1
|
Nowrouzian FL, Lumingkit K, Gio-Batta M, Jaén-Luchoro D, Thordarson T, Elfvin A, Wold AE, Adlerberth I. Tracing Staphylococcus capitis and Staphylococcus epidermidis strains causing septicemia in extremely preterm infants to the skin, mouth, and gut microbiota. Appl Environ Microbiol 2025; 91:e0098024. [PMID: 39692500 PMCID: PMC11784025 DOI: 10.1128/aem.00980-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 11/25/2024] [Indexed: 12/19/2024] Open
Abstract
Coagulase-negative staphylococci (CoNS) comprise about 50 species, some of which cause septicemia in preterm neonates. CoNS establish early on the skin and in the oral and gut microbiota, from where they may spread to the bloodstream. The colonization pattern preceding septicemia is not well-defined. Forty-two extremely preterm neonates (≤28 + 0 gestational weeks) were followed from birth to 2 months with regular sampling and culturing of the skin and oral and gut microbiota. Blood samples were drawn upon clinical suspicion of septicemia and cultured. CoNS species were identified using matrix-assisted laser-desorption ionization time of flight mass spectrometry (MALDI-TOF). Random amplified polymorphic DNA was used for strain typing, and strains were characterized regarding biofilm production and virulence gene carriage. CoNS blood isolates underwent whole genome sequencing. Staphylococcus epidermidis represented 72% of the CoNS isolates on skin or mucous membranes, followed by Staphylococcus capitis (13%) and Staphylococcus haemolyticus (7%). CoNS septicemia was diagnosed in nine infants, yielding 11 septicemia isolates: seven S. capitis and four S. epidermidis, of which nine were further analyzed. The S. capitis septicemia isolates belonged to the NRCS-A clone. Two-thirds of the septicemia strains were traced back to the commensal microbiota. Colonization of the oral cavity by S. capitis was significantly associated with CoNS septicemia development, although the blood-borne S. capitis strains were more commonly found on the skin than in the mouth prior to invasion. Biofilm production was not associated with septicemia. Our results implicate CoNS colonization as a step that precedes septicemia in preterm neonates. Early colonization of the oral cavity by S. capitis may represent a particular risk. IMPORTANCE Septicemia is a major cause of morbidity in preterm infants. Coagulase-negative staphylococci (CoNS) can colonize skin, oral cavity, and intestines and are a common cause of septicemia in this group. The relation between CoNS colonization pattern at the species and strain level and septicemia has scarcely been studied. We mapped colonization of the skin, oral cavity, and intestines by CoNS species in extremely preterm infants and speciated and strain-typed the skin, mucosal, and blood isolates. Two-thirds of the CoNS septicemia blood strains, including a majority of S. capitis strains belonging to the NRCS-A clone, were tracked to the commensal microbiota. We demonstrated that CoNS species differ in their colonization patterns, whereby S. capitis was primarily a skin colonizer. However, its colonization of the oral cavity was enhanced among infants developing septicemia. Our study provides a starting point for further explorations of the relationship between CoNS colonization and septicemia in preterm infants.
Collapse
Affiliation(s)
- Forough L. Nowrouzian
- Institute of Biomedicine, Department of Infectious Diseases,The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kirth Lumingkit
- Institute of Biomedicine, Department of Infectious Diseases,The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Monica Gio-Batta
- Institute of Biomedicine, Department of Infectious Diseases,The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Daniel Jaén-Luchoro
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Thordur Thordarson
- Institute of Clinical Science, Department of Pediatrics, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Pediatrics, Sahlgrenska University Hospital, The Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Anders Elfvin
- Institute of Clinical Science, Department of Pediatrics, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Pediatrics, Sahlgrenska University Hospital, The Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Agnes E. Wold
- Institute of Biomedicine, Department of Infectious Diseases,The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ingegerd Adlerberth
- Institute of Biomedicine, Department of Infectious Diseases,The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
2
|
Crepin DM, Chavignon M, Verhoeven PO, Laurent F, Josse J, Butin M. Staphylococcus capitis: insights into epidemiology, virulence, and antimicrobial resistance of a clinically relevant bacterial species. Clin Microbiol Rev 2024; 37:e0011823. [PMID: 38899876 PMCID: PMC11391707 DOI: 10.1128/cmr.00118-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
SUMMARYStaphylococcus capitis is divided into two subspecies, S. capitis subsp. ureolyticus (renamed urealyticus in 1992; ATCC 49326) and S. capitis subsp. capitis (ATCC 27840), and fits with the archetype of clinically relevant coagulase-negative staphylococci (CoNS). S. capitis is a commensal bacterium of the skin in humans, which must be considered an opportunistic pathogen of interest particularly as soon as it is identified in a clinically relevant specimen from an immunocompromised patient. Several studies have highlighted the potential determinants underlying S. capitis pathogenicity, resistance profiles, and virulence factors. In addition, mobile genetic element acquisitions and mutations contribute to S. capitis genome adaptation to its environment. Over the past decades, antibiotic resistance has been identified for S. capitis in almost all the families of the currently available antibiotics and is related to the emergence of multidrug-resistant clones of high clinical significance. The present review summarizes the current knowledge concerning the taxonomic position of S. capitis among staphylococci, the involvement of this species in human colonization and diseases, the virulence factors supporting its pathogenicity, and the phenotypic and genomic antimicrobial resistance profiles of this species.
