1
|
Akter T, Stapleton F, Green M, Willcox M. Association between disinfectant resistance genes in exoU and exoS Pseudomonas aeruginosa with sensitivity to multipurpose disinfecting solutions and antibiotics. Cont Lens Anterior Eye 2025:102436. [PMID: 40368654 DOI: 10.1016/j.clae.2025.102436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/30/2025] [Accepted: 05/09/2025] [Indexed: 05/16/2025]
Abstract
BACKGROUND The aim of this study was to determine differences in susceptibility of exoU and exoS Pseudomonas aeruginosa to multi-purpose disinfecting solutions (MPDS) and antibiotics and their association with disinfectant resistance genes. METHODS A total of 16 exoU and 24 exoS P. aeruginosa keratitis isolates were tested for susceptibility against four multipurpose disinfecting solutions (OPTI-FREE PureMoist, Acuvue RevitaLens, Biotrue, and Renu Advanced Formula) using minimum inhibitory (MIC) and minimum bactericidal (MBC) concentrations. Antibiotic susceptibility to ciprofloxacin, levofloxacin, gentamicin, and tobramycin was determined by MIC. Whole genome sequences from 27 isolates were utilized to identify disinfectant resistance genes and single nucleotide polymorphisms (SNPs) in the genes using the Comprehensive Antibiotic Resistance Database (CARD) and Geneious Prime respectively. Polymerase chain reaction (PCR) was used to detect the disinfectant resistance genes qacE, qacEΔ1, and sugE1. Correlation between disinfectant resistance genes and their SNPs with disinfectant and antibiotic MICs was determined by Spearman's Rho. RESULTS All MPDS were bactericidal at full strength, but upon dilution OPTI-FREE Puremoist and Renu Advanced Formula were the most active against the exoU and exoS groups correspondingly. ExoU showed significantly higher resistance than exoS (p ≤ 0.04) to levofloxacin (37.5 % vs. 8.3 %), gentamicin (43.8 % vs. 0 %), and tobramycin (37.5 % vs. 0 %). The qacEΔ1 and sugE1 genes along with several SNPs in the resistance genes were more common in the exoU group. SNPs in disinfectant resistance genes correlated with MPDS MICs/MBCs, notably mexQ Arg1036His (R ≥ -0.38, p ≤ 0.04), Gly505Asp (R ≥ 0.40, p ≤ 0.04) and opmD Gly269Ser (R ≥ 0.43, p ≤ 0.03). QacEΔ1 and sugE1 were linked to increased MIC (R ≥ 0.54, p < 0.01) and MBC (R ≥ 0.50, p < 0.01) for Renu Advanced Formula. Also, multiple SNPs and qacEΔ1 and sugE1 showed moderate to large positive associations with antibiotic resistance. CONCLUSIONS ExoU strains had distinct MPDS susceptibility patterns, with higher disinfectant resistance genes prevalence and mutations, contributing to MPDS and antibiotics resistance.
Collapse
Affiliation(s)
- Tanzina Akter
- School of Optometry and Vision Science, Faculty of Medicine and Health, University of New South Wales (UNSW), Sydney NSW-2052, Australia; Microbial Biotechnology Division, National Institute of Biotechnology (NIB), Dhaka-1349, Bangladesh
| | - Fiona Stapleton
- School of Optometry and Vision Science, Faculty of Medicine and Health, University of New South Wales (UNSW), Sydney NSW-2052, Australia
| | - Matthew Green
- School of Optometry and Vision Science, Faculty of Medicine and Health, University of New South Wales (UNSW), Sydney NSW-2052, Australia; Gold Coast University Hospital, Southport, QLD 4215, Australia
| | - Mark Willcox
- School of Optometry and Vision Science, Faculty of Medicine and Health, University of New South Wales (UNSW), Sydney NSW-2052, Australia.
| |
Collapse
|
2
|
Zhang J, Cheng L, Li H, Chen X, Zhang L, Shan T, Wang J, Chen D, Shen J, Zhou X, Gou L, Zhang L, Zhou X, Ren B. Challenges of quaternary ammonium antimicrobial agents: Mechanisms, resistance, persistence and impacts on the microecology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178020. [PMID: 39689472 DOI: 10.1016/j.scitotenv.2024.178020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/07/2024] [Accepted: 12/07/2024] [Indexed: 12/19/2024]
Abstract
Quaternary ammonium compounds (QACs) served as broad spectrum antimicrobial agents are widely applied for surface disinfection, skin and mucous disinfection, and mouthwash. The daily applications of QACs have significantly increased, especially during the COVID-19 pandemic. However, the environmental residues of QACs have demonstrated harmful impacts on the environment, leading to an increase in environmental contamination, resistant microbes and disruption of microecology. The actions of QACs were related to their cationic character, which can impact the negatively charged cell membranes, but the details are still unclear. Moreover, bacteria with lower sensitivity and resistant pathogens have been detected in clinics and environments, while QACs were also reported to induce the formation of bacterial persisters. Even worse, the resistant bacteria even showed co-resistance and cross-resistance with traditional antibiotics, decreasing therapeutic effectiveness, and disrupting the microecology homeostasis. Unfortunately, the resistance and persistence mechanisms of QACs and the effects of QACs on microecology are still not clear, which even neglected during their daily usages. Therefore, we summarized and discussed current understandings on the antimicrobial actions, resistance, persistence and impacts on the microecology to highlight the challenges in the QACs applications and discuss the possible strategies for overcoming their drawbacks.
