1
|
Kellgren T, Dwibedi C, Widerström M, Sundell D, Öhrman C, Sjödin A, Monsen T, Rydén P, Johansson A. Completed genome and emergence scenario of the multidrug-resistant nosocomial pathogen Staphylococcus epidermidis ST215. BMC Microbiol 2024; 24:215. [PMID: 38890594 PMCID: PMC11186124 DOI: 10.1186/s12866-024-03367-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND A multidrug-resistant lineage of Staphylococcus epidermidis named ST215 is a common cause of prosthetic joint infections and other deep surgical site infections in Northern Europe, but is not present elsewhere. The increasing resistance among S. epidermidis strains is a global concern. We used whole-genome sequencing to characterize ST215 from healthcare settings. RESULTS We completed the genome of a ST215 isolate from a Swedish hospital using short and long reads, resulting in a circular 2,676,787 bp chromosome and a 2,326 bp plasmid. The new ST215 genome was placed in phylogenetic context using 1,361 finished public S. epidermidis reference genomes. We generated 10 additional short-read ST215 genomes and 11 short-read genomes of ST2, which is another common multidrug-resistant lineage at the same hospital. We studied recombination's role in the evolution of ST2 and ST215, and found multiple recombination events averaging 30-50 kb. By comparing the results of antimicrobial susceptibility testing for 31 antimicrobial drugs with the genome content encoding antimicrobial resistance in the ST215 and ST2 isolates, we found highly similar resistance traits between the isolates, with 22 resistance genes being shared between all the ST215 and ST2 genomes. The ST215 genome contained 29 genes that were historically identified as virulence genes of S. epidermidis ST2. We established that in the nucleotide sequence stretches identified as recombination events, virulence genes were overrepresented in ST215, while antibiotic resistance genes were overrepresented in ST2. CONCLUSIONS This study features the extensive antibiotic resistance and virulence gene content in ST215 genomes. ST215 and ST2 lineages have similarly evolved, acquiring resistance and virulence through genomic recombination. The results highlight the threat of new multidrug-resistant S. epidermidis lineages emerging in healthcare settings.
Collapse
Affiliation(s)
- Therese Kellgren
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, SE, 90187, Sweden
| | - Chinmay Dwibedi
- Department of Clinical Microbiology and Molecular Infection Medicine Sweden (MIMS), Umeå University, 90185, Umeå, Sweden
| | - Micael Widerström
- Department of Clinical Microbiology, Umeå University, 90185, Umeå, Sweden.
| | - David Sundell
- Division of CBRN Defence and Security, Swedish Defense Research Agency, 90182, Umeå, SE, Sweden
| | - Caroline Öhrman
- Division of CBRN Defence and Security, Swedish Defense Research Agency, 90182, Umeå, SE, Sweden
| | - Andreas Sjödin
- Division of CBRN Defence and Security, Swedish Defense Research Agency, 90182, Umeå, SE, Sweden
| | - Tor Monsen
- Department of Clinical Microbiology, Umeå University, 90185, Umeå, Sweden
| | - Patrik Rydén
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, SE, 90187, Sweden
| | - Anders Johansson
- Department of Clinical Microbiology and Molecular Infection Medicine Sweden (MIMS), Umeå University, 90185, Umeå, Sweden
| |
Collapse
|
2
|
Evaluation of MALDI Biotyper Mycobacteria Library for Identification of Nontuberculous Mycobacteria. J Clin Microbiol 2022; 60:e0021722. [PMID: 35969171 PMCID: PMC9491183 DOI: 10.1128/jcm.00217-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bruker Biotyper matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) platform was assessed on its ability to accurately identify 314 nontuberculous mycobacteria (NTM) representing 73 species. All NTM isolates, representing 183 rapidly growing and 131 slowly growing organisms, were previously identified by Sanger DNA sequencing of the full-length 16S rRNA gene, and region V of the rpoB gene. An optimized version of the Bruker bead-beating procedure for protein extraction of NTM isolates was used to ensure high quality spectra for all NTM isolates, including less frequently encountered species. NTM spectra were analyzed using Bruker's research use only, Mycobacteria Library v6.0, supplemented by the MicrobeNet database. Identification of NTM by MALDI-TOF had an accuracy of 94% (296/314). The identification accuracy for rapidly growing mycobacteria was higher at 99% (182/183) than it was for slowly growing mycobacteria at 87% (114/131). While MALDI-TOF performed well against Sanger sequencing of the 16S rRNA gene alone, there were 11 species that required additional sequencing of rpoB. Most discrepancies between MALDI-TOF and sequencing results are likely due to underrepresentation of some species in the libraries used. Overall, the results of this study support Bruker's MALDI-TOF platform as an accurate and reliable method for the identification of NTM.
