1
|
Gupta N, Kumar A, Verma VK. Strategies adopted by gastric pathogen Helicobacter pylori for a mature biofilm formation: Antimicrobial peptides as a visionary treatment. Microbiol Res 2023; 273:127417. [PMID: 37267815 DOI: 10.1016/j.micres.2023.127417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/15/2023] [Accepted: 05/21/2023] [Indexed: 06/04/2023]
Abstract
Enormous efforts in recent past two decades to eradicate the pathogen that has been prevalent in half of the world's population have been problematic. The biofilm formed by Helicobacter pylori provides resistance towards innate immune cells, various combinatorial antibiotics, and human antimicrobial peptides, despite the fact that these all are potent enough to eradicate it in vitro. Biofilm provides the opportunity to secrete various virulence factors that strengthen the interaction between host and pathogen helping in evading the innate immune system and ultimately leading to persistence. To our knowledge, this review is the first of its kind to explain briefly the journey of H. pylori starting with the chemotaxis, the mechanism for selecting the site for colonization, the stress faced by the pathogen, and various adaptations to evade these stress conditions by forming biofilm and the morphological changes acquired by the pathogen in mature biofilm. Furthermore, we have explained the human GI tract antimicrobial peptides and the reason behind the failure of these AMPs, and how encapsulation of Pexiganan-A(MSI-78A) in a chitosan microsphere increases the efficiency of eradication.
Collapse
Affiliation(s)
- Nidhi Gupta
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Marg, New Delhi 110021, India.
| | - Atul Kumar
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Marg, New Delhi 110021, India
| | - Vijay Kumar Verma
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Marg, New Delhi 110021, India.
| |
Collapse
|
2
|
Cho H, Sondak T, Kim KS. Characterization of Increased Extracellular Vesicle-Mediated Tigecycline Resistance in Acinetobacter baumannii. Pharmaceutics 2023; 15:1251. [PMID: 37111736 PMCID: PMC10146562 DOI: 10.3390/pharmaceutics15041251] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/22/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB) is the most detrimental pathogen that causes hospital-acquired infections. Tigecycline (TIG) is currently used as a potent antibiotic for treating CRAB infections; however, its overuse substantially induces the development of resistant isolates. Some molecular aspects of the resistance mechanisms of AB to TIG have been reported, but they are expected to be far more complicated and diverse than what has been characterized thus far. In this study, we identified bacterial extracellular vesicles (EVs), which are nano-sized lipid-bilayered spherical structures, as mediators of TIG resistance. Using laboratory-made TIG-resistant AB (TIG-R AB), we demonstrated that TIG-R AB produced more EVs than control TIG-susceptible AB (TIG-S AB). Transfer analysis of TIG-R AB-derived EVs treated with proteinase or DNase to recipient TIG-S AB showed that TIG-R EV proteins are major factors in TIG resistance transfer. Additional transfer spectrum analysis demonstrated that EV-mediated TIG resistance was selectively transferred to Escherichia coli, Salmonella typhimurium, and Proteus mirabilis. However, this action was not observed in Klebsiella pneumonia and Staphylococcus aureus. Finally, we showed that EVs are more likely to induce TIG resistance than antibiotics. Our data provide direct evidence that EVs are potent cell-derived components with a high, selective occurrence of TIG resistance in neighboring bacterial cells.
