1
|
Whole-genome sequencing analysis of Shiga toxin-producing Escherichia coli O22:H8 isolated from cattle prediction pathogenesis and colonization factors and position in STEC universe phylogeny. J Microbiol 2022; 60:689-704. [DOI: 10.1007/s12275-022-1616-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/25/2022] [Accepted: 03/24/2022] [Indexed: 10/17/2022]
|
2
|
Kaushik M, Kumar S, Kapoor RK, Gulati P. Integrons and antibiotic resistance genes in water-borne pathogens: threat detection and risk assessment. J Med Microbiol 2019; 68:679-692. [DOI: 10.1099/jmm.0.000972] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Megha Kaushik
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Sanjay Kumar
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Rajeev Kr. Kapoor
- Enzyme Biotechnology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Pooja Gulati
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| |
Collapse
|
3
|
Mir RA, Kudva IT. Antibiotic‐resistant Shiga toxin‐producing
Escherichia coli
: An overview of prevalence and intervention strategies. Zoonoses Public Health 2018; 66:1-13. [DOI: 10.1111/zph.12533] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 10/08/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Raies A. Mir
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service U.S. Department of Agriculture Ames Iowa
- Oak Ridge Institute for Science and Education (ORISE) ARS Research Participation Program Oak Ridge Tennessee
| | - Indira T. Kudva
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service U.S. Department of Agriculture Ames Iowa
| |
Collapse
|
4
|
A Novel Target Pathogen Identification and Tracking System Using Capillary Electrophoresis-Random Amplified Polymorphic DNA. Sci Rep 2018; 8:15365. [PMID: 30337634 PMCID: PMC6193972 DOI: 10.1038/s41598-018-33702-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 09/20/2018] [Indexed: 02/07/2023] Open
Abstract
Rapid and accurate identification of pathogen is a major quarantine strategy for outbreak prevention. We used capillary electrophoresis-random amplified polymorphic DNA (CE-RAPD) to generate highly discriminatory pathogen profiles, reduced batch effects between profiles by novel normalization procedure and pattern of technical repeats, followed by target similarity evaluation using target identification score (TIS). A full target signature contains several patterns. TIS system was optimized by training set isolates that included three species, and validated using two hundred clinical Klebsiella pneumoniae isolates. Hierarchical clustering analysis showed CE-RAPD profiles arrange clusters according to the species or the source. Moreover, samples with similar profile may display similar antibiotic susceptibility. By using a signature of four patterns, the TIS system could accurately identify target among different isolates. The variation between isolates may be caused by small change in genome. TIS system provides a standardized tool for building of outbreak firewall and facilitate data exchange.
Collapse
|
5
|
Kohansal M, Ghanbari Asad A. Molecular analysis of Shiga toxin-producing Escherichia coli O157:H7 and non-O157 strains isolated from calves. Onderstepoort J Vet Res 2018; 85:e1-e7. [PMID: 30456961 PMCID: PMC6244070 DOI: 10.4102/ojvr.v85i1.1621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/31/2018] [Accepted: 08/15/2018] [Indexed: 12/31/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) O157 and non-O157 are food-borne pathogens and contaminants of foods of animal origin. This study was conducted to investigate the presence of virulence and integrase genes in STEC isolates from diarrhoeic calves in Fars Province, Iran. Five hundred and forty diarrheic neonatal calves were randomly selected for sampling. Rectal swabs were collected and cultured for isolation and identification of E. coli following standard methods. The isolates were analysed for the presence of class 1 integrons and bacterial virulence factors using polymerase chain reaction (PCR). Antimicrobial susceptibility testing was performed using the Kirby-Bauer disc diffusion method. Out of 540 diarrhoeic faecal samples, 312 (57.7%) harboured E. coli and 71 (22.7%) of them were identified as STEC: 41(69.5%) carried the stx2 gene, 21 (35.6%) carried the stx1 gene and 3 (5%) carried both. Twenty-six (44%) of the isolates showed the eaegene. Among the STEC isolates examined for susceptibility to eight antimicrobial agents, erythromycin and penicillin (96.8%) resistance were most commonly observed, followed by resistances to ampicillin (71.8%), tetracycline (62.5%) and trimethoprim/sulfamethoxazole (39%). Integrons were detected by PCR in 36% of the STEC tested isolates, 57 (89%) of which showed resistance to at least three antimicrobial agents. Our findings should raise awareness about antibiotic resistance in diarrhoeic calves in Fars Province, Iran. Class 1 integrons facilitate the emergence and dissemination of multidrug-resistance (MDR) among STEC strains recovered from food animals.