Collapse
Affiliation(s)
- Deborah M Crepin
- CIRI, Centre International de Recherche en Infectiologie, Staphylococcal pathogenesis team, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR 5308, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Marie Chavignon
- CIRI, Centre International de Recherche en Infectiologie, Staphylococcal pathogenesis team, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR 5308, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Paul O Verhoeven
- CIRI, Centre International de Recherche en Infectiologie, GIMAP Team, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR 5308, Ecole Normale Supérieure de Lyon, Lyon, France
- Faculté de Médecine, Université Jean Monnet, St-Etienne, France
- Service des agents infectieux et d'hygiène, Centre Hospitalier Universitaire de St-Etienne, St-Etienne, France
| | - Frédéric Laurent
- CIRI, Centre International de Recherche en Infectiologie, Staphylococcal pathogenesis team, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR 5308, Ecole Normale Supérieure de Lyon, Lyon, France
- Institut des Agents Infectieux, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
- Centre National de Référence des Staphylocoques, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Jérôme Josse
- CIRI, Centre International de Recherche en Infectiologie, Staphylococcal pathogenesis team, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR 5308, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Marine Butin
- CIRI, Centre International de Recherche en Infectiologie, Staphylococcal pathogenesis team, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR 5308, Ecole Normale Supérieure de Lyon, Lyon, France
- Service de Néonatologie et Réanimation Néonatale, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
| |
Collapse
|
3
|
Romero LC, Silva LP, Teixeira NB, de Camargo KV, Del Masso Pereira MA, Corrente JE, Pereira VC, Ribeiro de Souza da Cunha MDL. Staphylococcus capitis Bloodstream Isolates: Investigation of Clonal Relationship, Resistance Profile, Virulence and Biofilm Formation. Antibiotics (Basel) 2024; 13:147. [PMID: 38391533 PMCID: PMC10885910 DOI: 10.3390/antibiotics13020147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/24/2024] Open
Abstract
Staphylococcus capitis has been recognized as a relevant opportunistic pathogen, particularly its persistence in neonatal ICUs around the world. Therefore, the aim of this study was to describe the epidemiological profile of clinical isolates of S. capitis and to characterize the factors involved in the persistence and pathogenesis of these strains isolated from blood cultures collected in a hospital in the interior of the state of São Paulo, Brazil. A total of 141 S. capitis strains were submitted to detection of the mecA gene and SCCmec typing by multiplex PCR. Genes involved in biofilm production and genes encoding enterotoxins and hemolysins were detected by conventional PCR. Biofilm formation was evaluated by the polystyrene plate adherence test and phenotypic resistance was investigated by the disk diffusion method. Finally, pulsed-field gel electrophoresis (PFGE) was used to analyze the clonal relationship between isolates. The mecA gene was detected in 99 (70.2%) isolates, with this percentage reaching 100% in the neonatal ICU. SCCmec type III was the most prevalent type, detected in 31 (31.3%) isolates and co-occurrence of SCCmec was also observed. In vitro biofilm formation was detected in 46 (32.6%) isolates but was not correlated with the presence of the ica operon genes. Furthermore, biofilm production in ICU isolates was favored by hyperosmotic conditions, which are common in ICUs because of the frequent parenteral nutrition. Analysis of the clonal relationship between the isolates investigated in the present study confirms a homogeneous profile of S. capitis and the persistence of clones that are prevalent in the neonatal ICU and disseminated across the hospital. This study highlights the adaptation of isolates to specific hospital environments and their high clonality.
Collapse
Affiliation(s)
- Letícia Calixto Romero
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-691, Brazil
| | - Lucas Porangaba Silva
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-691, Brazil
| | - Nathalia Bibiana Teixeira
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-691, Brazil
| | - Karen Vilegas de Camargo
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-691, Brazil
| | | | - José Eduardo Corrente
- Department of Biostatistics, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-900, Brazil
| | - Valéria Cataneli Pereira
- Microbiology Laboratory, Universidade do Oeste Paulista (UNOESTE), Presidente Prudente 18618-970, Brazil
| | | |
Collapse
|
4
|
Heath V, Cloutman-Green E, Watkin S, Karlikowska M, Ready D, Hatcher J, Pearce-Smith N, Brown C, Demirjian A. Staphylococcus capitis: Review of Its Role in Infections and Outbreaks. Antibiotics (Basel) 2023; 12:antibiotics12040669. [PMID: 37107031 PMCID: PMC10135222 DOI: 10.3390/antibiotics12040669] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
In June 2021, a national incident team was formed due to an increased detection of Staphylococcus capitis in samples from hospitalised infants. Staphylococcus capitis has been known to cause outbreaks in neonatal units across the globe, but the extent of the UK spread was unclear. A literature review was undertaken to support case identification, clinical management and environmental infection control. A literature search was undertaken on multiple databases from inception to 24 May 2021, using keywords such as “Staphylococcus capitis”, “NRCS-A”, “S. capitis”, “neonate”, “newborn” and “neonatal intensive care unit” (NICU). After screening, 223 articles of relevance were included. Results show incidences of S. capitis outbreaks have frequently been associated with the outbreak clone (NRCS-A) and environmental sources. The NRCS-A harbours a multidrug resistance profile that includes resistance to beta-lactam antibiotics and aminoglycosides, with several papers noting resistance or heteroresistance to vancomycin. The NRCS-A clone also harbours a novel SCCmec-SCCcad/ars/cop composite island and increased vancomycin resistance. The S. capitis NRCS-A clone has been detected for decades, but the reasons for the potentially increased frequency are unclear, as are the most effective interventions to manage outbreaks associated with this clone. This supports the need for improvements in environmental control and decontamination strategies to prevent transmission.