Collapse
Affiliation(s)
| | | | - Kwang-sun Kim
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
3
|
Hong M, Li Z, Liu H, Zheng S, Zhang F, Zhu J, Shi H, Ye H, Chou Z, Gao L, Diao J, Zhang Y, Zhang D, Chen S, Zhou H, Li J. Fusobacterium nucleatum aggravates rheumatoid arthritis through FadA-containing outer membrane vesicles. Cell Host Microbe 2023; 31:798-810.e7. [PMID: 37054714 DOI: 10.1016/j.chom.2023.03.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/09/2022] [Accepted: 03/16/2023] [Indexed: 04/15/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disorder that has been associated with the gut microbiota. However, whether and how the gut microbiota plays a pathogenic role in RA remains unexplored. Here, we observed that Fusobacterium nucleatum is enriched in RA patients and positively associated with RA severity. F. nucleatum similarly aggravates arthritis in a mouse model of collagen-induced arthritis (CIA). F. nucleatum outer membrane vesicles (OMVs) containing the virulence determinant FadA translocate into the joints, triggering local inflammatory responses. Specifically, FadA acts on synovial macrophages, resulting in the activation of the Rab5a GTPase involved in vesicle trafficking and inflammatory pathways and YB-1, a key regulator of inflammatory mediators. OMVs containing FadA and heightened Rab5a-YB-1 expression were observed in RA patients compared with controls. These findings suggest a causal role of F. nucleatum in aggravating RA and provide promising therapeutic targets for clinically ameliorating RA.
Collapse
Affiliation(s)
- Mukeng Hong
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China; Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510000, China
| | - Zhuang Li
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Haihua Liu
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Songyuan Zheng
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Fangling Zhang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Junqing Zhu
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Hao Shi
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510000, China
| | - Haixing Ye
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510000, China
| | - Zhantu Chou
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510000, China
| | - Lei Gao
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510000, China
| | - Jianxin Diao
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510000, China
| | - Yang Zhang
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Dongxin Zhang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Shixian Chen
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China.
| | - Hongwei Zhou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China.
| | - Juan Li
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China; Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510000, China.
| |
Collapse
|
4
|
The Extracellular Vesicles from the Commensal Staphylococcus Epidermidis ATCC12228 Strain Regulate Skin Inflammation in the Imiquimod-Induced Psoriasis Murine Model. Int J Mol Sci 2021; 22:ijms222313029. [PMID: 34884834 PMCID: PMC8657977 DOI: 10.3390/ijms222313029] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/20/2021] [Accepted: 11/24/2021] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) are evaginations of the cytoplasmic membrane, containing nucleic acids, proteins, lipids, enzymes, and toxins. EVs participate in various bacterial physiological processes. Staphylococcus epidermidis interacts and communicates with the host skin. S. epidermidis’ EVs may have an essential role in this communication mechanism, modulating the immunological environment. This work aimed to evaluate if S. epidermidis’ EVs can modulate cytokine production by keratinocytes in vitro and in vivo using the imiquimod-induced psoriasis murine model. S. epidermidis’ EVs were obtained from a commensal strain (ATC12228EVs) and a clinical isolated strain (983EVs). EVs from both origins induced IL-6 expression in HaCaT keratinocyte cultures; nevertheless, 983EVs promoted a higher expression of the pro-inflammatory cytokines VEGF-A, LL37, IL-8, and IL-17F than ATCC12228EVs. Moreover, in vivo imiquimod-induced psoriatic skin treated with ATCC12228EVs reduced the characteristic psoriatic skin features, such as acanthosis and cellular infiltrate, as well as VEGF-A, IL-6, KC, IL-23, IL-17F, IL-36γ, and IL-36R expression in a more efficient manner than 983EVs; however, in contrast, Foxp3 expression did not significantly change, and IL-36 receptor antagonist (IL-36Ra) was found to be increased. Our findings showed a distinctive immunological profile induction that is dependent on the clinical or commensal EV origin in a mice model of skin-like psoriasis. Characteristically, proteomics analysis showed differences in the EVs protein content, dependent on origin of the isolated EVs. Specifically, in ATCC12228EVs, we found the proteins glutamate dehydrogenase, ornithine carbamoyltransferase, arginine deiminase, carbamate kinase, catalase, superoxide dismutase, phenol-soluble β1/β2 modulin, and polyglycerol phosphate α-glucosyltransferase, which could be involved in the reduction of lesions in the murine imiquimod-induced psoriasis skin. Our results show that the commensal ATCC12228EVs have a greater protective/attenuating effect on the murine imiquimod-induced psoriasis by inducing IL-36Ra expression in comparison with EVs from a clinical isolate of S. epidermidis.