Collapse
Affiliation(s)
- Jiaxin Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hao Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, 500 Quxi Road, Shanghai 200011, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Road, Shanghai 200011, China
| | - Xi Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lin Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Tiantian Shan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jiannan Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Ding Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jiawei Shen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xinxuan Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lichen Gou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
3
|
Kovalchuk SN, Arkhipova AL, Bondar SV, Konanov DN, Krivonos DV, Chulkova PS, Ageevets VA, Fedorova LS, Ilina EN. A TaqMan real-time PCR assay for detection of qacEΔ1 gene in Gram-negative bacteria. J Microbiol Methods 2024; 227:107054. [PMID: 39395725 DOI: 10.1016/j.mimet.2024.107054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/25/2024] [Accepted: 10/10/2024] [Indexed: 10/14/2024]
Abstract
The transfer of biocide and antibiotic resistance genes by mobile genetic elements is the most common mechanism for rapidly acquiring and spreading resistance among bacteria. The qacEΔ1 gene confers the resistance to quaternary ammonium compounds (QACs). It has also been considered a genetic marker for the presence of class 1 integrons associated with multidrug-resistant (MDR) phenotypes in Gram-negative bacteria. In this study, a TaqMan real-time PCR assay was developed to detect the qacEΔ1 gene in Gram-negative bacteria. The assay has a detection limit of 80 copies of the qacEΔ1 gene per reaction. No false-positive or false-negative results have been observed. Simultaneous amplification and detection of the 16S rRNA gene is performed as an endogenous internal amplification control (IAC). The TaqMan real-time PCR assay developed is a rapid, sensitive, and specific method that could be used to monitor resistance to QACs, the spread of class 1 integrons, and the prediction of associated MDR phenotypes in Gram-negative bacteria.
Collapse
Affiliation(s)
| | - Anna L Arkhipova
- Research Institute for Systems Biology and Medicine, 117246 Moscow, Russia
| | - Svetlana V Bondar
- Research Institute for Systems Biology and Medicine, 117246 Moscow, Russia
| | - Dmitry N Konanov
- Research Institute for Systems Biology and Medicine, 117246 Moscow, Russia
| | - Danil V Krivonos
- Research Institute for Systems Biology and Medicine, 117246 Moscow, Russia
| | - Polina S Chulkova
- Pediatric Research and Clinical Center for Infectious Diseases, 197022 Saint Petersburg, Russia
| | - Vladimir A Ageevets
- Pediatric Research and Clinical Center for Infectious Diseases, 197022 Saint Petersburg, Russia
| | | | - Elena N Ilina
- Research Institute for Systems Biology and Medicine, 117246 Moscow, Russia
| |
Collapse
|
4
|
Sun H, Levenfors JJ, Brandt C, Schnürer A. Characterisation of meropenem-resistant Bacillus sp. FW 1 isolated from biogas digestate. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13217. [PMID: 37965980 PMCID: PMC10866066 DOI: 10.1111/1758-2229.13217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023]
Abstract
Recently a Bacillus sp. strain FW 1 was isolated from biogas digestate and shown to have novel resistance to meropenem (MEM), of critical importance in human medicine. MEM-resistance has so far only been described for one species within the genus Bacillus, that is, Bacillus cereus. Bacillus is an abundant representative of the microbial community in biogas digesters and consequently, the finding indicates a risk of spreading such resistance when using the digestate as fertiliser. In this study, the Bacillus strain was characterised and classified as Heyndrickxia oleronia (previous Bacillus oleronius), previously not described to harbour MEM-resistance. The mechanism of resistance was explored by metallo-β-lactamase (MBL) production, mapping of carbapenemase genes and genome analysis. The transferability of MEM-resistance in strain FW 1 was investigated by plasmid transformation/conjugation, combined with genome analysis. The results confirmed MBL production for both strain FW 1 and the type strain H. oleronia DSM 9356T . However, elevated MEM resistance was found for strain FW 1, which was suggested to be caused by the production of unclassified carbapenemase, or overexpression of MBL. Moreover, the results suggest that the MEM-resistance of strain FW 1 is not transferable, thus representing a limited risk of MEM-resistance spread to the environment when using digestate on arable land.
Collapse
Affiliation(s)
- He Sun
- Department of Molecular SciencesSwedish University of Agricultural SciencesUppsalaSweden
| | - Jolanta J. Levenfors
- Department of Molecular SciencesSwedish University of Agricultural SciencesUppsalaSweden
- Ultupharma ABUppsalaSweden
| | - Christian Brandt
- Institute for Infectious Diseases and Infection ControlJena University HospitalJenaGermany
| | - Anna Schnürer
- Department of Molecular SciencesSwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
5
|
An R, Qi Y, Zhang XX, Ma L. Xenogenetic evolutionary of integrons promotes the environmental pollution of antibiotic resistance genes - Challenges, progress and prospects. WATER RESEARCH 2023; 231:119629. [PMID: 36689882 DOI: 10.1016/j.watres.2023.119629] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/18/2022] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Environmental pollution of antibiotic resistance genes (ARGs) has been a great public concern. Integrons, as mobile genetic elements, with versatile gene acquisition systems facilitate the horizontal gene transfer (HGT) and pollution disseminations of ARGs. However, little is understood about the characteristics of ARGs mediated by integrons, which hampers our monitoring and control of the mobile antimicrobial resistance risks. To address these issues, we reviewed 3,322 publications concerning detection methods and pipeline, ARG diversity and evolutionary progress, environmental and geographical distribution, bacterial hosts, gene cassettes arrangements, and based on which to identify ARGs with high risk levels mediated by integrons. Diverse ARGs of 516 subtypes attributed to 12 types were capable of being carried by integrons, with 62 core ARG subtypes prevalent in pollution source, natural and human-related environments. Hosts of ARG-carrying integrons reached 271 bacterial species, most frequently carried by opportunistic pathogens Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae. Moreover, the observed emergence of ARGs together with their multiple arrangements indicated the accumulation of ARGs mediated by integrons, and thus pose increasing HGT risks under modern selective agents. With the concerns of public health, we urgently call for a better monitoring and control of these high-risk ARGs. Our identified Risk Rank I ARGs (aacA7, blaOXA10, catB3, catB8, dfrA5) with high mobility, reviewed key trends and noteworthy advancements, and proposed future directions could be reference and guidance for standard formulation.
