1
|
Abdinia FS, Javadi K, Rajabnia M, Ferdosi-Shahandashti E. A Comprehensive Study on the Distribution of Integrons and Their Gene Cassettes in Clinical Isolates. DNA Cell Biol 2024; 43:579-595. [PMID: 39419631 DOI: 10.1089/dna.2024.0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Antibiotic resistance is a significant global health concern, leading to increased morbidity, mortality, and health care costs. Integrons are genetic elements that could acquire and express gene cassettes, including those that confer antibiotic resistance. This comprehensive study focused on the distribution of integrons and their gene cassettes in clinical isolates. This study explored the structure and classification of integrons with particular emphasis on Class I, II, III, and IV integrons. It also discussed the role of integrons in antibiotic resistance. The findings of this study contribute to a better understanding of the mechanisms underlying antibiotic resistance and provide valuable insights for developing strategies to combat this public health crisis.
Collapse
Affiliation(s)
- Fatemeh Sarina Abdinia
- Department of Nanotechnology, Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Kasra Javadi
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Mehdi Rajabnia
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Elaheh Ferdosi-Shahandashti
- Biomedical and Microbial Advanced Technologies Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
2
|
Chin JJ, Lee HM, Lee SY, Lee YY, Chew CH. High Carriage of tetA, sul1, sul2 and bla TEM Resistance Genes among the Multidrug-resistant Uropathogenic Escherichia coli (UPEC) Strains from Malaysian Patients. Trop Life Sci Res 2024; 35:211-225. [PMID: 39234470 PMCID: PMC11371398 DOI: 10.21315/tlsr2024.35.2.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/17/2024] [Indexed: 09/06/2024] Open
Abstract
The rapid emergence of multidrug-resistant (MDR) uropathogenic Escherichia coli (UPEC) strains pose a critical challenge in urinary tract infection (UTI) treatments. However, little work elucidated the resistance mechanisms of the MDR UPEC clinical strains in Malaysia. Therefore, this study aimed to determine the antimicrobial susceptibility profiles and the prevalence of antimicrobial resistance genes among the UPEC strains. Polymerase chain reactions were conducted to detect the presence of 6 antimicrobial resistance genes among 60 UPEC strains. Meanwhile, the antimicrobial resistance profiles against 9 antimicrobials were examined through the Kirby-Bauer disk diffusion method. In this study, the MDR isolates accounted for 40.0% (24/60), with the highest prevalence of resistance towards ampicillin (43/60; 71.7%), followed by tetracycline (31/60; 51.7%), nalidixic acid (30/60; 50.0%), co-trimoxazole (20/60, 33.3%), ciprofloxacin (19/60, 31.7%), levofloxacin (16/60, 21.6%) and chloramphenicol (10/60, 16.7%). In contrast, low resistance rates were observed among minocycline (1/60; 1.7%) and imipenem (0/60; 0.0%). bla TEM was the most prevalent gene (36/60; 60.0%), followed by tetA (27/60; 45.0%), sul2 (25/60; 41.7%), sul1 (13/60; 21.7%) and tetB (8/60; 13.3%). Surprisingly, bla SHV was not detected among the UPEC isolates. The MDR, ampicillin and tetracycline-resistant isolates were significantly associated with a higher prevalence of tetA, sul1, sul2 and bla TEM. In contrast, tetB displayed no significant relationship with any of the antimicrobials tested. The patient's age and gender were not the risk factors for the carriage of the resistance genes. Our findings identified the common resistance genes carried by the antimicrobial resistant UPEC isolates and provide valuable insights into developing the best antibiotic prescription regime to treat UTIs in our local scene.