Collapse
|
5
|
Wilson-Nieuwenhuis J, El-Mohtadi M, Edwards K, Whitehead K, Dempsey-Hibbert N. Factors Involved in the onset of infection following bacterially contaminated platelet transfusions. Platelets 2021; 32:909-918. [PMID: 32762589 DOI: 10.1080/09537104.2020.1803253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Transfusion of platelet concentrates (PCs) is associated with several adverse patient reactions, the most common of which are febrile non-hemolytic transfusion reactions (FNHTRs) and transfusion-associated bacterial-infection/transfusion-associated sepsis (T-ABI/TA-S). Diagnosis of T-ABI/T-AS requires a positive blood culture (BC) result from the transfusion recipient and also a positive identification of bacterial contamination within a test aliquot of the transfused PC. In a significant number of cases, clinical symptoms post-transfusion are reported by the clinician, yet the BCs from the patient and/or PC are negative. The topic of 'missed bacterial detection' has therefore been the focus of several primary research studies and review articles, suggesting that biofilm formation in the blood bag and the presence of viable but non-culturable (VBNC) pathogens are the major causes of this missed detection. However, platelets are emerging as key players in early host responses to infection and as such, the aforementioned biofilm formation could elicit 'platelet priming', which could lead to significant immunological reactions in the host, in the absence of planktonic bacteria in the host bloodstream. This review reflects on what is known about missed detection and relates this to the emerging understanding of the effect of bacterial contamination on the platelets themselves and the significant role played by platelets in exacerbation of an immune response to infection within the transfusion setting.
Collapse
Affiliation(s)
| | - Mohamed El-Mohtadi
- Centre for Bioscience, Manchester Metropolitan University, Manchester, UK
| | - Kurtis Edwards
- Centre for Bioscience, Manchester Metropolitan University, Manchester, UK
| | - Kathryn Whitehead
- Centre for Bioscience, Manchester Metropolitan University, Manchester, UK
| | | |
Collapse
|
6
|
Ramirez-Arcos S, Howell A, Bearne J, Bhakta V, Bower L, Cardigan R, Girard M, Kou Y, McDonald C, Nolin MÈ, Sawicka D, Sheffield W. Challenging the 30-min rule for thawed plasma. Vox Sang 2021; 117:328-336. [PMID: 34346087 DOI: 10.1111/vox.13189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/09/2021] [Accepted: 07/20/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVES Frozen plasma (FP) is thawed prior to transfusion and stored for ≤5 days at 1-6°C. The effect of temperature excursions on the quality and safety of thawed plasma during 5-day storage was determined. MATERIALS AND METHODS Four plasma units were pooled, split and stored at ≤-18°C for ≤90 days. Test units T30 and T60 were exposed to 20-24°C (room temperature [RT]) for 30 or 60 min, respectively, on days 0 and 2 of storage. Negative and positive control units remained refrigerated or at RT for 5 days, respectively. On Day 5, test units were exposed once to RT for 5 h. Quality assays included stability of coagulation factors FV, FVII, FVIII, fibrinogen and prothrombin time. Bacterial growth was performed in units inoculated with ~1 CFU/ml or ~100 CFU/ml of Serratia liquefaciens, Pseudomonas putida, Pseudomonas aeruginosa or Staphylococcus epidermidis on Day 0. RESULTS Testing results of all quality parameters were comparable between T30 and T60 units (p < 0.05). Serratia liquefaciens proliferated in cold-stored plasma, while P. putida showed variable viability. Serratia epidermidis and P. aeruginosa survived but did not grow in cold-stored plasma. Positive and negative controls showed expected results. Overall, no statistical differences in bacterial concentration between T30 and T60 units were observed (p < 0.05). CONCLUSION Multiple RT exposures for 30 or 60 min do not affect the stability of coagulation factors or promote bacterial growth in thawed plasma stored for 5 days. It is therefore safe to expose thawed plasma to uncontrolled temperatures for limited periods of 60 min.