Collapse
|
3
|
Identification and Subtyping of Salmonella Isolates Using Matrix-Assisted Laser Desorption–Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF). Microorganisms 2022; 10:microorganisms10040688. [PMID: 35456741 PMCID: PMC9025770 DOI: 10.3390/microorganisms10040688] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 11/22/2022] Open
Abstract
Subtyping of bacterial isolates of the same genus and species is an important tool in epidemiological investigations. A number of phenotypic and genotypic subtyping methods are available; however, most of these methods are labor-intensive and time-consuming and require considerable operator skill and a wealth of reagents. Matrix-Assisted Laser Desorption–Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF), an alternative to conventional subtyping methods, offers a rapid, reproducible method for bacterial identification with a high sensitivity and specificity and at minimal cost. The purpose of this study was to determine the feasibility of using MALDI-TOF to differentiate between six Salmonella serovars recovered from experimental microcosms inoculated with known strains of Salmonella. Following the establishment of a MALDI-TOF reference library for this project, the identity of 843 Salmonella isolates recovered from these microcosms was assessed using both MALDI-TOF and conventional methods (serotyping/PCR). All 843 isolates were identified as being Salmonella species. Overall, 803/843 (95%) of these isolates were identified similarly using the two different methods. Positive percent agreement at the serovar level ranged from 79 to 100%, and negative percent agreement for all serovars was greater than 98%. Cohen’s kappa ranged from 0.85 to 0.98 for the different serovars. This study demonstrates that MALDI-TOF is a viable alternative for the rapid identification and differentiation of Salmonella serovars.
Collapse
|
4
|
Uchida-Fujii E, Niwa H, Kinoshita Y, Nukada T. Construction and Application of an In-House Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) Database Specific to Bacteria From Horses. J Equine Vet Sci 2021; 103:103664. [PMID: 34281642 DOI: 10.1016/j.jevs.2021.103664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 11/19/2022]
Abstract
Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is used for identification of bacterial species isolated from horses. However, because of insufficiencies in the reference database, some bacterial species isolated from horses are difficult to identify with MALDI-TOF MS, and enriching the databases is expected to enhance the accuracy of MALDI-TOF MS identification. Here we created an in-house database including 271 bacterial isolates from horses. Furthermore, we used an enhanced database (our in-house database plus a commercially provided database) to examine 91 newly obtained isolates that could not be identified with MALDI-TOF MS using the commercially provided database. The enhanced database could identify 15 of those 91 isolates to the species level; including streptococcus (3/19), Gram-positive rod (4/17), Gram-negative rod (8/17) isolates. The enhanced database increased the average identification score of the 91 isolates (1.64-1.76). The in-house database increased the number of isolates that MALDI-TOF MS could identify to the species level and contributed to more accurate identification of bacterial isolates from horses.
Collapse
Affiliation(s)
- Eri Uchida-Fujii
- Microbiology Division, Equine Research Institute, Japan Racing Association, Shimotsuke, Tochigi, Japan.
| | - Hidekazu Niwa
- Microbiology Division, Equine Research Institute, Japan Racing Association, Shimotsuke, Tochigi, Japan
| | - Yuta Kinoshita
- Microbiology Division, Equine Research Institute, Japan Racing Association, Shimotsuke, Tochigi, Japan
| | - Toshio Nukada
- Microbiology Division, Equine Research Institute, Japan Racing Association, Shimotsuke, Tochigi, Japan
| |
Collapse
|
5
|
Brockmann M, Aupperle-Lellbach H, Gentil M, Heusinger A, Müller E, Marschang RE, Pees M. Challenges in microbiological identification of aerobic bacteria isolated from the skin of reptiles. PLoS One 2020; 15:e0240085. [PMID: 33075077 PMCID: PMC7571677 DOI: 10.1371/journal.pone.0240085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/19/2020] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Bacterial pathogens are often involved in dermatitis in reptiles. Exact identification of reptile-specific but otherwise uncommon bacterial species may be challenging. However, identification is crucial to evaluate the importance of the detected bacterial species. OBJECTIVE The aim of this study was to assess the number of aerobic bacterial isolates cultured from skin-derived samples of reptiles which were not reliably identified by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS), and to determine their identity. MATERIAL AND METHODS Routine bacterial diagnostics were performed on 235 skin samples, and 417 bacterial isolates were analysed by MALDI-TOF MS. The isolates were grouped into categories based on their first score: category I (≥ 2.00), category II (≥ 1.70 and < 2.00), and category III (< 1.70). Isolates from category III were further investigated by 16S rRNA gene sequencing and the following criteria were applied: query cover 100%, e-value rounded to 0.0 and sequence identity (%) > 98.00% for genus identification, and > 99.00% for species identification. RESULTS The majority of bacterial isolates were in category I (85.1%) or category II (8.4%). In category III (6.5%) results achieved at first by MALDI-TOF MS corresponded to the results of the molecular analysis in 8.0% of isolates at the species level and in 24.0% at the genus level. Bacterial isolates classified as category III were heterogenic in genus (e.g. Chryseobacterium, Devriesea, Pseudomonas, Staphylococcus, Uruburuella), and some have only been described in reptiles so far. CONCLUSIONS Most of the aerobic bacterial isolates cultured from reptile skin achieved high scores by MALDI-TOF MS. However, in the majority of category III isolates MALDI-TOF MS results were different from those of the molecular analysis. This strengthens the need to carefully examine low-scored results for plausibility and to be familiar with the occurrence and morphology of relevant reptile-specific bacterial species (e.g. Devriesea agamarum) as well as with the limits of the database used.