Collapse
Affiliation(s)
- Jia-Jin Chin
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), 31900 Kampar, Perak, Malaysia
| | - Hui-Mei Lee
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), 31900 Kampar, Perak, Malaysia
| | - Shuet-Yi Lee
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), 31900 Kampar, Perak, Malaysia
| | - Yin-Ying Lee
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), 31900 Kampar, Perak, Malaysia
| | - Choy-Hoong Chew
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), 31900 Kampar, Perak, Malaysia
| |
Collapse
|
3
|
Kani MM, Alabdali YAJ. Mobile genetic elements profiling, gene flow, and antimicrobial susceptibility profiles, among Pseudomonas aeruginosa isolates, isolated from Al Muthanna hospitals' wound and burn units in Iraq. Gene 2023; 884:147696. [PMID: 37549857 DOI: 10.1016/j.gene.2023.147696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/03/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
The prevalence assessment of integrons among multidrug-resistant strains of Pseudomonas aeruginosa receives much-needed attention from this study, as we achieved our desired objective by conducting a thorough analysis on one hundred swabs obtained from burn and clinical cases at the hospitals present in Al Muthanna governorate during November of the year 2021 through to March of the year 2022. By implementing various methodologies encompassing the scrutiny of growth traits and cellular composition as well as executing biochemical assays, a total of 55 isolates were determined to exhibit the existence of P. aeruginosa. When cultured in Hifluoro agar media, Pseudomonas aeruginosa produced diverse hues; particularly noticeable was its blue-green colour. It was discovered through investigation that there were no intI2 and inti3 genes present in those isolated. Findings from this research disclosed that about one-fifth, or precisely twelve out of fifty-five P. aeruginosa strains screened, had an actively expressed Integrase I gene. The association between elevated rates of resistance to multiple antimicrobial agents and the existence of integrons is worth mentioning. Furthermore, the assemblage of isolates that were efficacious in the presence of integrons demonstrated an augmented resistance towards several frequently employed antibiotics like rifampicin and ceftazidime. In conclusion, it can be stated with confidence that a considerable occurrence of integrons can be observed in Pseudomonas aeruginosa strains that display resistance to numerous pharmaceutical agents. Additionally, the discovery of the intI1 gene in a considerable proportion of isolates underscores the effectiveness of integrons in conferring resistance to a variety of antimicrobial agents. These revelations supplement our insight into antibiotic-resistant mechanisms while also underscoring the necessity for viable strategies aimed at halting and preventing bacterial drug resistance.
Collapse
Affiliation(s)
- Marwa Mezher Kani
- Department of Biology, College of Science, Al Muthanna University, Al Samawah, Iraq
| | | |
Collapse
|
4
|
Rakitin AL, Yushina YK, Zaiko EV, Bataeva DS, Kuznetsova OA, Semenova AA, Ermolaeva SA, Beletskiy AV, Kolganova TV, Mardanov AV, Shapovalov SO, Tkachik TE. Evaluation of Antibiotic Resistance of Salmonella Serotypes and Whole-Genome Sequencing of Multiresistant Strains Isolated from Food Products in Russia. Antibiotics (Basel) 2021; 11:1. [PMID: 35052878 PMCID: PMC8773070 DOI: 10.3390/antibiotics11010001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022] Open
Abstract
Food products may be a source of Salmonella, one of the main causal agents of food poisoning, especially after the emergence of strains resistant to antimicrobial preparations. The present work dealt with investigation of the occurrence of resistance to antimicrobial preparations among S. enterica strains isolated from food. The isolates belonged to 11 serovars, among which Infantis (28%), Enteritidis (19%), and Typhimurium (13.4%) predominated. The isolates were most commonly resistant to trimethoprim/sulfamethoxazole (n = 19, 59.38%), cefazolin (n = 15, 46.86%), tetracycline (n = 13, 40.63%), and amikacin (n = 9, 28.13%). Most of the strains (68.75%) exhibited multiple resistance to commonly used antibiotics. High-throughput sequencing was used to analyse three multidrug-resistant strains (resistant to six or more antibiotics). Two of them (SZL 30 and SZL 31) belonged to S. Infantis, while one strain belonged to S. Typhimurium (SZL 38). Analysis of the genomes of the sequenced strains revealed the genes responsible for antibiotic resistance. In the genomes of strains SZL 30 and SZL 31 the genes of antibiotic resistance were shown to be localized mostly in integrons within plasmids, while most of the antibiotic resistance genes of strain SZL 38 were localized in a chromosomal island (17,949 nt). Genomes of the Salmonella strains SZL 30, SZL 31, and SZL 38 were shown to contain full-size pathogenicity islands: SPI-1, SPI-2, SPI-4, SPI-5, SPI-9, SPI-11, SPI-13, SPI-14, and CS54. Moreover, the genome of strain SZL 38 was also found to contain the full-size pathogenicity islands SPI-3, SPI-6, SPI-12, and SPI-16. The emergence of multidrug-resistant strains of various Salmonella serovars indicates that further research on the transmission pathways for these genetic determinants and monitoring of the distribution of these microorganisms are necessary.