Collapse
Affiliation(s)
- Sandra Ramirez-Arcos
- Centre for Innovation, Canadian Blood Services, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Anita Howell
- Centre for Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
| | - Jennifer Bearne
- National Bacteriology Laboratory, National Health Service Blood and Transplant, London, UK
| | - Varsha Bhakta
- Centre for Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
| | - Lucy Bower
- Component Development, National Health Service Blood and Transplant, Cambridge, UK
| | - Rebecca Cardigan
- Component Development, National Health Service Blood and Transplant, Cambridge, UK
| | - Mélissa Girard
- Medicals Affairs and Innovation, Héma-Québec, Québec, Quebec, Canada
| | - Yuntong Kou
- Centre for Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
| | - Carl McDonald
- National Bacteriology Laboratory, National Health Service Blood and Transplant, London, UK
| | - Marie-Ève Nolin
- Medicals Affairs and Innovation, Héma-Québec, Québec, Quebec, Canada
| | - Danuta Sawicka
- National Bacteriology Laboratory, National Health Service Blood and Transplant, London, UK
| | - William Sheffield
- Centre for Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
| |
Collapse
|
7
|
Nguyen HTT, Nguyen TH, Otto M. The staphylococcal exopolysaccharide PIA - Biosynthesis and role in biofilm formation, colonization, and infection. Comput Struct Biotechnol J 2020; 18:3324-3334. [PMID: 33240473 PMCID: PMC7674160 DOI: 10.1016/j.csbj.2020.10.027] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 12/20/2022] Open
Abstract
PIA is a key extracellular matrix component in staphylococci and other bacteria. PIA is a cationic, partially deacetylated N-acetylglucosamine polymer. PIA has a major role in bacterial biofilms and biofilm-associated infection.
Exopolysaccharide is a key part of the extracellular matrix that contributes to important mechanisms of bacterial pathogenicity, most notably biofilm formation and immune evasion. In the human pathogens Staphylococcus aureus and S. epidermidis, as well as in many other staphylococcal species, the only exopolysaccharide is polysaccharide intercellular adhesin (PIA), a cationic, partially deacetylated homopolymer of N-acetylglucosamine, whose biosynthetic machinery is encoded in the ica locus. PIA production is strongly dependent on environmental conditions and controlled by many regulatory systems. PIA contributes significantly to staphylococcal biofilm formation and immune evasion mechanisms, such as resistance to antimicrobial peptides and ingestion and killing by phagocytes, and presence of the ica genes is associated with infectivity. Due to its role in pathogenesis, PIA has raised considerable interest as a potential vaccine component or target.
Collapse
Affiliation(s)
- Hoai T T Nguyen
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, 50 South Drive, Bethesda 20814, MD, USA.,School of Biotechnology, International University, Vietnam National University of Ho Chi Minh City, Khu Pho 6, Thu Duc, Ho Chi Minh City, Viet Nam
| | - Thuan H Nguyen
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, 50 South Drive, Bethesda 20814, MD, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, 50 South Drive, Bethesda 20814, MD, USA
| |
Collapse
|
8
|
Taha M, Kyluik‐Price D, Kumaran D, Scott MD, Toyofuku W, Ramirez‐Arcos S. Bacterial survival in whole blood depends on plasma sensitivity and resistance to neutrophil killing. Transfusion 2019; 59:3674-3682. [DOI: 10.1111/trf.15550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Mariam Taha
- Centre for Innovation, Canadian Blood Services Ottawa Ontario
| | - Dana Kyluik‐Price
- Centre for Blood Research, University of British Columbia Vancouver British Columbia
| | - Dilini Kumaran
- Centre for Innovation, Canadian Blood Services Ottawa Ontario
| | - Mark D. Scott
- Centre for Innovation, Canadian Blood Services Ottawa Ontario
- Centre for Blood Research, University of British Columbia Vancouver British Columbia
| | - Wendy Toyofuku
- Centre for Innovation, Canadian Blood Services Ottawa Ontario
| | - Sandra Ramirez‐Arcos
- Centre for Innovation, Canadian Blood Services Ottawa Ontario
- Department of Biochemistry, Microbiology and ImmunologyUniversity of Ottawa Ottawa Ontario Canada
| |
Collapse
|
9
|
Laurent F, Butin M. Staphylococcus capitis and NRCS-A clone: the story of an unrecognized pathogen in neonatal intensive care units. Clin Microbiol Infect 2019; 25:1081-1085. [PMID: 30928561 DOI: 10.1016/j.cmi.2019.03.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/07/2019] [Accepted: 03/09/2019] [Indexed: 01/24/2023]
Abstract
BACKGROUND In neonatal intensive care units (NICUs), nosocomial late-onset sepsis (LOS), mostly due to coagulase negative staphylococci, constitute a major cause of death or impairment. Staphylococcus capitis, usually considered as a poorly virulent species, has been reported as a cause of LOS. OBJECTIVES To review data regarding S. capitis neonatal LOS and the features of isolates involved. SOURCES PubMed was searched up to August 2018 to retrieve studies on the topic; the keywords used were 'S. capitis', 'neonate', 'neonatal ICU', 'bloodstream infection' and 'late onset sepsis'. CONTENT Published data highlight the worldwide endemicity of a single S. capitis clone, named NRCS-A, specifically involved in LOS. NRCS-A harbours a multidrug resistance profile (including resistance to the usual first-line antibiotics used in NICUs). It is also able to adapt under vancomycin selective pressure that could confer an advantage for its implantation and dissemination in NICUs where this selective pressure is high. Moreover, a severe morbidity has been observed in NRCS-A-related LOS. The NICU environment, and especially incubators, constitute reservoirs of NRCS-A from which it could diffuse inside the setting. Finally, the virulome and resistome of S. capitis NRCS-A contain many genes potentially implicated in its specific epidemiology and pathophysiology, including the gene nsr that may be involved in its fitness and implantation in neonatal gut flora. IMPLICATIONS S. capitis must be considered as a true pathogen in neonates. The decreased susceptibility to vancomycin may be involved in failure of vancomycin therapy. Further studies are needed to better manage its diffusion inside each NICU but also worldwide.
