1
|
Tang X, Wang P, Shen Y, Song X, Benghezal M, Marshall BJ, Tang H, Li H. Lipopolysaccharide O-antigen profiles of Helicobacter pylori strains from Southwest China. BMC Microbiol 2023; 23:360. [PMID: 37993791 PMCID: PMC10664510 DOI: 10.1186/s12866-023-03116-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Helicobacter pylori lipopolysaccharide (LPS) structures vary among strains of different geographic origin. The aim of this study was to characterize the LPS O-antigen profiles of H. pylori strains isolated from Southwest China, and to further analyze the association of Lewis antigen expression with clinical outcomes and antibiotic resistance. RESULTS A total of 71 H. pylori isolates from Southwest China were included for LPS profiling by silver staining and Western blotting after SDS-PAGE electrophoresis. We demonstrated that all the clinical isolates had the conserved lipid A and core-oligosaccharide, whereas the O-antigen domains varied significantly among the isolates. Compared with the common presence of the glucan/heptan moiety in LPS O-antigen structure of European strains, the clinical isolates in this study appeared to lack the glucan/heptan moiety. The expression frequency of Lex, Ley, Lea, and Leb was 66.2% (47/71), 84.5% (60/71), 56.3% (40/71), and 31.0% (22/71), respectively. In total, the expression of type II Lex and/or Ley was observed in 69 (97.2%) isolates, while type I Lea and/or Leb were expressed in 49 (69.0%) isolates. No association of Lewis antigen expression with clinical outcomes or with antibiotic resistance was observed. CONCLUSIONS H. pylori strains from Southwest China tend to produce heptan-deficient LPS and are more likely to express type I Lewis antigens as compared with Western strains. This may suggest that H. pylori evolves to change its LPS structure for adaptation to different hosts.
Collapse
Affiliation(s)
- Xiaoqiong Tang
- West China Marshall Research Center for Infectious Diseases, Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Peng Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases &, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yalin Shen
- West China Marshall Research Center for Infectious Diseases, Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiaona Song
- West China Marshall Research Center for Infectious Diseases, Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Mohammed Benghezal
- West China Marshall Research Center for Infectious Diseases, Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Barry J Marshall
- West China Marshall Research Center for Infectious Diseases, Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Helicobacter Pylori Research Laboratory, School of Biomedical Sciences, Marshall Centre for Infectious Disease Research and Training, University of Western Australia, Nedlands, Australia
| | - Hong Tang
- West China Marshall Research Center for Infectious Diseases, Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Hong Li
- West China Marshall Research Center for Infectious Diseases, Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
3
|
Li H, Tang H, Debowski AW, Stubbs KA, Marshall BJ, Benghezal M. Lipopolysaccharide Structural Differences between Western and Asian Helicobacter pylori Strains. Toxins (Basel) 2018; 10:toxins10090364. [PMID: 30205541 PMCID: PMC6162551 DOI: 10.3390/toxins10090364] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 07/30/2018] [Accepted: 08/09/2018] [Indexed: 02/05/2023] Open
Abstract
Recent structural analysis of the lipopolysaccharide (LPS) isolated from Helicobacter pylori G27 wild-type and O-antigen ligase mutant resulted in the redefinition of the core-oligosaccharide and O-antigen domains. The short core-oligosaccharide (Glc–Gal–Hep-III–Hep-II–Hep-I–KDO) and its attached trisaccharide (Trio, GlcNAc–Fuc–Hep) appear to be highly conserved structures among H. pylori strains. The G27 LPS contains a linear glucan–heptan linker between the core-Trio and distal Lewis antigens. This linker domain was commonly identified in Western strains. In contrast, out of 12 partial LPS structures of Asian strains, none displayed the heptan moiety, despite the presence of Lewis antigens. This raises the question of how Lewis antigens are attached to the Trio, and whether the LPS structure of Asian strains contain another linker. Of note, a riban was identified as a linker in LPS of the mouse-adapted SS1 strain, suggesting that alternative linker structures can occur. In summary, additional full structural analyses of LPS in Asian strains are required to assess the presence or absence of an alternative linker in these strains. It will also be interesting to study the glucan-heptan linker moieties in pathogenesis as H. pylori infections in Asia are usually more symptomatic than the ones presented in the Western world.
Collapse
Affiliation(s)
- Hong Li
- West China Marshall Research Center for Infectious Diseases, Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China.
| | - Hong Tang
- West China Marshall Research Center for Infectious Diseases, Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China.
| | - Aleksandra W Debowski
- Helicobacter pylori Research Laboratory, School of Biomedical Sciences, Marshall Centre for Infectious Disease Research and Training, University of Western Australia, Nedlands, WA 6009, Australia.
