jacamr/dlad083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Objectives Cystic fibrosis (CF) patients are often colonized with Pseudomonas aeruginosa. During treatment, P. aeruginosa can develop subpopulations exhibiting variable in vitro antimicrobial (ABX) susceptibility patterns. Heteroresistance (HR) may underlie reported discrepancies between in vitro susceptibility results and clinical responses to various ABXs. Here, we sought to examine the presence and nature of P. aeruginosa polyclonal HR (PHR) and monoclonal HR (MHR) to ceftolozane/tazobactam in isolates originating from CF pulmonary exacerbations. Methods This was a single-centre, non-controlled study. Two hundred and forty-six P. aeruginosa isolates from 26 adult CF patients were included. PHR was defined as the presence of different ceftolozane/tazobactam minimum inhibitory concentration (MIC) values among P. aeruginosa isolates originating from a single patient specimen. Population analysis profiles (PAPs) were performed to assess the presence of MHR, defined as ≥4-fold change in the ceftolozane/tazobactam MIC from a single P. aeruginosa colony. Results Sixteen of 26 patient specimens (62%) contained PHR P. aeruginosa populations. Of these 16 patients, 6 (23%) had specimens in which PHR P. aeruginosa isolates exhibited ceftolozane/tazobactam MICs with categorical differences (i.e. susceptible versus resistant) compared to results reported as part of routine care. One isolate, PSA 1311, demonstrated MHR. Canonical ceftolozane/tazobactam resistance genes were not found in the MHR isolates (MHR PSA 1311 or PHR PSA 6130). Conclusions Ceftolozane/tazobactam PHR exists among P. aeruginosa isolates in this work, and approximately a quarter of these populations contained isolates with ceftolozane/tazobactam susceptibiilty interpretations different from what was reported clinically, supporting concerns surrounding the utility of traditional susceptibility testing methodology in the setting of CF specimens. Genome sequencing of isolates with acquired MHR to ceftolozane/tazobactam revealed variants of unknown significance. Future work will be centred on determining the significance of these mutations to better understand these data in clinical context.
Collapse
Affiliation(s)
| | - James M Sanders
- Department of Pharmacy, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Internal Medicine, Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Christine A Pybus
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jiwoong Kim
- Department of Population and Data Sciences, Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaowei Zhan
- Department of Population and Data Sciences, Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Andrew E Clark
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David E Greenberg
- Department of Internal Medicine, Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
2
|
Chen Z. Mechanisms and Clinical Relevance of Pseudomonas aeruginosa Heteroresistance. Surg Infect (Larchmt) 2023; 24:27-38. [PMID: 36622941 DOI: 10.1089/sur.2022.349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Abstract Background: Pseudomonas aeruginosa is an opportunistic pathogen that can cause various life-threatening infections. Several unique characteristics make it the ability of survivability and adaptable and develop resistance to antimicrobial agents through multiple mechanisms. Heteroresistance, which is a subpopulation-mediated resistance, has received increasing attention in recent years. Heteroresistance may lead to unexpected treatment failure if not diagnosed in time and treated properly. Therefore, heteroresistant Pseudomonas aeruginosa infections pose considerable problems for hospital-acquired infections. However, the clinical prevalence and implications of Pseudomonas aeruginosa heteroresistance have not been reviewed. Results: In this work, the aspects of the clinically reported heteroresistance of Pseudomonas aeruginosa to commonly used antibiotic agents are reviewed. The prevalence, mechanisms, and clinical relevance of each reported heteroresistant Pseudomonas aeruginosa are discussed.
Collapse
Affiliation(s)
- Zhao Chen
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtza River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, P.R. China
| |
Collapse
|
3
|
Xu Y, Zheng X, Zeng W, Chen T, Liao W, Qian J, Lin J, Zhou C, Tian X, Cao J, Zhou T. Mechanisms of Heteroresistance and Resistance to Imipenem in Pseudomonas aeruginosa. Infect Drug Resist 2020; 13:1419-1428. [PMID: 32523360 PMCID: PMC7234976 DOI: 10.2147/idr.s249475] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/21/2020] [Indexed: 11/23/2022] Open
Abstract
Background Heteroresistance is a phenomenon that occurs in all bacteria and can cause treatment failure. Yet, the exact mechanisms responsible for heteroresistance still remain unknown. The following study investigated the mechanisms of imipenem-heteroresistance and -resistance in Pseudomonas aeruginosa clinical isolates from Wenzhou, China. Methods Imipenem resistance was detected by the agar dilution method; heteroresistance was determined by population analysis profiles. Biofilm formation assay and modified carbapenem inactivation methods were also performed. Polymerase chain reaction (PCR) was conducted to detect oprD, and quantitative real-time PCR was used to determine expression levels of oprD, ampC and four efflux pump coding genes (mexB, mexD, mexE and mexY). Results Six imipenem-heteroresistant and -resistant P. aeruginosa isolates were selected respectively. Deficient oprD was detected in all resistant isolates and two heteroresistant isolates. No strains produced carbapenemases. Expression levels of oprD were down-regulated in heteroresistant isolates. Transcription levels of the mexE and mexY were significantly increased in all heterogeneous subpopulations compared with their respective native ones. Compared with the susceptible group, increased mean relative expression levels of mexE and mexY or the decreased mean relative expression levels of oprD were observed in the resistant group (P < 0.05), whereas transcription levels of the mexB and mexD remained unchanged. Conclusion Down-regulation of oprD contributed to the resistance and heteroresistance of imipenem in our P. aeruginosa clinical isolates. In addition, the marginal up-regulation of efflux systems may indirectly affect imipenem resistance. Contrarily, defective oprD was less common in our experimental heteroresistant strains than resistant strains.