Collapse
Affiliation(s)
- Andrey L. Rakitin
- Research Center of Biotechnology, Institute of Bioengineering, Russian Academy of Sciences, 119071 Moscow, Russia; (A.L.R.); (A.V.B.); (T.V.K.); (A.V.M.)
| | - Yulia K. Yushina
- V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 109316 Moscow, Russia; (E.V.Z.); (D.S.B.); (O.A.K.); (A.A.S.)
| | - Elena V. Zaiko
- V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 109316 Moscow, Russia; (E.V.Z.); (D.S.B.); (O.A.K.); (A.A.S.)
| | - Dagmara S. Bataeva
- V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 109316 Moscow, Russia; (E.V.Z.); (D.S.B.); (O.A.K.); (A.A.S.)
| | - Oksana A. Kuznetsova
- V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 109316 Moscow, Russia; (E.V.Z.); (D.S.B.); (O.A.K.); (A.A.S.)
| | - Anastasia A. Semenova
- V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 109316 Moscow, Russia; (E.V.Z.); (D.S.B.); (O.A.K.); (A.A.S.)
| | - Svetlana A. Ermolaeva
- Federal Research Center for Virology and Microbiology, Nizhny Novgorod Research Veterinary Institute Branch, 603950 Nizhny Novgorod, Russia;
- Gamaleya National Research Centre for Epidemiology and Microbiology, 123098 Moscow, Russia
| | - Aleksey V. Beletskiy
- Research Center of Biotechnology, Institute of Bioengineering, Russian Academy of Sciences, 119071 Moscow, Russia; (A.L.R.); (A.V.B.); (T.V.K.); (A.V.M.)
| | - Tat’yana V. Kolganova
- Research Center of Biotechnology, Institute of Bioengineering, Russian Academy of Sciences, 119071 Moscow, Russia; (A.L.R.); (A.V.B.); (T.V.K.); (A.V.M.)
| | - Andrey V. Mardanov
- Research Center of Biotechnology, Institute of Bioengineering, Russian Academy of Sciences, 119071 Moscow, Russia; (A.L.R.); (A.V.B.); (T.V.K.); (A.V.M.)
| | - Sergei O. Shapovalov
- Research and Scientific Testing Center “Cherkizovo”, 108805 Moscow, Russia; (S.O.S.); (T.E.T.)
| | - Timofey E. Tkachik
- Research and Scientific Testing Center “Cherkizovo”, 108805 Moscow, Russia; (S.O.S.); (T.E.T.)
| |
Collapse
|
5
|
Hwang SB, Chelliah R, Kang JE, Rubab M, Banan-MwineDaliri E, Elahi F, Oh DH. Role of Recent Therapeutic Applications and the Infection Strategies of Shiga Toxin-Producing Escherichia coli. Front Cell Infect Microbiol 2021; 11:614963. [PMID: 34268129 PMCID: PMC8276698 DOI: 10.3389/fcimb.2021.614963] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 05/07/2021] [Indexed: 12/17/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a global foodborne bacterial pathogen that is often accountable for colon disorder or distress. STEC commonly induces severe diarrhea in hosts but can cause critical illnesses due to the Shiga toxin virulence factors. To date, there have been a significant number of STEC serotypes have been evolved. STECs vary from nausea and hemorrhoid (HC) to possible lethal hemolytic-based uremic syndrome (HUS), thrombotic thrombocytopenic purpura (TTP). Inflammation-based STEC is usually a foodborne illness with Shiga toxins (Stx 1 and 2) thought to be pathogenesis. The STEC's pathogenicity depends significantly on developing one or more Shiga toxins, which can constrain host cell protein synthesis leading to cytotoxicity. In managing STEC infections, antimicrobial agents are generally avoided, as bacterial damage and discharge of accumulated toxins are thought the body. It has also been documented that certain antibiotics improve toxin production and the development of these species. Many different groups have attempted various therapies, including toxin-focused antibodies, toxin-based polymers, synbiotic agents, and secondary metabolites remedies. Besides, in recent years, antibiotics' efficacy in treating STEC infections has been reassessed with some encouraging methods. Nevertheless, the primary role of synbiotic effectiveness (probiotic and prebiotic) against pathogenic STEC and other enteropathogens is less recognized. Additional studies are required to understand the mechanisms of action of probiotic bacteria and yeast against STEC infection. Because of the consensus contraindication of antimicrobials for these bacterial pathogens, the examination was focused on alternative remedy strategies for STEC infections. The rise of novel STEC serotypes and approaches employed in its treatment are highlighted.