Collapse
Affiliation(s)
- Ran An
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yuting Qi
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Liping Ma
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China.
| |
Collapse
|
6
|
Disinfectant Susceptibility of Third-Generation-Cephalosporin/Carbapenem-Resistant Gram-Negative Bacteria Isolated from the Oral Cavity of Residents of Long-Term-Care Facilities. Appl Environ Microbiol 2023; 89:e0171222. [PMID: 36515531 PMCID: PMC9888285 DOI: 10.1128/aem.01712-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We have recently reported the isolation of third-generation-cephalosporin-resistant Gram-negative bacteria from the oral cavity of residents of a long-term-care facility (LTCF). Since disinfectants are often used in the oral cavity, it is important to investigate the disinfectant susceptibility of oral bacteria. Here, we evaluated the susceptibilities of Gram-negative antimicrobial-resistant bacteria (GN-ARB), including Pseudomonas, Acinetobacter, and Enterobacteriaceae, obtained from the oral cavity of residents of LTCFs to povidone-iodine (PVPI), cetylpyridinium chloride (CPC), benzalkonium chloride (BZK), and chlorhexidine chloride (CHX). We also evaluated the susceptibilities of isolates from the rectum to the same agents to compare the susceptibility profiles of oral and rectal isolates. Next, we investigated the relationship between their susceptibility and disinfectant resistance genes delineated by whole-genome sequencing of the isolates. Additionally, we evaluated the correlation between disinfectant-resistant GN-ARB and clinical information. In oral GN-ARB, the MIC of PVPI showed almost identical values across isolates, while the MICs of CPC, BZK, and CHX showed a wide range of variation among species/strains. In particular, Pseudomonas aeruginosa exhibited high-level resistance to CPC and BZK. The disinfectant susceptibility of rectal GN-ARB showed a tendency similar to that of oral GN-ARB. The presence of qacEΔ1 was correlated with CPC/BZK resistance in P. aeruginosa, while other species exhibited no correlation between qacEΔ1 and resistance. Multiple analyses showed the correlation between the presence of CPC-resistant bacteria in the oral cavity and tube feeding. In conclusion, we found that some oral GN-ARB isolates showed resistance to not only antibiotics but also disinfectants. IMPORTANCE Antibiotic-resistant bacteria (ARB) are becoming a serious concern worldwide. We previously reported the isolation of third-generation-cephalosporin-resistant Gram-negative bacteria from the oral cavity of residents of a long-term-care facility (LTCF). To prevent infection with ARB in hospitals and eldercare facilities, we must pay more attention to the use of not only antibiotics but also disinfectants. However, the effect of disinfectants on ARB is unclear. In this study, we evaluated the susceptibility of Gram-negative ARB (GN-ARB) from the oral cavity of residents of LTCFs to some disinfectants that are often used for the oral cavity; we found that some isolates showed resistance to several disinfectants. This is the first comprehensive analysis of the disinfectant susceptibility of oral GN-ARB. These results provide some important information for infection control and suggest that disinfectants should be applied carefully.
Collapse
|
7
|
Bakht M, Alizadeh SA, Rahimi S, Kazemzadeh Anari R, Rostamani M, Javadi A, Peymani A, Marashi SMA, Nikkhahi F. Phenotype and genetic determination of resistance to common disinfectants among biofilm-producing and non-producing Pseudomonas aeruginosa strains from clinical specimens in Iran. BMC Microbiol 2022; 22:124. [PMID: 35525944 PMCID: PMC9078005 DOI: 10.1186/s12866-022-02524-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 04/11/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Pseudomonas aeruginosa is a common pathogen in Hospitalized patients, and its various resistance mechanisms contribute to patient morbidity and mortality. The main aims of the present study were to assess the susceptibility of biofilm-producing and non-producing P. aeruginosa isolates to the five commonly used Hospital disinfectants, to evaluate the synergistic effect of selected disinfectants and Ethylene-diamine-tetra acetic acid (EDTA), and the effect of exposure to sub-inhibitory concentrations of Sodium hypochlorite on antimicrobial susceptibility test. RESULTS The results showed that sodium hypochlorite 5% and Ethanol 70% were the most and least effective disinfectants against P. aeruginosa, respectively. The addition of EDTA significantly increased the effectiveness of the selected disinfectants. The changes in the antibiotic-resistance profiles after exposure to sub-inhibitory concentrations of disinfectants were observed for different classes of antibiotics (Carbapenems, Aminoglycosides, Cephalosporins, Fluoroquinolones). As well as near the all isolates harbored efflux pump genes and 117 (97.5%) of isolates produced biofilm. CONCLUSION In the current study, the mixture of disinfectant and EDTA were the most suitable selection to disinfect Hospital surfaces and instruments. Also, it was clear that exposure to sub-inhibitory concentrations of Sodium hypochlorite results in resistance to some antibiotics in P. aeruginosa species. Strong and intermediate biofilm formers belonged to MDR/XDR strains. Future studies should include more complex microbial communities residing in the Hospitals, and more disinfectants use in Hospitals.