Collapse
Affiliation(s)
- Maryam Kohansal
- Department of Medical Biotechnology, Fasa University of Medical Science, Iran; and, Department of Biology, Payame Noor University (PNU).
| | | |
Collapse
|
6
|
Antimicrobial Resistance in Class 1 Integron-Positive Shiga Toxin-Producing Escherichia coli Isolated from Cattle, Pigs, Food and Farm Environment. Microorganisms 2018; 6:microorganisms6040099. [PMID: 30274159 PMCID: PMC6313391 DOI: 10.3390/microorganisms6040099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 09/24/2018] [Accepted: 09/26/2018] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to investigate the presence of class 1 integrons in a collection of Shiga toxin-producing Escherichia coli (STEC) from different origins and to characterize pheno- and genotypically the antimicrobial resistance associated to them. A collection of 649 isolates were screened for the class 1 integrase gene (intI1) by Polymerase chain reaction The variable region of class 1 integrons was amplified and sequenced. Positive strains were evaluated for the presence of antimicrobial resistance genes with microarray and for antimicrobial susceptibility by the disk diffusion method. Seven out of 649 STEC strains some to serogroups, O26, O103 and O130 isolated from cattle, chicken burger, farm environment and pigs were identified as positive for intl1. Different arrangements of gene cassettes were detected in the variable region of class 1 integron: dfrA16, aadA23 and dfrA1-aadA1. In almost all strains, phenotypic resistance to streptomycin, tetracycline, trimethoprim/sulfamethoxazole, and sulfisoxazole was observed. Microarray analyses showed that most of the isolates carried four or more antimicrobial resistance markers and STEC strains were categorized as Multridrug-resistant. Although antimicrobials are not usually used in the treatment of STEC infections, the presence of Multridrug-resistant in isolates collected from farm and food represents a risk for animal and human health.
Collapse
|
7
|
Lambrecht E, Van Meervenne E, Boon N, Van de Wiele T, Wattiau P, Herman L, Heyndrickx M, Van Coillie E. Characterization of Cefotaxime- and Ciprofloxacin-Resistant Commensal Escherichia coli Originating from Belgian Farm Animals Indicates High Antibiotic Resistance Transfer Rates. Microb Drug Resist 2017; 24:707-717. [PMID: 29148895 DOI: 10.1089/mdr.2017.0226] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Food-producing animals represent one of the sources of antibiotic resistant commensal bacteria. There is an increasing awareness that these bacteria might have the potential to transfer their resistance genes to other (pathogenic) bacteria. In this study, 50 commensal Escherichia coli strains originating from food-producing animals and resistant to the "highest priority, critically important antibiotics" cefotaxime and/or ciprofloxacin, were selected for further characterization. For each strain (i) an antibiogram, (ii) the phylogenetic group, (iii) plasmid replicon type, (iv) presence and identification of integrons, and (v) antibiotic resistance transfer ratios were determined. Forty-five of these strains were resistant to 5 or more antibiotics, and 6 strains were resistant to 10 or more antibiotics. Resistance was most common to ampicillin (100%), sulfamethoxazole, ciprofloxacin (82%), trimethoprim, tetracycline (74%), cefotaxime, (70%) and ceftazidime (62%). Phylogenetic groups A (62%) and B1 (26%) were most common, followed by C (8%) and E (4%). In 43 strains, more than 1 replicon type was detected, with FII (88%), FIB (70%), and I1 (48%) being the most encountered types. Forty strains, positive for integrons, all harbored a class I integron and seven of them contained an additional class II integron. No class III integrons were detected. The antibiotic resistance transfer was assessed by liquid mating experiments. The transfer ratio, expressed as the number of transconjugants per recipient, was between 10-5 and 100 for cefotaxime resistance and between 10-7 and 10-1 for ciprofloxacin resistance. The results of the current study prove that commensal E. coli in food-production animals can be a source of multiple resistance genes and that these bacteria can easily spread their ciprofloxacin and cefotaxime resistance.
Collapse
Affiliation(s)
- Ellen Lambrecht
- 1 Flanders Research Institute for Agriculture , Fisheries and Food (ILVO), Food Safety Technology, Food Science Unit, Melle, Belgium .,2 Center for Microbial Ecology and Technology (CMET), Ghent University , Ghent, Belgium
| | - Eva Van Meervenne
- 1 Flanders Research Institute for Agriculture , Fisheries and Food (ILVO), Food Safety Technology, Food Science Unit, Melle, Belgium .,2 Center for Microbial Ecology and Technology (CMET), Ghent University , Ghent, Belgium
| | - Nico Boon
- 2 Center for Microbial Ecology and Technology (CMET), Ghent University , Ghent, Belgium
| | - Tom Van de Wiele
- 2 Center for Microbial Ecology and Technology (CMET), Ghent University , Ghent, Belgium
| | - Pierre Wattiau
- 3 Foodborne, Highly Pathogenic, Bacterial Zoonoses & Antibiotic Resistance, CODA-CERVA , Brussels, Belgium
| | - Lieve Herman
- 1 Flanders Research Institute for Agriculture , Fisheries and Food (ILVO), Food Safety Technology, Food Science Unit, Melle, Belgium
| | - Marc Heyndrickx
- 1 Flanders Research Institute for Agriculture , Fisheries and Food (ILVO), Food Safety Technology, Food Science Unit, Melle, Belgium .,4 Department of Pathology, Bacteriology and Poultry Diseases, Ghent University , Merelbeke, Belgium