Collapse
MESH Headings
- Animals
- Bacteria, Aerobic/chemistry
- Bacteria, Aerobic/genetics
- Bacteria, Aerobic/isolation & purification
- Gram-Negative Bacteria/genetics
- Gram-Negative Bacteria/isolation & purification
- Gram-Negative Bacteria/metabolism
- Gram-Positive Bacteria/genetics
- Gram-Positive Bacteria/isolation & purification
- Gram-Positive Bacteria/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- Reptiles/microbiology
- Skin/microbiology
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Collapse
Affiliation(s)
| | | | | | | | | | | | - Michael Pees
- Clinic for Birds and Reptiles, University of Leipzig, Leipzig, Germany
| |
Collapse
|
6
|
Performance evaluation of the Becton Dickinson Kiestra™ IdentifA/SusceptA. Clin Microbiol Infect 2020; 27:1167.e9-1167.e17. [PMID: 33031951 DOI: 10.1016/j.cmi.2020.09.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 11/23/2022]
Abstract
OBJECTIVES New automated modules are required to provide fully automated solutions in diagnostic microbiology laboratories. We evaluated the performance of a Becton Dickinson Kiestra™ IdentifA/SusceptA prototype for MALDI-TOF identification (ID) and Phoenix™ antibiotic susceptibility testing (AST). METHODS The performance of the IdentifA/SusceptA coupled prototype was compared with manual processing for MALDI-TOF ID on 1302 clinical microbial isolates or ATCC strains and for Phoenix™ M50 AST on 484 strains, representing 61 species. RESULTS Overall, the IdentifA exhibited similar ID performances than manual spotting. Higher performances were observed for Gram-negative bacteria with an ID at the species level (score >2) of 96.5% (369/382) and 86.9% (334/384), respectively. A significantly better performance was observed with the IdentifA (95.2%, 81/85) compared with manual spotting (75.2%, 64/85) from colonies on MacConkey agar. Contrariwise, the IdentifA exhibited lower ID performances at the species level than manual processing for streptococci (76.1%, 96/126 compared with 92%, 115/125), coagulase-negative staphylococci (73.3%, 44/60 compared with 90%, 54/60) and yeasts (41.3%, 19/46 compared with 78.2%, 36/46). Staphylococcus aureus and enterococci were similarly identified by the two approaches, with ID rates of 92% (65/70) for the IdentifA and 92.7%, (64/69) for manual processing and 94.8%, (55/58) for the IdentifA and 98.2%, (57/58) for manual processing, respectively. The SusceptA exhibited an AST overall essential agreement of 98.82% (6863/6945), a category agreement of 98.86% (6866/6945), 1.05% (6/570) very major errors, 0.16% (10/6290) major errors, and 0.91% (63/6945) minor errors compared to the reference AST. CONCLUSIONS Overall, the automated IdentifA/SusceptA exhibited high ID and AST performances.
Collapse
|
7
|
Song J, Jongmans-Hochschulz E, Mauder N, Imirzalioglu C, Wichels A, Gerdts G. The Travelling Particles: Investigating microplastics as possible transport vectors for multidrug resistant E. coli in the Weser estuary (Germany). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137603. [PMID: 32143053 DOI: 10.1016/j.scitotenv.2020.137603] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/07/2020] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
The prevalence of multidrug-resistant Gram-negative bacteria in aquatic environments has been a long withstanding health concern, namely extended-spectrum beta-lactamase (ESBL) producing Escherichia coli. Given increasing reports on microplastic (MP) pollution in these environments, it has become crucial to better understand the role of MP particles as transport vectors for such multidrug-resistant bacteria. In this study, an incubation experiment was designed where particles of both synthetic and natural material (HDPE, tyre wear, and wood) were sequentially incubated at multiple sites along a salinity gradient from the Lower Weser estuary (Germany) to the offshore island Helgoland (German Bight, North Sea). Following each incubation period, particle biofilms and water samples were assessed for ESBL-producing E. coli, first by the enrichment and detection of E. coli using Fluorocult® LMX Broth followed by cultivation on CHROMAgar™ ESBL media to select for ESBL-producers. Results showed that general E. coli populations were present on the surfaces of wood particles across all sites but none were found to produce ESBLs. Additionally, neither HDPE nor tyre wear particles were found to harbour any E. coli. Conversely, ESBL-producing E. coli were present in surrounding waters from all sites, 64% of which conferred resistances against up to 3 other antibiotic groups, additional to the beta-lactam resistances intrinsic to ESBL-producers. This study provides a first look into the potential of MP to harbour and transport multidrug-resistant E. coli across different environments and the approach serves as an important precursor to further studies on other potentially harmful MP-colonizing species.