Collapse
Affiliation(s)
- Mehdi Bakht
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Safar Ali Alizadeh
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Sara Rahimi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Raana Kazemzadeh Anari
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohammad Rostamani
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Amir Javadi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Community Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Amir Peymani
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Farhad Nikkhahi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
8
|
Osei Sekyere J, Reta MA, Bernard Fourie P. Risk factors for, and molecular epidemiology and clinical outcomes of, carbapenem- and polymyxin-resistant Gram-negative bacterial infections in pregnant women, infants, and toddlers: a systematic review and meta-analyses. Ann N Y Acad Sci 2021; 1502:54-71. [PMID: 34212401 DOI: 10.1111/nyas.14650] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/19/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022]
Abstract
In the following systematic review and meta-analyses, we report several conclusions about resistance to carbapenem and polymyxin last-resort antibiotics for treating multidrug-resistant bacterial infections among pregnant women and infants. Resistance to carbapenems and polymyxins is increasing, even in otherwise vulnerable groups such as pregnant women, toddlers, and infants, for whom therapeutic options are limited. In almost all countries, carbapenem-/polymyxin-resistant Klebsiella pneumoniae, Escherichia coli, and Acinetobacter baumannii infect and/or colonize neonates and pregnant women, causing periodic outbreaks with very high infant mortalities. Downregulation of plasmid-borne blaNDM , blaKPC , blaOXA-48 , blaIMP, blaVIM , blaGES-5 , and ompK35/36 in clonal strains accelerates the horizontal and vertical transmissions of carbapenem resistance among these pathogens. New Delhi metallo-β-lactamase (NDM)-positive isolates in infants/neonates have been mainly detected in China and India, while OXA-48-positive isolates in infants/neonates have been mainly detected in Africa. NDM-positive isolates in pregnant women have been found only in Madagascar. Antibiotic therapy, prolonged hospitalization, invasive procedures, mechanical ventilation, low birth weight, and preterm delivery have been common risk factors associated with carbapenem/polymyxin resistance. The use of polymyxins to treat carbapenem-resistant infections may be selecting for resistance to both agents, restricting therapeutic options for infected infants and pregnant women. Currently, low- and middle-income countries have the highest burden of these pathogens. Antibiotic stewardship, periodic rectal and vaginal screening, and strict infection control practices in neonatal ICUs are necessary to forestall future outbreaks and deaths.
Collapse
Affiliation(s)
- John Osei Sekyere
- Molecular Mycobacteriology Laboratory, Department of Medical Microbiology, Faculty of Health Sciences, School of Medicine, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Melese Abate Reta
- Molecular Mycobacteriology Laboratory, Department of Medical Microbiology, Faculty of Health Sciences, School of Medicine, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Petrus Bernard Fourie
- Molecular Mycobacteriology Laboratory, Department of Medical Microbiology, Faculty of Health Sciences, School of Medicine, University of Pretoria, Pretoria, Gauteng, South Africa
| |
Collapse
|
9
|
Roshdy H, Shalaby AG, Mohamed AAE, Badr H. Detection of aerobic bacterial pathogens associated with early embryonic death in pregnant New Zealand female Rabbits in Egypt. Vet World 2021; 14:986-995. [PMID: 34083950 PMCID: PMC8167537 DOI: 10.14202/vetworld.2021.986-995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/08/2021] [Indexed: 11/30/2022] Open
Abstract
Background and Aim: Rabbits are a highly sensitive species and susceptible to various bacterial pathogens that may be causative agents for early embryonic death. This study aimed to explore the administration of different bacterial agents in does suffering from early embryonic death. Furthermore, identification of genes associated with virulence was performed to identify the phenotypic and genotypic antimicrobial resistance patterns that may increase the virulence of pathogens and lead to early embryonic death. Materials and Methods: We isolated and identified bacterial agents in 106 samples from live and dead female rabbits that had undergone early embryonic death, including liver and intestine tissue, aborted fetuses, discharges, and vaginal swabs. Conventional polymerase chain reaction (PCR) was conducted to confirm the identity of the isolated bacterial strains and their virulence. Moreover, antibiotic resistance was studied phenotypically and genotypically. Results: We isolated Escherichia coli, Salmonella, Staphylococcus aureus, Pasteurella multocida, and Listeria monocytogenes. PCR confirmed typical identification except in P. multocida, which was confirmed as Gallibacterium spp. in some cases. The final percentage of detection was 34%, 30.2%, 16.9%, 13.2%, and 11.3%, respectively. Virulence properties were investigated using different designated genes. All Salmonella strains harbored invA, stn, avrA, and ompf genes, while the sopE gene was identified in 31.25%. E. coli strains harboring the iss gene lacked the shiga toxin (stx1) gene. L. monocytogenes and S. aureus strains harbored the hemolysin gene (66.7% and 33.4%, respectively). Multidrug resistance was detected phenotypically and genotypically in most strains. Each bacterial pathogen had a different antibiotic resistance profile. Conclusion: Multiple bacterial species may contribute to early embryonic death in does. Furthermore, the combined infection could be the main cause of early embryonic death. Thus, monitoring programs should bear this in mind and focus on the early detection of these bacterial agents in female rabbits to avoid embryonic death.