Collapse
Affiliation(s)
- Ye Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Xiangkuo Zheng
- Department of Medical Laboratory Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Weiliang Zeng
- Department of Medical Laboratory Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Tao Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Wenli Liao
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Jiao Qian
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Jie Lin
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Cui Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Xuebin Tian
- Department of Medical Laboratory Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Jianming Cao
- Department of Medical Laboratory Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| |
Collapse
|
4
|
Mechanisms and clinical relevance of bacterial heteroresistance. Nat Rev Microbiol 2019; 17:479-496. [DOI: 10.1038/s41579-019-0218-1] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2019] [Indexed: 02/08/2023]
|
5
|
Lag Phase Is a Dynamic, Organized, Adaptive, and Evolvable Period That Prepares Bacteria for Cell Division. J Bacteriol 2019; 201:JB.00697-18. [PMID: 30642990 DOI: 10.1128/jb.00697-18] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Lag is a temporary period of nonreplication seen in bacteria that are introduced to new media. Despite latency being described by Müller in 1895, only recently have we gained insights into the cellular processes characterizing lag phase. This review covers literature to date on the transcriptomic, proteomic, metabolomic, physiological, biochemical, and evolutionary features of prokaryotic lag. Though lag is commonly described as a preparative phase that allows bacteria to harvest nutrients and adapt to new environments, the implications of recent studies indicate that a refinement of this view is well deserved. As shown, lag is a dynamic, organized, adaptive, and evolvable process that protects bacteria from threats, promotes reproductive fitness, and is broadly relevant to the study of bacterial evolution, host-pathogen interactions, antibiotic tolerance, environmental biology, molecular microbiology, and food safety.
Collapse
|
6
|
Rapid induction of high-level carbapenem resistance in heteroresistant KPC-producing Klebsiella pneumoniae. Antimicrob Agents Chemother 2015; 59:3281-9. [PMID: 25801565 DOI: 10.1128/aac.05100-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/15/2015] [Indexed: 11/20/2022] Open
Abstract
Enterobacteriaceae strains producing the Klebsiella pneumoniae carbapenemase (KPC) have disseminated worldwide, causing an urgent threat to public health. KPC-producing strains often exhibit low-level carbapenem resistance, which may be missed by automated clinical detection systems. In this study, eight Klebsiella pneumoniae strains with heterogeneous resistance to imipenem were used to elucidate the factors leading from imipenem susceptibility to high-level resistance as defined by clinical laboratory testing standards. Time-kill analysis with an inoculum as low as 3 × 10(6) CFU/ml and concentrations of imipenem 8- and 16-fold higher than the MIC resulted in the initial killing of 99.9% of the population. However, full recovery of the population occurred by 20 h of incubation in the same drug concentrations. Population profiles showed that recovery was mediated by a heteroresistant subpopulation at a frequency of 2 × 10(-7) to 3 × 10(-6). Samples selected 2 h after exposure to imipenem were as susceptible as the unexposed parental strain and produced the major outer membrane porin OmpK36. However, between 4 to 8 h after exposure, OmpK36 became absent, and the imipenem MIC increased at least 32-fold. Individual colonies isolated from cultures after 20 h of exposure revealed both susceptible and resistant subpopulations. Once induced, however, the high-level imipenem resistance was maintained, and OmpK36 remained unexpressed even without continued carbapenem exposure. This study demonstrates the essential coordination between blaKPC and ompK36 expression mediating high-level imipenem resistance from a population of bacteria that initially exhibits a carbapenem-susceptibility phenotype.
Collapse
|
7
|
Zafer MM, Al-Agamy MH, El-Mahallawy HA, Amin MA, El Din Ashour S. Dissemination of VIM-2 producing Pseudomonas aeruginosa ST233 at tertiary care hospitals in Egypt. BMC Infect Dis 2015; 15:122. [PMID: 25880997 PMCID: PMC4396152 DOI: 10.1186/s12879-015-0861-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 03/02/2015] [Indexed: 01/01/2023] Open
Abstract
Background Pseudomonas aeruginosa is an important nosocomial pathogen, commonly causing infections in immunocompromised patients. The aim of this study was to examine the genetic relatedness of metallo-beta-lactamase (MBL) producing carbapenem resistant Pseudomonas aeruginosa clinical isolates collected from 2 tertiary hospitals in Cairo, Egypt using Multi Locus sequence typing (MLST). Methods Phenotypic and genotypic detection of metallo-beta-lactamase for forty eight non-duplicate carbapenem resistant P. aeruginosa isolates were carried out. DNA sequencing and MLST were done. Results The blaVIM-2 gene was highly prevalent (28/33 strains, 85%) among 33 MBL-positive P.aeruginosa isolates. MLST revealed eleven distinct Sequence Types (STs). A unique ST233 clone producing VIM-2 was documented by MLST in P.aeruginosa strains isolated from Cairo university hospitals. The high prevalence of VIM-2 producers was not due to the spread of a single clone. Conclusions The findings of the present study clearly demonstrate that clones of VIM-2 positive in our hospitals are different from those reported from European studies. Prevalence of VIM-2 producers of the same clone was detected from surgical specimens whereas oncology related specimens were showing diverse clones.