Collapse
Affiliation(s)
- Jessica Song
- Department of Microbial Ecology, Biologische Anstalt Helgoland, Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, 27498 Helgoland, Germany; Faculty of Engineering, Computing, and Science, Swinburne University of Technology, Sarawak Campus, 93350 Kuching, Sarawak, Malaysia.
| | - Elanor Jongmans-Hochschulz
- Department of Microbial Ecology, Biologische Anstalt Helgoland, Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, 27498 Helgoland, Germany
| | - Norman Mauder
- Bruker Daltonik GmbH, Fahrenheitstrasse 4, 28359 Bremen, Germany
| | - Can Imirzalioglu
- Institute of Medical Microbiology, Justus Liebig University Giessen and German Center for Infection Research (DZIF), Partner site Giessen-Marburg-Langen, Giessen, Germany
| | - Antje Wichels
- Department of Microbial Ecology, Biologische Anstalt Helgoland, Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, 27498 Helgoland, Germany
| | - Gunnar Gerdts
- Department of Microbial Ecology, Biologische Anstalt Helgoland, Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, 27498 Helgoland, Germany
| |
Collapse
|
8
|
Edin A, Eilers H, Allard A. Evaluation of the Biofire Filmarray Pneumonia panel plus for lower respiratory tract infections. Infect Dis (Lond) 2020; 52:479-488. [PMID: 32319831 DOI: 10.1080/23744235.2020.1755053] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Background: Standard diagnostic methods for lower respiratory tract infections are currently too slow and insensitive to guide early clinical decisions concerning treatment and isolation. Syndrome-specific, diagnostic panels have potential to provide information about aetiology quickly. Available panels have been of limited use in lower respiratory tract infections due to slow turn-around-time, lack of quantification of important pathogens and lack of detection of resistance genes.Materials/methods: We evaluated the newly developed Biofire® Filmarray® Pneumonia Panel plus (Biomérieux). Eighty-eight consecutive lower respiratory tract samples were analyzed by both standard microbiological methods, as requested by the referring clinician, and by the panel. The agreement with standard methods, empirical treatment coverage and possible impact on isolation practices were assessed by comparing the results from standard diagnostic methods with the panel results in relation to clinical data and information of antimicrobial therapy.Results: Both qualitative and semi-quantitative results from the panel generally displayed good agreement with standard methods and by combining methods, a possible aetiology was detected in 73% of patients. Due to the panel approach, the panel detected viruses more frequently. In 25% of the 60 patients assessed for empirical treatment coverage, a pathogen not covered by current therapy was detected and in 30% of in-house patients the panel results were found to potentially influence clinical decisions related to isolation care.Conclusions: The new diagnostic panel shows promise in improving aetiological diagnostics of lower respiratory tract infections. Correctly applied it has potential to offer support in clinical decision-making within hours of sampling.
Collapse
Affiliation(s)
- Alicia Edin
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden.,Anesthesiology and Intensive Care Medicine, Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden
| | - Hinnerk Eilers
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Annika Allard
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| |
Collapse
|
9
|
Florio W, Tavanti A, Ghelardi E, Lupetti A. MALDI-TOF MS Applications to the Detection of Antifungal Resistance: State of the Art and Future Perspectives. Front Microbiol 2018; 9:2577. [PMID: 30425693 PMCID: PMC6218422 DOI: 10.3389/fmicb.2018.02577] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/09/2018] [Indexed: 01/22/2023] Open
Abstract
MALDI-TOF MS technology has made possible revolutionary advances in the diagnosis of infectious diseases. Besides allowing rapid and reliable identification of bacteria and fungi, this technology has been recently applied to the detection of antimicrobial resistance. Several approaches have been proposed and evaluated for application of MALDI-TOF MS to antimicrobial susceptibility testing of bacteria, and some of these have been or might be applied also to yeasts. In this context, the comparison of proteomic profiles of bacteria/yeasts incubated with or without antimicrobial drugs is a very promising method. Another recently proposed MALDI-TOF MS-based approach for antifungal susceptibility testing is the application of the semi-quantitative MALDI Biotyper antibiotic susceptibility test rapid assay, which was originally designed for antimicrobial susceptibility testing of bacteria, to yeast isolates. Increasingly effective and accurate MS tools and instruments as well as the possibility to optimize analytical parameter settings for targeted applications have generated an expanding area in the field of clinical microbiology diagnostics, paving the way for the development and/or optimization of rapid methods for antifungal susceptibility testing in the near future. In the present study, the state of the art of MALDI-TOF MS applications to antifungal susceptibility testing is reviewed, and cutting-edge developments are discussed, with a particular focus on methods allowing rapid detection of drug resistance in pathogenic fungi causing systemic mycoses.