Collapse
Affiliation(s)
- Heba Roshdy
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Nadi El-Seid Street, Dokki P.O. Box246, Giza 12618, Egypt
| | - Azhar G Shalaby
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Nadi El-Seid Street, Dokki P.O. Box246, Giza 12618, Egypt
| | - Ahmed Abd Elhalem Mohamed
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Nadi El-Seid Street, Dokki P.O. Box246, Giza 12618, Egypt
| | - Heba Badr
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Nadi El-Seid Street, Dokki P.O. Box246, Giza 12618, Egypt
| |
Collapse
|
10
|
Willms IM, Yuan J, Penone C, Goldmann K, Vogt J, Wubet T, Schöning I, Schrumpf M, Buscot F, Nacke H. Distribution of Medically Relevant Antibiotic Resistance Genes and Mobile Genetic Elements in Soils of Temperate Forests and Grasslands Varying in Land Use. Genes (Basel) 2020; 11:E150. [PMID: 32019196 PMCID: PMC7073645 DOI: 10.3390/genes11020150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 12/28/2022] Open
Abstract
Antibiotic-resistant pathogens claim the lives of thousands of people each year and are currently considered as one of the most serious threats to public health. Apart from clinical environments, soil ecosystems also represent a major source of antibiotic resistance determinants, which can potentially disseminate across distinct microbial habitats and be acquired by human pathogens via horizontal gene transfer. Therefore, it is of global importance to retrieve comprehensive information on environmental factors, contributing to an accumulation of antibiotic resistance genes and mobile genetic elements in these ecosystems. Here, medically relevant antibiotic resistance genes, class 1 integrons and IncP-1 plasmids were quantified via real time quantitative PCR in soils derived from temperate grasslands and forests, varying in land use over a large spatial scale. The generated dataset allowed an analysis, decoupled from regional influences, and enabled the identification of land use practices and soil characteristics elevating the abundance of antibiotic resistance genes and mobile genetic elements. In grassland soils, the abundance of the macrolide resistance gene mefA as well as the sulfonamide resistance gene sul2 was positively correlated with organic fertilization and the abundance of aac(6')-lb, conferring resistance to different aminoglycosides, increased with mowing frequency. With respect to forest soils, the beta-lactam resistance gene blaIMP-12 was significantly correlated with fungal diversity which might be due to the fact that different fungal species can produce beta-lactams. Furthermore, except blaIMP-5 and blaIMP-12, the analyzed antibiotic resistance genes as well as IncP-1 plasmids and class-1 integrons were detected less frequently in forest soils than in soils derived from grassland that are commonly in closer proximity to human activities.
Collapse
Affiliation(s)
- Inka M. Willms
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, D-37077 Göttingen, Germany; (I.M.W.); (J.Y.)
| | - Jingyue Yuan
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, D-37077 Göttingen, Germany; (I.M.W.); (J.Y.)
| | - Caterina Penone
- Institute of Plant Sciences, University of Bern, CH-3013 Bern, Switzerland;
| | - Kezia Goldmann
- Department of Soil Ecology, UFZ—Helmholtz Centre for Environmental Research, D-06120 Halle-Saale, Germany; (K.G.); (F.B.)
| | - Juliane Vogt
- Terrestrial Ecology Research Group, Department of Ecology and Ecosystem Management, Technical University of Munich, D-85354 Freising, Germany;
| | - Tesfaye Wubet
- Department of Community Ecology, UFZ—Helmholtz Centre for Environmental Research, D-06120 Halle-Saale, Germany;
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, D-04103 Leipzig, Germany
| | - Ingo Schöning
- Max Planck Institute for Biogeochemistry, D-07745 Jena, Germany; (I.S.); (M.S.)
| | - Marion Schrumpf
- Max Planck Institute for Biogeochemistry, D-07745 Jena, Germany; (I.S.); (M.S.)
| | - François Buscot
- Department of Soil Ecology, UFZ—Helmholtz Centre for Environmental Research, D-06120 Halle-Saale, Germany; (K.G.); (F.B.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, D-04103 Leipzig, Germany
| | - Heiko Nacke
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, D-37077 Göttingen, Germany; (I.M.W.); (J.Y.)
| |
Collapse
|
11
|
Aksoy A, El Kahlout KEM, Yardimci H. Comparative Evaluation of the Effects of Binzalkonium Chloride, Iodine, Gluteraldehyde and Hydrogen Peroxide Disinfectants against Avian Salmonellae Focusing on Genotypic Resistance Pattern of the Salmonellae Serotypes toward Benzalkonium Chloride. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2020. [DOI: 10.1590/1806-9061-2019-1055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
12
|
Kubota H, Suzuki Y, Okuno R, Uchitani Y, Ariyoshi T, Takemura N, Mihara F, Mezaki K, Ohmagari N, Matsui M, Suzuki S, Sekizuka T, Kuroda M, Yokoyama K, Sadamasu K. IMP-68, a Novel IMP-Type Metallo-β-Lactamase in Imipenem-Susceptible Klebsiella pneumoniae. mSphere 2019; 4:e00736-19. [PMID: 31666316 PMCID: PMC6821933 DOI: 10.1128/msphere.00736-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 10/16/2019] [Indexed: 02/06/2023] Open
Abstract
We recently detected a novel variant of an IMP-type metallo-β-lactamase gene (blaIMP-68) from meropenem-resistant but imipenem-susceptible Klebsiella pneumoniae TA6363 isolated in Tokyo, Japan. blaIMP-68 encodes a Ser262Gly point mutant of IMP-11, and transformation experiments showed that blaIMP-68 increased the MIC of carbapenems in recipient strains, whereas the MIC of imipenem was not greatly increased relative to that of other carbapenems, including meropenem. Kinetics experiments showed that IMP-68 imipenem-hydrolyzing activity was lower than that for other carbapenems, suggesting that the antimicrobial susceptibility profile of TA6363 originated from IMP-68 substrate specificity. Whole-genome sequencing showed that blaIMP-68 is harbored by the class 1 integron located on the IncL/M plasmid pTMTA63632 (88,953 bp), which was transferable via conjugation. The presence of plasmid-borne blaIMP-68 is notable, because it conferred antimicrobial resistance to carbapenems, except for imipenem, on Enterobacteriaceae and will likely affect treatment plans using antibacterial agents in clinical settings.IMPORTANCE IMP-type metallo-β-lactamases comprise one group of the "Big 5" carbapenemases. Here, a novel blaIMP-68 gene encoding IMP-68 (harboring a Ser262Gly point mutant of IMP-11) was discovered from meropenem-resistant but imipenem-susceptible Klebsiella pneumoniae TA6363. The Ser262Gly substitution was previously identified as important for substrate specificity according to a study of other IMP variants, including IMP-6. We confirmed that IMP-68 exhibited weaker imipenem-hydrolyzing activity than that for other carbapenems, demonstrating that the antimicrobial susceptibility profile of TA6363 originated from IMP-68 substrate specificity, with this likely to affect treatment strategies using antibacterial agents in clinical settings. Notably, the carbapenem resistance conferred by IMP-68 was undetectable based on the MIC of imipenem as a carbapenem representative, which demonstrates a comparable antimicrobial susceptibility profile to IMP-6-producing Enterobacteriaceae that previously spread in Japan due to lack of awareness of its existence.