Collapse
Affiliation(s)
- F Laurent
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 Allée d'Italie 69364 Lyon Cedex 07, France; Centre National de Référence des Staphylocoques, Hospices Civils de Lyon, 103 Grande Rue de La Croix Rousse, 69004 Lyon, France; Département de Microbiologie et Mycologie, Institut des Sciences Pharmaceutiques et Biologiques de Lyon, Université de Lyon, 6 Avenue Rockefeller, 69008 Lyon, France
| | - M Butin
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 Allée d'Italie 69364 Lyon Cedex 07, France; Réanimation Néonatale, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, 59 Bd Pinel 69500 Bron, France.
| |
Collapse
|
10
|
Yong YY, Dykes GA, Choo WS. Biofilm formation by staphylococci in health-related environments and recent reports on their control using natural compounds. Crit Rev Microbiol 2019; 45:201-222. [PMID: 30786799 DOI: 10.1080/1040841x.2019.1573802] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Staphylococci are Gram-positive bacteria that are ubiquitous in the environment and able to form biofilms on a range of surfaces. They have been associated with a range of human health issues such as medical device-related infection, localized skin infection, or direct infection caused by toxin production. The extracellular material produced by these bacteria resists antibiotics and host defence mechanism which complicates the treatment process. The commonly reported Staphylococcus species are Staphylococcus aureus and S. epidermidis as they inhabit human bodies. However, the emergence of other staphylococci, such as S. haemolyticus, S. lugdunensis, S. saprophyticus, S. capitis, S. saccharolyticus, S. warneri, S. cohnii, and S. hominis, is also of concern and they have been associated with biofilm formation. This review critically assesses recent cases on the biofilm formation by S. aureus, S. epidermidis, and other staphylococci reported in health-related environments. The control of biofilm formation by staphylococci using natural compounds is specifically discussed as they represent potential anti-biofilm agents which may reduce the burden of antibiotic resistance.
Collapse
Affiliation(s)
- Yi Yi Yong
- a School of Science , Monash University Malaysia , Selangor , Malaysia
| | - Gary A Dykes
- b School of Public Health , Curtin University , Bentley , Australia
| | - Wee Sim Choo
- a School of Science , Monash University Malaysia , Selangor , Malaysia
| |
Collapse
|
11
|
Alabdullatif M, Ramirez-Arcos S. Biofilm-associated accumulation-associated protein (Aap): A contributing factor to the predominant growth of Staphylococcus epidermidis
in platelet concentrates. Vox Sang 2018; 114:28-37. [DOI: 10.1111/vox.12729] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Meshari Alabdullatif
- Centre for Innovation; Canadian Blood Services and Department of Biochemistry, Microbiology and Immunology; University of Ottawa; Ottawa ON Canada
| | - Sandra Ramirez-Arcos
- Centre for Innovation; Canadian Blood Services and Department of Biochemistry, Microbiology and Immunology; University of Ottawa; Ottawa ON Canada
| |
Collapse
|
12
|
Alabdullatif M, Atreya CD, Ramirez-Arcos S. Antimicrobial peptides: an effective approach to prevent bacterial biofilm formation in platelet concentrates. Transfusion 2018; 58:2013-2021. [DOI: 10.1111/trf.14646] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/17/2018] [Accepted: 03/19/2018] [Indexed: 02/06/2023]
Affiliation(s)
| | - Chintamani D. Atreya
- Laboratory of Cellular Hematology, Office of Blood Research and Review, Center for Biologics Evaluation and Research; U.S. Food and Drug Administration; Silver Spring Maryland
| | | |
Collapse
|
13
|
Comparative characterisation of the biofilm-production abilities of Staphylococcus epidermidis isolated from human skin and platelet concentrates. J Med Microbiol 2018; 67:190-197. [DOI: 10.1099/jmm.0.000673] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
14
|
Thyer J, Perkowska-Guse Z, Ismay SL, Keller AJ, Chan HT, Dennington PM, Bell B, Kotsiou G, Pink JM. Bacterial testing of platelets - has it prevented transfusion-transmitted bacterial infections in Australia? Vox Sang 2017; 113:13-20. [DOI: 10.1111/vox.12561] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/24/2017] [Accepted: 07/09/2017] [Indexed: 11/28/2022]
Affiliation(s)
- J. Thyer
- Australian Red Cross Blood Service; Melbourne Vic Australia
| | | | - S. L. Ismay