Collapse
Affiliation(s)
- Walter Florio
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | | | - Emilia Ghelardi
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Antonella Lupetti
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| |
Collapse
|
10
|
Florio W, Tavanti A, Barnini S, Ghelardi E, Lupetti A. Recent Advances and Ongoing Challenges in the Diagnosis of Microbial Infections by MALDI-TOF Mass Spectrometry. Front Microbiol 2018; 9:1097. [PMID: 29896172 PMCID: PMC5986882 DOI: 10.3389/fmicb.2018.01097] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 05/08/2018] [Indexed: 12/25/2022] Open
Abstract
Timeliness and accuracy in the diagnosis of microbial infections are associated with decreased mortality and reduced length of hospitalization, especially for severe, life-threatening infections. A rapid diagnosis also allows for early streamlining of empirical antimicrobial therapies, thus contributing to limit the emergence and spread of antimicrobial resistance. The introduction of matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (MS) for routine identification of microbial pathogens has profoundly influenced microbiological diagnostics, and is progressively replacing biochemical identification methods. Compared to currently used identification methods, MALDI-TOF MS has the advantage of identifying bacteria and yeasts directly from colonies grown on culture plates for primary isolation in a few minutes and with considerable material and labor savings. The reliability and accuracy of MALDI-TOF MS in identification of clinically relevant bacteria and yeasts has been demonstrated by several studies showing that the performance of MALDI-TOF MS is comparable or superior to phenotypic methods currently in use in clinical microbiology laboratories, and can be further improved by database updates and analysis software upgrades. Besides microbial identification from isolated colonies, new perspectives are being explored for MALDI-TOF MS, such as identification of pathogens directly from positive blood cultures, sub-species typing, and detection of drug resistance determinants. In this review, we summarize the state of the art in routine identification of microbial pathogens by MALDI-TOF MS, and highlight recent advancements of this technology in special applications, such as strain typing, assessment of drug susceptibility, and detection of virulence factors.
Collapse
Affiliation(s)
- Walter Florio
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | | | | | - Emilia Ghelardi
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Antonella Lupetti
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| |
Collapse
|
11
|
Gosselin VB, Lovstad J, Dufour S, Adkins PRF, Middleton JR. Use of MALDI-TOF to characterize staphylococcal intramammary infections in dairy goats. J Dairy Sci 2018; 101:6262-6270. [PMID: 29705416 DOI: 10.3168/jds.2017-14224] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/20/2018] [Indexed: 11/19/2022]
Abstract
The most common pathogens causing intramammary infections (IMI) in dairy goats are staphylococci. Gene sequencing has been the reference method for identification of staphylococcal species, but MALDI-TOF mass spectrometry could represent a rapid and cost-effective alternative method. The objectives were to evaluate the typeability and accuracy of partial gene sequencing and MALDI-TOF for identifying staphylococci isolated from caprine milk samples, and to evaluate the relationship between staphylococcal species IMI, milk somatic cell score (SCS), and milk yield (MY). A composite (goat-level) milk sample was collected from all 940 lactating goats in a single herd. Dairy Herd Information Association test-day data for parity, days in milk, SCS, and MY were retrieved from Dairy Herd Information Association records. Milk samples were cultured on Columbia blood agar, and isolates from samples that yielded a single colony type of a presumptively identified Staphylococcus spp. were identified by PCR amplification and partial sequencing of rpoB, tuf, or 16S-rRNA, and MALDI-TOF. Mixed linear models were used to evaluate the relationship between staphylococcal IMI, SCS, and MY. The goat-level prevalence of staphylococcal IMI based on isolation of a single colony type was 24.4% (213/874). Seventeen goats had a contaminated sample. Among the remaining goats (n = 857), the most common species causing single colony-type IMI were Staphylococcus simulans (7.9%), Staphylococcus xylosus (3.5%), Staphylococcus caprae (3.6%), Staphylococcus chromogenes (2.9%), and Staphylococcus epidermidis (2.2%). The typeability of staphylococcal isolates with partial housekeeping gene sequence analysis (rpoB, complemented by tuf and 16S as needed) was 97.7%. The typeability and accuracy of MALDI-TOF were 84 and 100%, respectively. Overall, only Staphylococcus chromogenes IMI was associated with a higher SCS than goats with no growth. After adjusting for parity and stage of lactation, staphylococcal IMI status was not significantly associated with MY. For the staphylococci isolated from goats in this herd, MALDI-TOF proved an accurate method of speciation with a relatively high typeability. An association between staphylococcal IMI, SCS, and MY was not defined using goat-level data with the exception of S. chromogenes IMI, which was associated with a higher SCS than goats with no growth.
Collapse
Affiliation(s)
- Véronique Bernier Gosselin
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, 900 East Campus Dr., Columbia 65211
| | - Jessica Lovstad
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, 900 East Campus Dr., Columbia 65211
| | - Simon Dufour
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, QC, Canada, J2S 2M2; Canadian Bovine Mastitis and Milk Quality Research Network, 3200 Sicotte, Saint-Hyacinthe, QC, Canada, J2S 2M2
| | - Pamela R F Adkins
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, 900 East Campus Dr., Columbia 65211
| | - John R Middleton
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, 900 East Campus Dr., Columbia 65211.