Collapse
Affiliation(s)
- Hiroaki Kubota
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Yasunori Suzuki
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Rumi Okuno
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Yumi Uchitani
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Tsukasa Ariyoshi
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Nobuyuki Takemura
- Department of Hepato-Biliary Pancreatic Surgery, National Center for Global Health and Medicine, Tokyo, Japan
| | - Fuminori Mihara
- Department of Hepato-Biliary Pancreatic Surgery, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kazuhisa Mezaki
- Microbiology Laboratory, National Center for Global Health and Medicine, Tokyo, Japan
| | - Norio Ohmagari
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Mari Matsui
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Satowa Suzuki
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Keiko Yokoyama
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Kenji Sadamasu
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| |
Collapse
|
13
|
Ibrahim WA, Marouf SA, Erfan AM, Nasef SA, Jakee JKE. The occurrence of disinfectant and antibiotic-resistant genes in Escherichia coli isolated from chickens in Egypt. Vet World 2019; 12:141-145. [PMID: 30936668 PMCID: PMC6431804 DOI: 10.14202/vetworld.2019.141-145] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/10/2018] [Indexed: 11/16/2022] Open
Abstract
Aim: This work aimed to determine the occurrence of antibiotic and disinfectant resistance genes in Escherichia coli isolated from chickens in Egypt. Materials and Methods: Organs (liver, lung, heart, yolk sac, and bone marrow) of 1500 chicken samples were collected from diseased chickens suffered from colibacillosis with PM findings as CRD, diarrhea and omphalitis from different governorates of Egypt as: Giza, EL-Bahira, Fayoum, El-Dakahlia, El-Ismalia, and El-Sharkia during 2015-2016. These samples were labeled and transported immediately on ice to the Reference laboratory for quality control on poultry production (RLQP). The samples were cultured onto MacConkey agar and Eosin Methylene Blue Agar. Isolation and identification of the E. coli were performed based on morphology, cultural, staining, and biochemical properties. Antimicrobial resistance test was carried out using disk diffusion method. The PCR employing tetA, qacED1 and qacA/B were carried out for detection of these genes in isolated E.coli. Results: The prevalence of E. coli in chicken was 34%. Predominant serotypes of E. coli which serologically identified were O128, O111, O44, O158, and O2. Antibiotic susceptibility test of E. coli revealed that 100% of isolates were resistant to ampicillin, erythromycin, and sulfamethoxazole-trimethoprim, while 73.53% and 38.23% of them were sensitive for colistin sulfate and levofloxacin, respectively. Antibiotic resistance genes as tetA gene were tested for isolated E. coli and detected by incidence rate of 91.18%. qac resistance genes resembling as qacED1 and qacA/B genes were detected in isolated E. coli 70.6% and 14.7%, respectively. Conclusion: E. coli isolated from chickens in Egypt was carried qac and antibiotic-resistant genes that affect the poultry industry.
Collapse
Affiliation(s)
- Waleed A Ibrahim
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, P.O. Box 264-Dokki, Giza 12618, Egypt
| | - Sherif A Marouf
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ahmed M Erfan
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, P.O. Box 264-Dokki, Giza 12618, Egypt
| | - Soad A Nasef
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, P.O. Box 264-Dokki, Giza 12618, Egypt
| | - Jakeen K El Jakee
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
14
|
Gomaa FAM, Helal ZH, Khan MI. High Prevalence of bla NDM-1, bla VIM, qacE, and qacEΔ1 Genes and Their Association with Decreased Susceptibility to Antibiotics and Common Hospital Biocides in Clinical Isolates of Acinetobacter baumannii. Microorganisms 2017; 5:microorganisms5020018. [PMID: 28417918 PMCID: PMC5488089 DOI: 10.3390/microorganisms5020018] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 03/25/2017] [Accepted: 04/05/2017] [Indexed: 12/31/2022] Open
Abstract
The objective of this study was to evaluate the susceptibility of metallo-β-lactamase (MBL)-producing Acinetobacter baumannii (A. baumannii) clinical isolates to biocides. We also determined the prevalence and correlation of efflux pump genes, class 1 integron and MBL encoding genes. In addition, blaVIM, blaNDM-1, qacE and qacEΔ1 nucleotide sequence analysis was performed and compared to sequences retrieved from GenBank at the National Center for Biotechnology Information database. A. baumannii had a resistance rate to carbapenem of 71.4% and 39.3% and was found to be a MBL producer. The minimum inhibitory concentrations (MICs) of chlorhexidine and cetrimide were higher than the recommended concentrations for disinfection in 54.5% and 77.3% of MBL-positive isolates respectively and their MICs were significantly higher among qac gene-positive isolates. Coexistence of qac genes was detected in 68.1% and 50% of the isolates with blaVIM and blaNDM-1 respectively. There was a significant correlation between the presence of qac genes and MBL-encoding blaVIM and blaNDM-1 genes. Each of the blaNDM-1, blaVIM, qacE and qacEΔ1 DNA sequences showed homology with each other and with similar sequences reported from other countries. The high incidence of Verona integron-encoded metallo-β-lactamases (VIM) and New-Delhi-metallo-β-lactamase (NDM) and qac genes in A.baumannii highlights emerging therapeutic challenges for being readily transferable between clinically relevant bacteria. In addition reduced susceptibility to chlorhexidine and cetrimide and the potential for cross resistance to some antibiotics necessitates the urgent need for healthcare facilities to periodically evaluate biocides efficacy, to address the issue of antiseptic resistance and to initiate a “biocidal stewardship”.