- Australian Red Cross Blood Service; Melbourne Vic Australia
| | - A. J. Keller
- Australian Red Cross Blood Service; Melbourne Vic Australia
| | - H. T. Chan
- Australian Red Cross Blood Service; Melbourne Vic Australia
| | | | - B. Bell
- Australian Red Cross Blood Service; Melbourne Vic Australia
| | - G. Kotsiou
- Australian Red Cross Blood Service; Melbourne Vic Australia
| | - J. M. Pink
- Australian Red Cross Blood Service; Melbourne Vic Australia
| |
Collapse
|
15
|
Loza-Correa M, Kalab M, Yi QL, Eltringham-Smith LJ, Sheffield WP, Ramirez-Arcos S. Comparison of bacterial attachment to platelet bags with and without preconditioning with plasma. Vox Sang 2017; 112:401-407. [DOI: 10.1111/vox.12513] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/16/2017] [Accepted: 02/19/2017] [Indexed: 01/16/2023]
Affiliation(s)
- M. Loza-Correa
- Canadian Blood Services; Centre for Innovation; Ottawa ON Canada
| | - M. Kalab
- Agriculture and Agri-Food Canada; Ottawa ON Canada
| | - Q.-L. Yi
- Canadian Blood Services; Centre for Innovation; Ottawa ON Canada
| | | | - W. P. Sheffield
- Department of Pathology and Molecular Medicine; McMaster University; Hamilton ON Canada
- Canadian Blood Services; Centre for Innovation; Hamilton ON Canada
| | - S. Ramirez-Arcos
- Canadian Blood Services; Centre for Innovation; Ottawa ON Canada
| |
Collapse
|
16
|
Ramirez-Arcos S, Jenkins C, Sheffield WP. Bacteria can proliferate in thawed cryoprecipitate stored at room temperature for longer than 4 h. Vox Sang 2017; 112:477-479. [DOI: 10.1111/vox.12517] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/27/2017] [Accepted: 02/27/2017] [Indexed: 11/28/2022]
Affiliation(s)
- S. Ramirez-Arcos
- Centre for Innovation; Canadian Blood Services; Ottawa ON Canada
| | - C. Jenkins
- Centre for Innovation; Canadian Blood Services; Ottawa ON Canada
| | - W. P. Sheffield
- Centre for Innovation; Canadian Blood Services; Hamilton ON Canada
- Department of Pathology and Molecular Medicine; McMaster University; Hamilton ON Canada
| |
Collapse
|
17
|
Loza-Correa M, Kou Y, Taha M, Kalab M, Ronholm J, Schlievert PM, Cahill MP, Skeate R, Cserti-Gazdewich C, Ramirez-Arcos S. Septic transfusion case caused by a platelet pool with visible clotting due to contamination withStaphylococcus aureus. Transfusion 2017; 57:1299-1303. [DOI: 10.1111/trf.14049] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/09/2016] [Accepted: 12/18/2016] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | | | | | - Michael P. Cahill
- Department of Microbiology; Carver College of Medicine; Iowa City Iowa
| | - Robert Skeate
- Department of Microbiology; Carver College of Medicine; Iowa City Iowa
| | | | | |
Collapse
|
18
|
Chebbi A, Elshikh M, Haque F, Ahmed S, Dobbin S, Marchant R, Sayadi S, Chamkha M, Banat IM. Rhamnolipids fromPseudomonas aeruginosastrain W10; as antibiofilm/antibiofouling products for metal protection. J Basic Microbiol 2017; 57:364-375. [DOI: 10.1002/jobm.201600658] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/17/2017] [Accepted: 01/21/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Alif Chebbi
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax; University of Sfax; Sfax Tunisia
| | - Mohamed Elshikh
- School of Biomedical Sciences; Ulster University; Coleraine, Northern Ireland United Kingdom
| | - Farazul Haque
- Biochemical Engineering Research & Process Development Center (BERPDC); CSIR-Institute of Microbial Technology; Chandigarh India
| | - Syed Ahmed
- School of Biomedical Sciences; Ulster University; Coleraine, Northern Ireland United Kingdom
| | - Sara Dobbin
- School of Biomedical Sciences; Ulster University; Coleraine, Northern Ireland United Kingdom
| | - Roger Marchant
- School of Biomedical Sciences; Ulster University; Coleraine, Northern Ireland United Kingdom
| | - Sami Sayadi
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax; University of Sfax; Sfax Tunisia
| | - Mohamed Chamkha
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax; University of Sfax; Sfax Tunisia
| | - Ibrahim M. Banat
- School of Biomedical Sciences; Ulster University; Coleraine, Northern Ireland United Kingdom
| |
Collapse
|
19
|