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia.
| | - Keith A Stubbs
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia.
| | - Barry J Marshall
- Helicobacter pylori Research Laboratory, School of Biomedical Sciences, Marshall Centre for Infectious Disease Research and Training, University of Western Australia, Nedlands, WA 6009, Australia.
| | - Mohammed Benghezal
- Helicobacter pylori Research Laboratory, School of Biomedical Sciences, Marshall Centre for Infectious Disease Research and Training, University of Western Australia, Nedlands, WA 6009, Australia.
| |
Collapse
|
4
|
Altman E, Harrison BA, Chandan V, Slinger R. Lipopolysaccharide glycotyping of clarithromycin-resistant and clarithromycin-susceptible Canadian isolates of Helicobacter pylori. Can J Microbiol 2013; 60:35-9. [PMID: 24392924 DOI: 10.1139/cjm-2013-0747] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lipopolysaccharide (LPS) of Helicobacter pylori exhibits several unique structures, such as Lewis (Le) antigens, α-1,6-glucan, and dd-heptan. To investigate the relationship between LPS structure and resistance to clarithromycin, 41 Canadian isolates of H. pylori were characterized by whole-cell ELISA (enzyme-linked immunosorbent assay), sugar analysis, immunoblotting, and indirect immunofluorescence. The expression of type 2 Lewis X and (or) Lewis Y antigens was detected in 22 of 23 (95.7%) clarithromycin-resistant and in 14 of 18 (77.7%) clarithromycin-susceptible H. pylori strains (P < 0.05), and 8 isolates co-expressed type 1 and type 2 Le antigens (8/41, 19.5%). A significantly higher frequency of α-1,6-glucan (P < 0.01) was detected in clarithromycin-resistant strains than in clarithromycin-susceptible strains (19/23 (82.6%) versus 11/18 (61.1%)). Sugar analysis of selected α-1,6-glucan-positive H. pylori strains confirmed that they frequently contained elevated amounts of dd-heptose. Clarithromycin-resistant isolates were also characterized by low expression levels or absence of CagA (17/23, 73.9%). Indirect immunofluorescence studies carried out on selected H. pylori strains with rabbit immune sera specific for α-1,6-glucan confirmed broad recognition of α-1,6-glucan epitope. The binding was not affected by LPS glycotype of H. pylori isolates examined nor by their CagA status or resistance to clarithromycin. These findings suggest α-1,6-glucan as a potential vaccine target, especially in an era of increasing clarithromycin resistance in H. pylori.
Collapse
Affiliation(s)
- Eleonora Altman
- a National Research Council Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada
| | | | | | | |
Collapse
|
5
|
Abstract
This review concerned the important pediatric studies published between April 2012 and March 2013. Symptomatology in Helicobacter pylori-positive children is nonspecific, except for those suffering from peptic ulcer diseases. Investigation of H. pylori status in children and adolescents with sideropenic anemia is recommended, and it is the aim of several studies worldwide. Associations of H. pylori with plasma ghrelin levels as well as the negative association of H. pylori with atopic disease were interesting objectives for several studies this year. Success rates of sequential therapy tended to be lower in recent studies than in previous trials, which probably reflects the increase in macrolide resistance. A beneficial effect of probiotics was reported although not all trials supported this result in children. Intrafamilial transmission and young age could be major risk factors associated with reinfection in children.
Collapse
Affiliation(s)
- Teresa Alarcón
- Department of Microbiology, Hospital Universitario de La Princesa, Madrid, Spain
| | | | | |
Collapse
|
7
|
Abstract
This review summarizes important pediatric studies published from April 2011 up to March 2012. Proteomics profile of ulcerogenic Helicobacter pylori strains was defined in the most interesting study of the last year. The antigen stool test is becoming the "gold standard" in prevalence studies, and according to the last epidemiologic studies, the prevalence of H. pylori infection in childhood is not decreasing any more in the developed world. The resistance rate of H. pylori strains is high in children. Therefore, among other important issues concerning H. pylori in pediatrics, guidelines published by ESPGHAN and NASPGHAN last year also recommended culture and susceptibility testing before first-line treatment in areas with high or unknown antibiotic resistance rates.
Collapse
Affiliation(s)
- Matjaž Homan
- University Children's Hospital, Ljubljana, Slovenia.
| | | | | |
Collapse
|