Collapse
Affiliation(s)
- Fatma Alzahraa M Gomaa
- Microbiology and Immunology Department, Faculty of Pharmacy, Alazhar University, Cairo 11765, Egypt.
| | - Zeinab H Helal
- Microbiology and Immunology Department, Faculty of Pharmacy, Alazhar University, Cairo 11765, Egypt.
- Pathobiology and Veterinary Science Department, University of Connecticut, Storrs, CT 06269-3089, USA.
| | - Mazhar I Khan
- Pathobiology and Veterinary Science Department, University of Connecticut, Storrs, CT 06269-3089, USA.
| |
Collapse
|
15
|
Reda FM, Shafi SA, Ismail M. Efficient inhibition of some multi-drug resistant pathogenic bacteria by bioactive metabolites from Bacillus amyloliquefaciens S5I4 isolated from archaeological soil in Egypt. APPL BIOCHEM MICRO+ 2016. [DOI: 10.1134/s0003683816060144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Malek MM, Amer FA, Allam AA, El-Sokkary RH, Gheith T, Arafa MA. Occurrence of classes I and II integrons in Enterobacteriaceae collected from Zagazig University Hospitals, Egypt. Front Microbiol 2015; 6:601. [PMID: 26157425 PMCID: PMC4477160 DOI: 10.3389/fmicb.2015.00601] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/01/2015] [Indexed: 12/30/2022] Open
Abstract
Integrons are genetic units characterized by the ability to capture and incorporate gene cassettes, thus can contribute to the emergence and transfer of antibiotic resistance. The objectives of this study were: (1) to investigate the presence and distribution of class I and class II integrons and the characteristics of the gene cassettes they carry in Enterobacteriaceae isolated from nosocomial infections at Zagzig University Hospital in Egypt, (2) to determine their impact on resistance, and (3) to identify risk factors for the existence of integrons. Relevant samples and full clinical history were collected from 118 inpatients. Samples were processed; isolated microbes were identified and tested for antibiotic susceptibilities. Integrons were detected by polymerase chain reaction (PCR) and were characterized into class I or II by restriction fragment length polymorphism (RFLP). Integron-positive isolates were subjected to another PCR to detect gene cassette, followed by gene cassette sequencing. Risk factors were analyzed by logistic regression analysis. Seventy-six Enterobacteriaceae isolates were recognized, 41 of them (53.9%) were integron-positive; 39 strains carried class I and 2 strains carried class II integrons. Integrons had gene cassettes encoding different combinations and types of resistance determinants. Interestingly, blaOXA129 gene was found and ereA gene was carried on class I integrons. The same determinants were carried within isolates of the same species as well as isolates of different species. The presence of integrons was significantly associated with multidrug resistance (MDR). No risk factors were associated for integron carriage. We conclude that integrons carrying gene cassettes encoding antibiotic resistance are significantly present among Enterobacteriaceae causing nosocomial infection in our hospital. Risk factors for acquisition remain to be identified.
Collapse
Affiliation(s)
- Mai M. Malek
- Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig UniversityCairo, Egypt
| | - Fatma A. Amer
- Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig UniversityCairo, Egypt
| | - Ayman A. Allam
- Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig UniversityCairo, Egypt
| | - Rehab H. El-Sokkary
- Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig UniversityCairo, Egypt
| | - Tarek Gheith
- Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig UniversityCairo, Egypt
| | - Mohamed A. Arafa
- Pediatrics Department, Faculty of Medicine, Zagazig UniversityZagazig, Egypt
| |
Collapse
|
17
|
Zhao WH, Hu ZQ. Acquired metallo-β-lactamases and their genetic association with class 1 integrons and ISCR elements in Gram-negative bacteria. Future Microbiol 2015; 10:873-87. [DOI: 10.2217/fmb.15.18] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT Metallo-β-lactamases (MBLs) can hydrolyze almost all β-lactam antibiotics and are resistant to clinically available β-lactamase inhibitors. Numerous types of acquired MBLs have been identified, including IMP, VIM, NDM, SPM, GIM, SIM, DIM, KHM, TMB, FIM and AIM. IMPs and VIMs are the most frequent MBLs and disseminate in members of the family Enterobacteriaceae, Pseudomonas spp. and Acinetobacter spp. Acquired MBL genes are often embedded in integrons, and some are associated with insertion sequence (IS) elements. The class 1 integrons and IS common region (ISCR) elements are usually harbored in transposons and/or plasmids, forming so-called mobile vesicles for horizontal transfer of captured genes between bacteria. Here, we review the MBL superfamily identified in Gram-negative bacteria, with an emphasis on the phylogeny of acquired MBLs and their genetic association with class 1 integrons and IS common region elements.