| |
Collapse
|
12
|
Colonization of patients, healthcare workers, and the environment with healthcare-associated Staphylococcus epidermidis genotypes in an intensive care unit: a prospective observational cohort study. BMC Infect Dis 2016; 16:743. [PMID: 27938344 PMCID: PMC5148920 DOI: 10.1186/s12879-016-2094-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 12/06/2016] [Indexed: 01/22/2023] Open
Abstract
Background During the last decades, healthcare-associated genotypes of methicillin-resistant Staphylococcus epidermidis (HA-MRSE) have been established as important opportunistic pathogens. However, data on potential reservoirs on HA-MRSE is limited. The aim of the present study was to investigate the dynamics and to which extent HA-MRSE genotypes colonize patients, healthcare workers (HCWs) and the environment in an intensive care unit (ICU). Methods Over 12 months in 2006–2007, swab samples were obtained from patients admitted directly from the community to the ICU and patients transferred from a referral hospital, as well as from HCWs, and the ICU environment. Patients were sampled every third day during hospitalization. Antibiotic susceptibility testing was performed according to EUCAST guidelines. Pulsed-field gel electrophoresis and multilocus sequence typing were used to determine the genetic relatedness of a subset of MRSE isolates. Results We identified 620 MRSE isolates from 570 cultures obtained from 37 HCWs, 14 patients, and 14 environmental surfaces in the ICU. HA-MRSE genotypes were identified at admission in only one of the nine patients admitted directly from the community, of which the majority subsequently were colonized by HA-MRSE genotypes within 3 days during hospitalization. Almost all (89%) of HCWs were nasal carriers of HA-MRSE genotypes. Similarly, a significant proportion of patients transferred from the referral hospital and fomites in the ICU were widely colonized with HA-MRSE genotypes. Conclusions Patients transferred from a referral hospital, HCWs, and the hospital environment serve as important reservoirs for HA-MRSE. These observations highlight the need for implementation of effective infection prevention and control measures aiming at reducing HA-MRSE transmission in the healthcare setting. Electronic supplementary material The online version of this article (doi:10.1186/s12879-016-2094-x) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
Banach T, Bochniarz M, Łyp P, Adaszek Ł, Wawron W, Furmaga B, Skrzypczak M, Ziętek J, Winiarczyk S. Application of Matrix-assisted Laser Desorption Ionization Time-of-flight Mass Spectrometry for Identification of Coagulase-negative Staphylococci Isolated from Milk of Cows with Subclinical Mastitis. Pol J Vet Sci 2016; 19:627-632. [DOI: 10.1515/pjvs-2016-0078] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe aim of this study was to use matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the identification of coagulase-negative staphylococci (CNS) isolated from the milk of cows with subclinical mastitis. The study material consisted of 33 isolates of CNS, identified by the results of API Staph tests, obtained from the milk of cows with subclinical mastitis. Based on the spectra analyses, MALDI-TOF MS tests of 33 bacterial samples allowed identification of the microorganisms in 27 cases (81.8%). The most frequent cause of subclinical mastitis was found to beStaphylococcussciuri (39%), whileS. vitulinuswas detected in 15% of the milk samples. The results obtained indicate that MALDI-TOF MS can be used for the identification of CNS isolated from bovine mastitis as a method supplementary to biochemical tests.
Collapse
|
14
|
Han HW, Chang HC, Chang TC. Identification of Staphylococcus spp. and detection of mecA by an oligonucleotide array. Diagn Microbiol Infect Dis 2016; 86:23-9. [PMID: 27342780 DOI: 10.1016/j.diagmicrobio.2016.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 01/15/2023]
Abstract
Phenotypic identification of coagulase-negative staphylococci (CoNS) is difficult and many staphylococcal species carry mecA. This study developed an array that was able to detect mecA and identify 30 staphylococcal species by targeting the internal transcribed spacer regions. A total of 129 target reference strains (30 species) and 434 clinical isolates of staphylococci were analyzed. Gene sequencing of 16S rRNA, gap or tuf genes was the reference method for species identification. All reference strains (100%) were correctly identified, while the identification rates of clinical isolates of S. aureus and CoNS were 98.9% and 98%, respectively. The sensitivity and specificity for mecA detection were 99% and 100%, respectively, in S. aureus isolates, and both values were 100% in isolates of CoNS. The assay takes 6 h from a purified culture isolate, and so far it has not been performed directly on patient samples.
Collapse
Affiliation(s)
- Huan Wen Han
- Institute of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Hsien Chang Chang
- Institute of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan.
| | - Tsung Chain Chang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
15
|
Mayer-Scholl A, Murugaiyan J, Neumann J, Bahn P, Reckinger S, Nöckler K. Rapid Identification of the Foodborne Pathogen Trichinella spp. by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. PLoS One 2016; 11:e0152062. [PMID: 26999436 PMCID: PMC4801418 DOI: 10.1371/journal.pone.0152062] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/08/2016] [Indexed: 11/18/2022] Open
Abstract
Human trichinellosis occurs through consumption of raw or inadequately processed meat or meat products containing larvae of the parasitic nematodes of the genus Trichinella. Currently, nine species and three genotypes are recognized, of which T. spiralis, T. britovi and T. pseudospiralis have the highest public health relevance. To date, the differentiation of the larvae to the species and genotype level is based primarily on molecular methods, which can be relatively time consuming and labor intensive. Due to its rapidness and ease of use a matrix assisted laser desorption / ionization time of flight mass spectrometry (MALDI-TOF MS) reference spectra database using Trichinella strains of all known species and genotypes was created. A formicacid/acetonitrile protein extraction was carried out after pooling 10 larvae of each Trichinella species and genotype. Each sample was spotted 9 times using α-cyano 4-hydoxy cinnamic acid matrix and a MicroFlex LT mass spectrometer was used to acquire 3 spectra (m/z 2000 to 20000 Da) from each spot resulting in 27 spectra/species or genotype. Following the spectra quality assessment, Biotyper software was used to create a main spectra library (MSP) representing nine species and three genotypes of Trichinella. The evaluation of the spectra generated by MALDI-TOF MS revealed a classification which was comparable to the results obtained by molecular methods. Also, each Trichinella species utilized in this study was distinct and distinguishable with a high confidence level. Further, different conservation methods such as freezing and conservation in alcohol and the host species origin of the isolated larvae did not have a significant influence on the generated spectra. Therefore, the described MALDI-TOF MS can successfully be implemented for both genus and species level identification and represents a major step forward in the use of this technique in foodborne parasitology.