Szczuka E, Jabłońska L, Kaznowski A. Coagulase-negative staphylococci: pathogenesis, occurrence of antibiotic resistance genes and in vitro effects of antimicrobial agents on biofilm-growing bacteria. J Med Microbiol 2016; 65:1405-1413. [PMID: 27902368 DOI: 10.1099/jmm.0.000372] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Coagulase-negative staphylococci (CoNS) are opportunistic pathogens that particularly cause infections in patients with implanted medical devices. The present research was performed to study the virulence potential of 53 clinical isolates of Staphylococcus capitis, Staphylococcus auricularis, Staphylococcus lugdunensis, Staphylococcus simulans, Staphylococcus cohnii and Staphylococcus caprae. All clinical strains were clonally unrelated. Isolates carried genes encoding resistance to β-lactam (mecA) (15 %), aminoglycoside [aac(6')/aph(2″)(11 %), aph (3')-IIIa (15 %), ant(4')-Ia (19 %)] and macrolide, lincosamide and streptogramin B (MLSB) [erm(A) (4 %), erm(B) (13 %), erm(C) (41 %), msr(A) (11 %)] antibiotics. CoNS isolates (64 %) were able to form biofilms. Confocal laser scanning microscopy revealed that these biofilms formed a three-dimensional structure composed mainly of living cells. All biofilm-positive strains carried the ica operon. In vitro studies demonstrated that a combination treatment with tigecycline and rifampicin was more effective against biofilms than one with ciprofloxacin and rifampicin. The minimum biofilm eradication concentration values were 0.062-0.5 µg ml-1 for tigecycline/rifampicin and 0.250-2 µg ml-1 for ciprofloxacin/rifampicin. All CoNS strains adhered to the human epithelial cell line HeLa, and more than half of the isolates were able to invade the HeLa cells, although most invaded relatively poorly. The virulence of CoNS is also attributed to their cytotoxic effects on HeLa cells. Incubation of HeLa cells with culture supernatant of the CoNS isolates resulted in cell death. The results indicate that the pathogenicity of S. capitis, S. auricularis, S. lugdunensis, S. cohnii and S. caprae is multi-factorial, involving the ability of these bacteria to adhere to human epithelial cells, form biofilms and invade and destroy human cells.
Collapse
Affiliation(s)
- Ewa Szczuka
- Department of Microbiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, 61-614 Poznań, Poland
| | - Lucyna Jabłońska
- Department of Microbiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, 61-614 Poznań, Poland
| | - Adam Kaznowski
- Department of Microbiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, 61-614 Poznań, Poland
| |
Collapse
|
20
|
Loza-Correa M, Perkins H, Kumaran D, Kou Y, Qaisar R, Geelhood S, Ramirez-Arcos S. Noninvasive pH monitoring for bacterial detection in platelet concentrates. Transfusion 2016; 56:1348-55. [PMID: 27028108 DOI: 10.1111/trf.13557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/20/2016] [Accepted: 01/26/2016] [Indexed: 11/27/2022]
Abstract
BACKGROUND Bacterial contamination of platelet concentrates (PCs) remains the prevalent posttransfusion infectious risk. The pH SAFE system, a noninvasive method used to measure pH of PC for quality control, was evaluated herein as a rapid method to detect bacterial contamination in PCs. STUDY DESIGN AND METHODS Pairs of ABO-D-matched apheresis and buffy coat PCs were pooled and split into two pH SAFE platelet bags. One of the bags served as the control unit, while the other was inoculated with one of nine clinically relevant bacteria (target concentration approx. 1 colony-forming units [CFUs]/mL). The pH of both PCs was measured over 7 days of storage at approximately 4-hour intervals during daytime. One-milliliter samples were taken at the testing points to determine bacterial concentration. RESULTS PCs with pH values of less than 6.6 or with a pH change over time (ΔpH/Δtime) greater or equal than 0.046 pH units/hr are suspected of being contaminated. pH decreased significantly during storage in all bacterially inoculated PC at concentrations of more than 10(7) CFUs/mL (p < 0.0001). A significant decrease in pH (p < 0.0001) was noticed as early as 28 hours in units with Bacillus cereus and as late as 125 hours in units containing Staphylococcus epidermidis. Interestingly, PCs containing Gram-negative species showed a decline in pH followed by a rebound. CONCLUSIONS The pH SAFE system allows for repeated, noninvasive pH screening during PC storage. A significant decrease in pH could serve as an indicator of clinically significant levels of bacterial contamination. Since differences in pH decline were observed among bacterial species, continuous pH monitoring in PCs is recommended.