| | - Els Van Coillie
- 1 Flanders Research Institute for Agriculture , Fisheries and Food (ILVO), Food Safety Technology, Food Science Unit, Melle, Belgium
| |
Collapse
|
8
|
Ahmed AM, Shimamoto T. Molecular analysis of multidrug resistance in Shiga toxin-producing Escherichia coli O157:H7 isolated from meat and dairy products. Int J Food Microbiol 2015; 193:68-73. [DOI: 10.1016/j.ijfoodmicro.2014.10.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 10/07/2014] [Accepted: 10/12/2014] [Indexed: 12/28/2022]
|
9
|
Li LM, Wang MY, Yuan XY, Wang HJ, Li Q, Zhu YM. Characterization of integrons among Escherichia coli in a region at high incidence of ESBL-EC. Pak J Med Sci 2014; 30:177-80. [PMID: 24639856 PMCID: PMC3955567 DOI: 10.12669/pjms.301.4079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 10/31/2013] [Accepted: 11/03/2013] [Indexed: 01/04/2023] Open
Abstract
Objective : The aim of study was to investigate the distribution of the integrons in Escherichia coli (E. coli) isolates, and analyze the possible relationship between the antimicrobial resistance profiles and the integrons. Methods : The antimicrobial profiles of 376 E. coli strains were analysed by disk diffusion test. The integron genes and variable regions were detected by PCR. Some amplicons were sequenced to determine the gene cassettes style. Results : Of 376 isolates, 223 isolates (59.3%) were confirmed as ESBL-EC. Comparison to ESBL-negative E. coli, the high rates of resistance to the third and fourth generation of cephalosporins, penicillins and amikacin were found in ESBL-EC. Only class 1 was integron detected in the isolates, and the prevalence of it was 66.5%. It was commonly found in ESBL-EC (77.6%, 173/223), which was higher than that of ESBL-negative E. coli (50.3%, 77/153) (p<0.001). Six different genes cassettes were detected in this study and were classified into three groups: dfr17-aadA5, dfrA12-aadA2 and aacA4-CmlA1. Additionally, more than one gene array harboured in 13.9% isolates of ESBL-EC, while in 9.1% isolates of ESBL-negative E.coli. Conclusion : The high incidence of ESBL-EC with resistance to multiple antibiotics were detected in the isolates from Blood stream infection (BSI). More resistant gene cassettes in ESBL-EC may partially underlie the high resistance to amikacin, while no relation exists between the high incidence of ESBL-EC and classes 1~ 3 integrons in this region.
Collapse
Affiliation(s)
- Lu-Ming Li
- Lu-Ming Li, Ming-Yi Wang, Department of Clinical Lab, Department of Cardiovasology, Weihai Municipal Hospital affiliated to Dalian Medical University, Weihai, Shandong, 264200, PR China
| | - Ming-Yi Wang
- Lu-Ming Li, Ming-Yi Wang, Department of Clinical Lab, Department of Cardiovasology, Weihai Municipal Hospital affiliated to Dalian Medical University, Weihai, Shandong, 264200, PR China
| | - Xiao-Yan Yuan
- Xiao-Yan Yuan, Department of Clinical Lab, Weihai Municipal Hospital affiliated to Dalian Medical University, Weihai, Shandong, 264200, PR China
| | - Hong-Jun Wang
- Hong-Jun Wang, Weihai Municipal Hospital affiliated to Dalian Medical University, Weihai, Shandong, 264200, PR China
| | - Qin Li
- Qin Li, Weihai Municipal Hospital affiliated to Dalian Medical University, Weihai, Shandong, 264200, PR China
| | - Ya-Mei Zhu
- YA-Mei Zhu, Weihai Municipal Hospital affiliated to Dalian Medical University, Weihai, Shandong, 264200, PR China
| |
Collapse
|
10
|
Antimicrobial resistance in the food chain: a review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:2643-69. [PMID: 23812024 PMCID: PMC3734448 DOI: 10.3390/ijerph10072643] [Citation(s) in RCA: 345] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/14/2013] [Accepted: 06/17/2013] [Indexed: 11/17/2022]
Abstract
Antimicrobial resistant zoonotic pathogens present on food constitute a direct risk to public health. Antimicrobial resistance genes in commensal or pathogenic strains form an indirect risk to public health, as they increase the gene pool from which pathogenic bacteria can pick up resistance traits. Food can be contaminated with antimicrobial resistant bacteria and/or antimicrobial resistance genes in several ways. A first way is the presence of antibiotic resistant bacteria on food selected by the use of antibiotics during agricultural production. A second route is the possible presence of resistance genes in bacteria that are intentionally added during the processing of food (starter cultures, probiotics, bioconserving microorganisms and bacteriophages). A last way is through cross-contamination with antimicrobial resistant bacteria during food processing. Raw food products can be consumed without having undergone prior processing or preservation and therefore hold a substantial risk for transfer of antimicrobial resistance to humans, as the eventually present resistant bacteria are not killed. As a consequence, transfer of antimicrobial resistance genes between bacteria after ingestion by humans may occur. Under minimal processing or preservation treatment conditions, sublethally damaged or stressed cells can be maintained in the food, inducing antimicrobial resistance build-up and enhancing the risk of resistance transfer. Food processes that kill bacteria in food products, decrease the risk of transmission of antimicrobial resistance.
Collapse
|