Collapse
|
5
|
Dagnelie MA, Corvec S, Khammari A, Dréno B. Bacterial extracellular vesicles: A new way to decipher host-microbiota communications in inflammatory dermatoses. Exp Dermatol 2019; 29:22-28. [PMID: 31633842 DOI: 10.1111/exd.14050] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/19/2019] [Accepted: 10/04/2019] [Indexed: 01/18/2023]
Abstract
Bacterial extracellular vesicles (EVs) are bilayered lipid membrane structures, bearing integral proteins and able to carry diverse cargo outside the cell to distant sites. In microorganisms, EVs carry several types of molecules: proteins, glycoproteins, mRNAs and small RNA species, as mammalian EVs do, but also carbohydrates. Studying EVs opens a whole new world of possibilities to better understand the interplay between host and bacteria crosstalks, although there are still many questions to be answered in the field, especially when it comes to microbiota-derived EVs. In this review, we propose to summarize and analyse the current literature about bacterial EVs and possible clinical applications, through answering three main questions: (a) What are bacterial EVs? (b) What are EV impacts on skin inflammatory disease physiopathology? (iii) What are the possible and expected clinical applications of EVs to treat inflammatory skin diseases?
Collapse
Affiliation(s)
- Marie-Ange Dagnelie
- Dermatology Department, CHU Nantes, CIC 1413, CRCINA, University Nantes, Nantes, France
| | - Stéphane Corvec
- Bacteriology Department, CHU Nantes, CRCINA, University Nantes, Nantes, France
| | - Amir Khammari
- Dermatology Department, CHU Nantes, CIC 1413, CRCINA, University Nantes, Nantes, France
| | - Brigitte Dréno
- Dermatology Department, CHU Nantes, CIC 1413, CRCINA, University Nantes, Nantes, France
| |
Collapse
|
6
|
Morozov AM, Sherman RA. Survey of patients of the Tver region of Russia regarding maggots and maggot therapy. Int Wound J 2018; 16:401-405. [PMID: 30548914 DOI: 10.1111/iwj.13046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/04/2018] [Accepted: 11/11/2018] [Indexed: 10/27/2022] Open
Abstract
The 21st century is seeing a resurgence in the use of maggot therapy-using the physical and biochemical benefits of fly larvae to debride and heal chronic, problematic wounds. Maggots are repulsive to many people, and this could interfere with the acceptance of this modality. Before instituting a maggot therapy programme at our institution, we sought to better understand the psychological barriers that may exist among patients in the Tver region of Russia. Between 2014 and 2016, all patients with arterial insufficiency and trophic ulcers at City Clinical Hospital No. 7 in Tver were administered a survey consisting of six images. Subjects were asked to rank the images in the order of least to most repulsive or disgusting. A total of 576 subjects were recruited for this study: 414 (72%) women and 162 (28%) men. Nearly 60% of subjects considered the images of maggots to be more repulsive than images of gangrenous wounds. This finding is significant because it indicates that much education and support will need to be conducted to address patient fears and anxiety if patients are to be comfortable with a maggot therapy programme.