Collapse
Affiliation(s)
| | | | | | - Yuntong Kou
- Canadian Blood Services, Ottawa, Ontario, Canada
| | - Ramie Qaisar
- Canadian Blood Services, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
21
|
Cameron DR, Jiang JH, Hassan KA, Elbourne LDH, Tuck KL, Paulsen IT, Peleg AY. Insights on virulence from the complete genome of Staphylococcus capitis. Front Microbiol 2015; 6:980. [PMID: 26441910 PMCID: PMC4585213 DOI: 10.3389/fmicb.2015.00980] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 09/03/2015] [Indexed: 12/28/2022] Open
Abstract
Staphylococcus capitis is an opportunistic pathogen of the coagulase negative staphylococci (CoNS). Functional genomic studies of S. capitis have thus far been limited by a lack of available complete genome sequences. Here, we determined the closed S. capitis genome and methylome using Single Molecule Real Time (SMRT) sequencing. The strain, AYP1020, harbors a single circular chromosome of 2.44 Mb encoding 2304 predicted proteins, which is the smallest of all complete staphylococcal genomes sequenced to date. AYP1020 harbors two large mobile genetic elements; a plasmid designated pAYP1020 (59.6 Kb) and a prophage, ΦAYP1020 (48.5 Kb). Methylome analysis identified significant adenine methylation across the genome involving two distinct methylation motifs (1972 putative 6-methyladenine (m6A) residues identified). Putative adenine methyltransferases were also identified. Comparative analysis of AYP1020 and the closely related CoNS, S. epidermidis RP62a, revealed a host of virulence factors that likely contribute to S. capitis pathogenicity, most notably genes important for biofilm formation and a suite of phenol soluble modulins (PSMs); the expression/production of these factors were corroborated by functional assays. The complete S. capitis genome will aid future studies on the evolution and pathogenesis of the coagulase negative staphylococci.
Collapse
Affiliation(s)
- David R Cameron
- Department of Microbiology, Monash University Melbourne, VIC, Australia
| | - Jhih-Hang Jiang
- Department of Microbiology, Monash University Melbourne, VIC, Australia
| | - Karl A Hassan
- Department of Chemistry and Biomolecular Sciences, Macquarie University Sydney, NSW, Australia
| | - Liam D H Elbourne
- Department of Chemistry and Biomolecular Sciences, Macquarie University Sydney, NSW, Australia
| | - Kellie L Tuck
- School of Chemistry, Monash University Melbourne, VIC, Australia
| | - Ian T Paulsen
- Department of Chemistry and Biomolecular Sciences, Macquarie University Sydney, NSW, Australia
| | - Anton Y Peleg
- Department of Microbiology, Monash University Melbourne, VIC, Australia ; Department of Infectious Diseases, Alfred Hospital Melbourne, VIC, Australia
| |
Collapse
|
22
|
Kou Y, Pagotto F, Hannach B, Ramirez-Arcos S. Fatal false-negative transfusion infection involving a buffy coat platelet pool contaminated with biofilm-positiveStaphylococcus epidermidis: a case report. Transfusion 2015; 55:2384-9. [DOI: 10.1111/trf.13154] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 03/04/2015] [Accepted: 04/08/2015] [Indexed: 12/01/2022]
|
23
|
Characterization of the growth dynamics and biofilm formation of Staphylococcus epidermidis strains isolated from contaminated platelet units. J Med Microbiol 2014; 63:884-891. [DOI: 10.1099/jmm.0.071449-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bacterial contamination of platelet concentrates (PCs) poses the highest transfusion-associated infectious risk, with Staphylococcus epidermidis being a predominant contaminant. Herein, the growth dynamics of 20 S. epidermidis strains in PCs and regular media were characterized. Strains were categorized as fast (short lag phase) or slow (long lag phase) growers in PCs. All strains were evaluated for the presence of the biofilm-associated icaAD genes by PCR, their capability to produce extracellular polysaccharide (slime) on Congo red agar plates and their ability to form surface-attached aggregates (biofilms) in glucose-supplemented trypticase soy broth (TSBg) using a crystal violet staining assay. A subset of four strains (two slow growers and two fast growers) was further examined for the ability for biofilm formation in PCs. Two of these strains carried the icAD genes, formed slime and produced biofilms in TSBg and PCs, while the other two strains, which did not carry icaAD, did not produce slime or form biofilms in TSBg. Although the two ica-negative slime-negative strains did not form biofilms in media, they displayed a biofilm-positive phenotype in PCs. Although all four strains formed biofilms in PCs, the two slow growers formed significantly more biofilms than the fast growers. Furthermore, growth experiments of the two ica-positive strains in plasma-conditioned platelet bags containing TSBg revealed that a slow grower isolate was more likely to escape culture-based screening than a fast grower strain. Therefore, this study provides novel evidence that links S. epidermidis biofilm formation with slow growth in PCs and suggests that slow-growing biofilm-positive S. epidermidis would be more likely to be missed with automate culture.
Collapse
|
24
|
Taha M, Kalab M, Yi QL, Landry C, Greco-Stewart V, Brassinga AK, Sifri CD, Ramirez-Arcos S. Biofilm-forming skin microflora bacteria are resistant to the bactericidal action of disinfectants used during blood donation. Transfusion 2014; 54:2974-82. [DOI: 10.1111/trf.12728] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/04/2014] [Accepted: 04/04/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Mariam Taha
- Canadian Blood Services; Ottawa Ontario Canada
| | | | - Qi-Long Yi
- Canadian Blood Services; Ottawa Ontario Canada
| | | | | | | | - Costi D. Sifri
- University of Virginia Health System; Charlottesville Virginia
| | | |
Collapse
|