Collapse
Affiliation(s)
- Anne Mayer-Scholl
- Department of Biological Safety, Federal Institute for Risk Assessment, Berlin, Germany
- * E-mail:
| | - Jayaseelan Murugaiyan
- Centre for Infectious Medicine, Institute of Animal Hygiene and Environmental Health, Veterinary Faculty, Free University Berlin, Berlin, Germany
| | - Jennifer Neumann
- Department of Biological Safety, Federal Institute for Risk Assessment, Berlin, Germany
| | - Peter Bahn
- Department of Biological Safety, Federal Institute for Risk Assessment, Berlin, Germany
| | - Sabine Reckinger
- Department of Biological Safety, Federal Institute for Risk Assessment, Berlin, Germany
| | - Karsten Nöckler
- Department of Biological Safety, Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
16
|
Han HW, Chang HC, Hunag AH, Chang TC. Optimization of the score cutoff value for routine identification of Staphylococcus species by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. Diagn Microbiol Infect Dis 2015; 83:349-54. [PMID: 26423657 DOI: 10.1016/j.diagmicrobio.2015.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 07/07/2015] [Accepted: 08/04/2015] [Indexed: 10/23/2022]
Abstract
Staphylococcus species are important pathogens. We evaluated 2 score cutoffs (2.0 and 1.7) and the replicate number (a single or a duplicate test) on the identification of staphylococci using the Bruker matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS). A collection of 440 clinical isolates (11 species) and 144 reference strains (36 species) was evaluated. For clinical isolates using a cutoff of 2.0 and duplicate tests, the rates of species, genus, and unreliable identifications were 93.4%, 5.7%, and 0.9% respectively, while the respective values were 99.3%, 0.2%, and 0.5% when the cutoff was 1.7. The species identification rates were significantly higher (P<0.01) when a cutoff of 1.7 or a duplicate test was used. Similar results were obtained for reference strains. In conclusion, a cutoff of 1.7 and duplicate tests are recommended for identification of staphylococci using MALDI-TOF MS.
Collapse
Affiliation(s)
- Huan Wen Han
- Institute of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Hsien Chang Chang
- Institute of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - Ay Huei Hunag
- Division of Clinical Microbiology, Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Tsung Chain Chang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
17
|
Zhu W, Sieradzki K, Albrecht V, McAllister S, Lin W, Stuchlik O, Limbago B, Pohl J, Kamile Rasheed J. Evaluation of the Biotyper MALDI-TOF MS system for identification of Staphylococcus species. J Microbiol Methods 2015; 117:14-7. [PMID: 26183765 DOI: 10.1016/j.mimet.2015.07.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 07/10/2015] [Accepted: 07/11/2015] [Indexed: 11/27/2022]
Abstract
The Bruker Biotyper MALDI-TOF MS (Biotyper) system, with a modified 30 minute formic acid extraction method, was evaluated by its ability to identify 216 clinical Staphylococcus isolates from the CDC reference collection comprising 23 species previously identified by conventional biochemical tests. 16S rDNA sequence analysis was used to resolve discrepancies. Of these, 209 (96.8%) isolates were correctly identified: 177 (84.7%) isolates had scores ≥2.0, while 32 (15.3%) had scores between 1.70 and 1.99. The Biotyper identification was inconsistent with the biochemical identification for seven (3.2%) isolates, but the Biotyper identifications were confirmed by 16S rDNA analysis. The distribution of low scores was strongly species-dependent, e.g. only 5% of Staphylococcus epidermidis and 4.8% of Staphylococcus aureus isolates scored below 2.0, while 100% of Staphylococcus cohnii, 75% of Staphylococcus sciuri, and 60% of Staphylococcus caprae produced low but accurate Biotyper scores. Our results demonstrate that the Biotyper can reliably identify Staphylococcus species with greater accuracy than conventional biochemicals. Broadening of the reference database by inclusion of additional examples of under-represented species could further optimize Biotyper results.