Collapse
Affiliation(s)
- Artem M Morozov
- General Surgery Department, Tver State Medical University, Ministry of Health, Tver, Russia
| | - Ronald A Sherman
- BioTherapeutics, Education & Research Foundation, Irvine, California, U.S.A
| |
Collapse
|
7
|
Grande R, Celia C, Mincione G, Stringaro A, Di Marzio L, Colone M, Di Marcantonio MC, Savino L, Puca V, Santoliquido R, Locatelli M, Muraro R, Hall-Stoodley L, Stoodley P. Detection and Physicochemical Characterization of Membrane Vesicles (MVs) of Lactobacillus reuteri DSM 17938. Front Microbiol 2017; 8:1040. [PMID: 28659878 PMCID: PMC5468427 DOI: 10.3389/fmicb.2017.01040] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/23/2017] [Indexed: 12/20/2022] Open
Abstract
Membrane vesicles (MVs) are bilayer structures which bleb from bacteria, and are important in trafficking biomolecules to other bacteria or host cells. There are few data about MVs produced by the Gram-positive commensal-derived probiotic Lactobacillus reuteri; however, MVs from this species may have potential therapeutic benefit. The aim of this study was to detect and characterize MVs produced from biofilm (bMVs), and planktonic (pMVs) phenotypes of L. reuteri DSM 17938. MVs were analyzed for structure and physicochemical characterization by Scanning Electron Microscope (SEM) and Dynamic Light Scattering (DLS). Their composition was interrogated using various digestive enzyme treatments and subsequent Transmission Electron Microscopy (TEM) analysis. eDNA (extracellular DNA) was detected and quantified using PicoGreen. We found that planktonic and biofilm of L. reuteri cultures generated MVs with a broad size distribution. Our data also showed that eDNA was associated with pMVs and bMVs (eMVsDNA). DNase I treatment demonstrated no modifications of MVs, suggesting that an eDNA-MVs complex protected the eMVsDNA. Proteinase K and Phospholipase C treatments modified the structure of MVs, showing that lipids and proteins are important structural components of L. reuteri MVs. The biological composition and the physicochemical characterization of MVs generated by the probiotic L. reuteri may represent a starting point for future applications in the development of vesicles-based therapeutic systems.
Collapse
Affiliation(s)
- Rossella Grande
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-PescaraChieti, Italy.,Center of Aging Sciences and Translational MedicineChieti, Italy
| | - Christian Celia
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-PescaraChieti, Italy.,Department of Nanomedicine, Houston Methodist Research Institute, HoustonTX, United States
| | - Gabriella Mincione
- Department of Medical, Oral, and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-PescaraChieti, Italy
| | - Annarita Stringaro
- National Center for Drug Research and Evaluation, Italian National Institute of HealthRome, Italy
| | - Luisa Di Marzio
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-PescaraChieti, Italy
| | - Marisa Colone
- National Center for Drug Research and Evaluation, Italian National Institute of HealthRome, Italy
| | - Maria C Di Marcantonio
- Department of Medical, Oral, and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-PescaraChieti, Italy
| | - Luca Savino
- Department of Medical, Oral, and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-PescaraChieti, Italy
| | - Valentina Puca
- Center of Aging Sciences and Translational MedicineChieti, Italy.,Department of Biotechnological and Applied Clinical Sciences, University of L'AquilaL'Aquila, Italy
| | - Roberto Santoliquido
- AlfatestLabCinisello Balsamo, Italy.,Malvern Instruments Ltd.Worcestershire, United Kingdom
| | - Marcello Locatelli
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-PescaraChieti, Italy
| | - Raffaella Muraro
- Department of Medical, Oral, and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-PescaraChieti, Italy
| | - Luanne Hall-Stoodley
- NIHR Wellcome Trust Clinical Research Facility, University Hospital Southampton NHS Foundation TrustSouthampton, United Kingdom.,Department of Microbial Infection and Immunity, Centre for Microbial Interface Biology, The Ohio State University, ColumbusOH, United States
| | - Paul Stoodley
- Department of Microbial Infection and Immunity, Centre for Microbial Interface Biology, The Ohio State University, ColumbusOH, United States.,National Center for Advanced Tribology, Faculty of Engineering and the Environment, University of SouthamptonSouthampton, United Kingdom
| |
Collapse
|
8
|