Collapse
Affiliation(s)
- Wei-Hua Zhao
- Department of Microbiology & Immunology, Showa University School of Medicine, 1–5–8 Hatanodai, Shinagawa-ku, Tokyo 142–8555, Japan
| | - Zhi-Qing Hu
- Department of Microbiology & Immunology, Showa University School of Medicine, 1–5–8 Hatanodai, Shinagawa-ku, Tokyo 142–8555, Japan
| |
Collapse
|
18
|
Reichel M, Schlicht A, Ostermeyer C, Kampf G. Efficacy of surface disinfectant cleaners against emerging highly resistant gram-negative bacteria. BMC Infect Dis 2014; 14:292. [PMID: 24885029 PMCID: PMC4063421 DOI: 10.1186/1471-2334-14-292] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/21/2014] [Indexed: 01/03/2023] Open
Abstract
Background Worldwide, the emergence of multidrug-resistant gram-negative bacteria is a clinical problem. Surface disinfectant cleaners (SDCs) that are effective against these bacteria are needed for use in high risk areas around patients and on multi-touch surfaces. We determined the efficacy of several SDCs against clinically relevant bacterial species with and without common types of multidrug resistance. Methods Bacteria species used were ATCC strains; clinical isolates classified as antibiotic-susceptible; and multi-resistant clinical isolates from Klebsiella oxytoca, Klebsiella pneumoniae, and Serratia marcescens (all OXA-48 and KPC-2); Acinetobacter baumannii (OXA-23); Pseudomonas aeruginosa (VIM-1); and Achromobacter xylosoxidans (ATCC strain). Experiments were carried out according to EN 13727:2012 in quadruplicate under dirty conditions. The five evaluated SDCs were based on alcohol and an amphoteric substance (AAS), an oxygen-releaser (OR), surface-active substances (SAS), or surface-active-substances plus aldehydes (SASA; two formulations). Bactericidal concentrations of SDCs were determined at two different contact times. Efficacy was defined as a log10 ≥ 5 reduction in bacterial cell count. Results SDCs based on AAS, OR, and SAS were effective against all six species irrespective of the degree of multi-resistance. The SASA formulations were effective against the bacteria irrespective of degree of multi-resistance except for one of the four P. aeruginosa isolates (VIM-1). We found no general correlation between SDC efficacy and degree of antibiotic resistance. Conclusions SDCs were generally effective against gram-negative bacteria with and without multidrug resistance. SDCs are therefore suitable for surface disinfection in the immediate proximity of patients. Single bacterial isolates, however, might have reduced susceptibility to selected biocidal agents.
Collapse
Affiliation(s)
| | | | | | - Günter Kampf
- Bode Science Center, Bode Chemie GmbH, Melanchthonstr, 27, 22525 Hamburg, Germany.
| |
Collapse
|
19
|
Jechalke S, Schreiter S, Wolters B, Dealtry S, Heuer H, Smalla K. Widespread dissemination of class 1 integron components in soils and related ecosystems as revealed by cultivation-independent analysis. Front Microbiol 2014; 4:420. [PMID: 24478761 PMCID: PMC3894453 DOI: 10.3389/fmicb.2013.00420] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 12/20/2013] [Indexed: 01/29/2023] Open
Abstract
Class 1 integrons contribute to the emerging problem of antibiotic resistance in human medicine by acquisition, exchange, and expression of resistance genes embedded within gene cassettes. Besides the clinical setting they were recently reported from environmental habitats and often located on plasmids and transposons, facilitating their transfer and spread within bacterial communities. In this study we aimed to provide insights into the occurrence of genes typically associated with the class 1 integrons in previously not studied environments with or without human impact and their association with IncP-1 plasmids. Total community DNA was extracted from manure-treated and untreated soils, lettuce and potato rhizosphere, digestates, and an on-farm biopurification system and screened by PCR with subsequent Southern blot hybridization for the presence of the class 1 integrase gene intI1 as well as qacE and qacEΔ 1 resistance genes. The results revealed a widespread dissemination of class 1 integrons in the environments analyzed, mainly related to the presence of qacEΔ 1 genes. All 28 IncP-1ε plasmids carrying class 1 integrons, which were captured exogenously in a recent study from piggery manure and soils treated with manure, carried qacEΔ 1 genes. Based on the strong hybridization signals in the rhizosphere of lettuce compared to the potato rhizosphere, the abundances of intI1, qacE/qacEΔ 1, and sul1 genes were quantified relative to the 16S rRNA gene abundance by real-time PCR in the rhizosphere of lettuce planted in three different soils and in the corresponding bulk soil. A significant enrichment of intI1 and qacE/qacEΔ 1 genes was confirmed in the rhizosphere of lettuce compared to bulk soil. Additionally, the relative abundance of korB genes specific for IncP-1 plasmids was enriched in the rhizosphere and correlated to the intI1 gene abundance indicating that IncP-1 plasmids might have contributed to the spread of class 1 integrons in the analyzed soils.
Collapse
Affiliation(s)
- Sven Jechalke
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants (JKI)Braunschweig, Germany
| | - Susanne Schreiter
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants (JKI)Braunschweig, Germany
| | - Birgit Wolters
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants (JKI)Braunschweig, Germany
- Institute of Environmental and Sustainable Chemistry, Technische Universität BraunschweigBraunschweig, Germany
| | - Simone Dealtry
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants (JKI)Braunschweig, Germany
| | - Holger Heuer
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants (JKI)Braunschweig, Germany
| | - Kornelia Smalla
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants (JKI)Braunschweig, Germany
| |
Collapse
|
20
|
Zhao WH, Hu ZQ. Integrons: epidemiological molecular markers for identifying and surveying metallo-β-lactamase genes in Gram-negative bacilli. Future Microbiol 2014; 9:5-8. [DOI: 10.2217/fmb.13.21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Wei-Hua Zhao
- Department of Microbiology & Immunology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Zhi-Qing Hu
- Department of Microbiology & Immunology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| |
Collapse
|