Collapse
Affiliation(s)
- Wenming Zhu
- Division of Healthcare Quality Promotion, Centers for Disease Control Prevention, 1600 Clifton Rd NE, Atlanta, GA, United States.
| | - Krzysztof Sieradzki
- Division of Healthcare Quality Promotion, Centers for Disease Control Prevention, 1600 Clifton Rd NE, Atlanta, GA, United States
| | - Valerie Albrecht
- Division of Healthcare Quality Promotion, Centers for Disease Control Prevention, 1600 Clifton Rd NE, Atlanta, GA, United States
| | - Sigrid McAllister
- Division of Healthcare Quality Promotion, Centers for Disease Control Prevention, 1600 Clifton Rd NE, Atlanta, GA, United States
| | - Wen Lin
- Division of Healthcare Quality Promotion, Centers for Disease Control Prevention, 1600 Clifton Rd NE, Atlanta, GA, United States
| | - Olga Stuchlik
- Division of Scientific Resources, Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Atlanta, GA, United States
| | - Brandi Limbago
- Division of Healthcare Quality Promotion, Centers for Disease Control Prevention, 1600 Clifton Rd NE, Atlanta, GA, United States
| | - Jan Pohl
- Division of Scientific Resources, Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Atlanta, GA, United States
| | - J Kamile Rasheed
- Division of Healthcare Quality Promotion, Centers for Disease Control Prevention, 1600 Clifton Rd NE, Atlanta, GA, United States
| |
Collapse
|
18
|
Kohlmann R, Hoffmann A, Geis G, Gatermann S. MALDI-TOF mass spectrometry following short incubation on a solid medium is a valuable tool for rapid pathogen identification from positive blood cultures. Int J Med Microbiol 2015; 305:469-79. [PMID: 25953498 DOI: 10.1016/j.ijmm.2015.04.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/09/2015] [Accepted: 04/20/2015] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Rapid identification of the causative microorganism is a key element in appropriate antimicrobial therapy of bloodstream infections. Whereas traditional analysis of positive blood cultures requires subculture over at least 16-24h prior to pathogen identification by, e.g. matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), sample preparation procedures enabling direct MALDI-TOF MS, i.e. without preceding subculture, are associated with additional effort and costs. Hence, we integrated an alternative MALDI-TOF MS approach in diagnostic routine using a short incubation on a solid medium. MATERIALS AND METHODS Positive blood cultures were routinely plated on chocolate agar plates and incubated for 4h (37 °C, 5% CO2). Subsequently, MALDI-TOF MS using a Microflex LT instrument (Bruker Daltonics) and direct smear method was performed once per sample. For successful identification of bacteria at species level, score cut-off values were used as proposed by the manufacturer (≥ 2.0) and in a modified form (≥ 1.5 for MALDI-TOF MS results referring to Gram-positive cocci and ≥ 1.7 for MALDI-TOF MS results referring to bacteria other than Gram-positive cocci). Further data analysis also included an assessment of the clinical impact of the MALDI-TOF MS result. RESULTS Applying the modified score cut-off values, our approach led to an overall correct species identification in 69.5% with misidentification in 3.4% (original cut-offs: 49.2% and 1.8%, respectively); for Gram-positive cocci, correct identification in 68.4% (100% for Staphylococcus aureus and enterococci, 80% for beta-hemolytic streptococci), for Gram-negative bacteria, correct identification in 97.6%. In polymicrobial blood cultures, in 72.7% one of the pathogens was correctly identified. Results were not reliable for Gram-positive rods and yeasts. The approach was easy to implement in diagnostic routine. In cases with available clinical data and successful pathogen identification, in 51.1% our approach allowed an optimized treatment recommendation. CONCLUSION MALDI-TOF MS following 4h pre-culture is a valuable tool for rapid pathogen identification from positive blood cultures, allowing easy integration in diagnostic routine and the opportunity of considerably earlier treatment adaptation.
Collapse
Affiliation(s)
- Rebekka Kohlmann
- Department of Medical Microbiology, Ruhr-University Bochum, Universitaetsstrasse 150, Bochum, Germany; Institute of Medical Laboratory Diagnostics (IML) Bochum GmbH, Castroper Strasse 45, Bochum, Germany.
| | - Alexander Hoffmann
- Institute of Medical Laboratory Diagnostics (IML) Bochum GmbH, Castroper Strasse 45, Bochum, Germany
| | - Gabriele Geis
- Institute of Medical Laboratory Diagnostics (IML) Bochum GmbH, Castroper Strasse 45, Bochum, Germany
| | - Sören Gatermann
- Department of Medical Microbiology, Ruhr-University Bochum, Universitaetsstrasse 150, Bochum, Germany; Institute of Medical Laboratory Diagnostics (IML) Bochum GmbH, Castroper Strasse 45, Bochum, Germany
| |
Collapse
|
19
|
Patel R. Matrix-assisted laser desorption ionization-time of flight mass spectrometry in clinical microbiology. Clin Infect Dis 2013; 57:564-72. [PMID: 23595835 DOI: 10.1093/cid/cit247] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Despite widespread application of nucleic acid diagnostics, cultures remain integral in modern laboratories. Because cultures detect a large number of organism types, it is unlikely that they will disappear from clinical practice in the near future. Their downside is slow turn-around time, impacted by time to growth and identification of that growth. The latter is expedited using a new proteomic technology, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS).
Collapse
Affiliation(s)
- Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology and Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|