Collapse
Affiliation(s)
- Mai Mahmoud Zafer
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, 4th Industrial Zone, Banks Complex، 6th of October, Giza, Egypt.
| | - Mohamed Hamed Al-Agamy
- Department of Pharmaceutics and Microbiology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia. .,Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
| | | | - Magdy Aly Amin
- Department of Microbiology and Immunology, Faculty of pharmacy, Cairo University, El Aini, As Sayedah Zeinab, Cairo, Egypt.
| | - Seif El Din Ashour
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
| |
Collapse
|
8
|
Nodari CS, Ribeiro VB, Barth AL. Imipenem heteroresistance: high prevalence among Enterobacteriaceae
Klebsiella pneumoniae carbapenemase producers. J Med Microbiol 2015; 64:124-126. [DOI: 10.1099/jmm.0.081869-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Carolina Silva Nodari
- Laboratório de Pesquisa em Resistência Bacteriana - LABRESIS, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | | | - Afonso Luis Barth
- Laboratório de Pesquisa em Resistência Bacteriana - LABRESIS, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
9
|
Rojo-Bezares B, Estepa V, Cebollada R, de Toro M, Somalo S, Seral C, Castillo FJ, Torres C, Sáenz Y. Carbapenem-resistant Pseudomonas aeruginosa strains from a Spanish hospital: characterization of metallo-beta-lactamases, porin OprD and integrons. Int J Med Microbiol 2014; 304:405-14. [PMID: 24594145 DOI: 10.1016/j.ijmm.2014.01.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 01/15/2014] [Accepted: 01/19/2014] [Indexed: 12/31/2022] Open
Abstract
Molecular typing and mechanisms of carbapenem resistance such as alterations in porin OprD and presence of metallo-beta-lactamases (MBLs), as well as integrons have been studied in a collection of carbapenem-resistant Pseudomonas aeruginosa (CRPA) isolates from a Spanish hospital. One hundred and twenty-three CRPA isolates were recovered from different samples of 80 patients. Clonal relationship among CRPA was analyzed by SpeI-PFGE. Susceptibility testing to 11 antibiotics and MBL phenotype was determined by microdilution, IP/IPI E-test and double disc method. The oprD gene was studied by PCR and sequencing, and mutations were determined comparing with P. aeruginosa PAO1 sequence. Characterization of MBLs, and class 1 and 2 integrons were studied by PCR and sequencing. SDS-PAGE analysis of outer membrane proteins of selected strains was performed. Seventy-four-per-cent of patients with CRPA were hospitalised in the ICU setting and 50% had long hospitalization stays. Sixty-four different PFGE patterns were detected, and 87 CRPA strains were further analyzed. MBL phenotype was detected in 43 of 87 strains (49.4%), which contained blaVIM-2 gene inside class 1 integrons. VIM-2-producing strains belonged to lineages ST175, ST235, and ST973. A great diversity of nucleotide insertions, deletions, and mutations in oprD gene, and the presence of a new insertion sequence (ISPa45) truncating oprD were identified among CRPA strains. Class 1 integrons were detected in 75% of CRPA strains, blaVIM-2 and the new arrangement aac(3)-Ia+ISPa34+aadA1 (named as In661) being the most frequent gene-cassette arrays detected. Other gene cassettes detected in integrons were: aadB, aadA6, aadA7, aac(6')-Ib', and blaOXA-46.
Collapse
Affiliation(s)
- Beatriz Rojo-Bezares
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain
| | - Vanesa Estepa
- Área de Bioquímica y Biología Molecular, Departamento de Agricultura y Alimentación, Universidad de La Rioja, Logroño, Spain
| | - Rocío Cebollada
- Servicio de Microbiología, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | - María de Toro
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain; Área de Bioquímica y Biología Molecular, Departamento de Agricultura y Alimentación, Universidad de La Rioja, Logroño, Spain
| | - Sergio Somalo
- Área de Bioquímica y Biología Molecular, Departamento de Agricultura y Alimentación, Universidad de La Rioja, Logroño, Spain
| | - Cristina Seral
- Servicio de Microbiología, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain; Departamento de Microbiología, Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain
| | - Francisco Javier Castillo
- Servicio de Microbiología, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain; Departamento de Microbiología, Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain
| | - Carmen Torres
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain; Área de Bioquímica y Biología Molecular, Departamento de Agricultura y Alimentación, Universidad de La Rioja, Logroño, Spain
| | - Yolanda Sáenz
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain.
| |
Collapse
|