Grande R, Di Marcantonio MC, Robuffo I, Pompilio A, Celia C, Di Marzio L, Paolino D, Codagnone M, Muraro R, Stoodley P, Hall-Stoodley L, Mincione G. Helicobacter pylori ATCC 43629/NCTC 11639 Outer Membrane Vesicles (OMVs) from Biofilm and Planktonic Phase Associated with Extracellular DNA (eDNA). Front Microbiol 2015; 6:1369. [PMID: 26733944 PMCID: PMC4679919 DOI: 10.3389/fmicb.2015.01369] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/17/2015] [Indexed: 12/17/2022] Open
Abstract
Helicobacter pylori persistence is associated with its capacity to develop biofilms as a response to changing environmental conditions and stress. Extracellular DNA (eDNA) is a component of H. pylori biofilm matrix but the lack of DNase I activity supports the hypothesis that eDNA might be protected by other extracellular polymeric substances (EPS) and/or Outer Membrane Vesicles (OMVs), which bleb from the bacteria surface during growth. The aim of the present study was to both identify the eDNA presence on OMVs segregated from H. pylori ATCC 43629/NCTC 11639 biofilm (bOMVs) and its planktonic phase (pOMVs) and to characterize the physical-chemical properties of the OMVs. The presence of eDNA in bOMVs and pOMVs was initially carried out using DNase I-gold complex labeling and Transmission Electron Microscope analysis (TEM). bOMVs and pOMVs were further isolated and physical-chemical characterization carried out using dynamic light scattering (DLS) analysis. eDNA associated with OMVs was detected and quantified using a PicoGreen spectrophotometer assay, while its extraction was performed with a DNA Kit. TEM images showed that eDNA was mainly associated with the OMV membrane surfaces; while PicoGreen staining showed a four-fold increase of dsDNA in bOMVs compared with pOMVs. The eDNA extracted from OMVs was visualized using gel electrophoresis. DLS analysis indicated that both planktonic and biofilm H. pylori phenotypes generated vesicles, with a broad distribution of sizes on the nanometer scale. The DLS aggregation assay suggested that eDNA may play a role in the aggregation of OMVs, in the biofilm phenotype. Moreover, the eDNA associated with vesicle membrane may impede DNase I activity on H. pylori biofilms. These results suggest that OMVs derived from the H. pylori biofilm phenotype may play a structural role by preventing eDNA degradation by nucleases, providing a bridging function between eDNA strands on OMV surfaces and promoting aggregation.
Collapse
Affiliation(s)
- Rossella Grande
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-PescaraChieti, Italy; Center of Excellence on Aging, Ce.S.I., "G. d'Annunzio" University of Chieti-PescaraChieti, Italy
| | - Maria C Di Marcantonio
- Center of Excellence on Aging, Ce.S.I., "G. d'Annunzio" University of Chieti-PescaraChieti, Italy; Department of Medical, Oral, and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-PescaraChieti, Italy
| | - Iole Robuffo
- Department of Biological Sciences, Institute of Molecular Genetics, National Research Council Chieti, Italy
| | - Arianna Pompilio
- Center of Excellence on Aging, Ce.S.I., "G. d'Annunzio" University of Chieti-PescaraChieti, Italy; Department of Medical, Oral, and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-PescaraChieti, Italy
| | - Christian Celia
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-PescaraChieti, Italy; Department of Nanomedicine, Houston Methodist Research InstituteHouston, TX, USA
| | - Luisa Di Marzio
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara Chieti, Italy
| | - Donatella Paolino
- Department of Clinical and Experimental Medicine, University of Catanzaro "Magna Graecia" Catanzaro, Italy
| | - Marilina Codagnone
- Center of Excellence on Aging, Ce.S.I., "G. d'Annunzio" University of Chieti-PescaraChieti, Italy; Department of Medical, Oral, and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-PescaraChieti, Italy
| | - Raffaella Muraro
- Center of Excellence on Aging, Ce.S.I., "G. d'Annunzio" University of Chieti-PescaraChieti, Italy; Department of Medical, Oral, and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-PescaraChieti, Italy
| | - Paul Stoodley
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, The Ohio State UniversityColumbus, OH, USA; Department of Orthopaedics, The Ohio State UniversityColumbus, OH, USA; Faculty of Engineering and the Environment, University of SouthamptonSouthampton, UK
| | - Luanne Hall-Stoodley
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, The Ohio State UniversityColumbus, OH, USA; NIHR Wellcome Trust Clinical Research Facility, University Hospital Southampton NHS Foundation TrustSouthampton, UK
| | - Gabriella Mincione
- Center of Excellence on Aging, Ce.S.I., "G. d'Annunzio" University of Chieti-PescaraChieti, Italy; Department of Medical, Oral, and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-PescaraChieti, Italy
| |
Collapse
|