Collapse
Affiliation(s)
- Su-bin Hwang
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Ramachandran Chelliah
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Ji Eun Kang
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Momna Rubab
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | - Eric Banan-MwineDaliri
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Fazle Elahi
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
6
|
Karami P, Khaledi A, Mashoof RY, Yaghoobi MH, Karami M, Dastan D, Alikhani MY. The correlation between biofilm formation capability and antibiotic resistance pattern in Pseudomonas aeruginosa. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2019.100561] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Genomic Characterization of New Variant of Hydrogen Sulfide (H 2S)-Producing Escherichia coli with Multidrug Resistance Properties Carrying the mcr-1 Gene in China †. Antibiotics (Basel) 2020; 9:antibiotics9020080. [PMID: 32069849 PMCID: PMC7167817 DOI: 10.3390/antibiotics9020080] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 11/23/2022] Open
Abstract
Colistin is considered to be a ‘last-resort’ antimicrobial for the treatment of multidrug-resistant Gram-negative bacterial infections. Identification of Enterobacteriaceae, carrying the transferable colistin resistance gene mcr-1, has recently provoked a global health concern. This report presents the first detection of a hydrogen sulfide (H2S)-producing Escherichia coli variant isolated from a human in China, with multidrug resistance (MDR) properties, including colistin resistance by the mcr-1 gene, which could have great implications for the treatment of human infections.
Collapse
|
8
|
Fuga B, Royer S, Campos PAD, Ferreira ML, Rossi I, Machado LG, Cerdeira LT, Fonseca Batistão DWD, Brito CSD, Lincopan N, Gontijo-Filho PP, Ribas RM. Molecular Detection of Class 1 Integron-Associated Gene Cassettes in KPC-2-Producing Klebsiella pneumoniae Clones by Whole-Genome Sequencing. Microb Drug Resist 2019; 25:1127-1131. [DOI: 10.1089/mdr.2018.0437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Bruna Fuga
- Laboratório de Microbiologia Molecular, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Sabrina Royer
- Laboratório de Microbiologia Molecular, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Paola Amaral de Campos
- Laboratório de Microbiologia Molecular, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Melina Lorraine Ferreira
- Laboratório de Microbiologia Molecular, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Iara Rossi
- Laboratório de Microbiologia Molecular, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Luiz Gustavo Machado
- Laboratório de Microbiologia Molecular, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | | | | | - Cristiane Silveira de Brito
- Laboratório de Microbiologia Molecular, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Nilton Lincopan
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Paulo Pinto Gontijo-Filho
- Laboratório de Microbiologia Molecular, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Rosineide Marques Ribas
- Laboratório de Microbiologia Molecular, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| |
Collapse
|
9
|
Malchione MD, Torres LM, Hartley DM, Koch M, Goodman JL. Carbapenem and colistin resistance in Enterobacteriaceae in Southeast Asia: Review and mapping of emerging and overlapping challenges. Int J Antimicrob Agents 2019; 54:381-399. [DOI: 10.1016/j.ijantimicag.2019.07.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/16/2019] [Accepted: 07/21/2019] [Indexed: 01/21/2023]
|
10
|
Domínguez M, Miranda CD, Fuentes O, de la Fuente M, Godoy FA, Bello-Toledo H, González-Rocha G. Occurrence of Transferable Integrons and sul and dfr Genes Among Sulfonamide-and/or Trimethoprim-Resistant Bacteria Isolated From Chilean Salmonid Farms. Front Microbiol 2019; 10:748. [PMID: 31031727 PMCID: PMC6474311 DOI: 10.3389/fmicb.2019.00748] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 03/25/2019] [Indexed: 11/17/2022] Open
Abstract
Salmon farming industry in Chile currently uses a significant quantity of antimicrobials to control bacterial pathologies. The main aims of this study were to investigate the presence of transferable sulfonamide- and trimethoprim-resistance genes, sul and dfr, and their association with integrons among bacteria associated to Chilean salmon farming. For this purpose, 91 Gram-negative strains resistant to sulfisoxazole and/or trimethoprim recovered from various sources of seven Chilean salmonid farms and mainly identified as belonging to the Pseudomonas genus (81.0%) were studied. Patterns of antimicrobial resistance of strains showed a high incidence of resistance to florfenicol (98.9%), erythromycin (95.6%), furazolidone (90.1%) and amoxicillin (98.0%), whereas strains exhibited minimum inhibitory concentrations (MIC90) values of sulfisoxazole and trimethoprim of >4,096 and >2,048 μg mL−1, respectively. Strains were studied for their carriage of these genes by polymerase chain reaction, using specific primers, and 28 strains (30.8%) were found to carry at least one type of sul gene, mainly associated to a class 1 integron (17 strains), and identified by 16S rRNA gene sequencing as mainly belonging to the Pseudomonas genus (21 strains). Of these, 22 strains carried the sul1 gene, 3 strains carried the sul2 gene, and 3 strains carried both the sul1 and sul2 genes. Among these, 19 strains also carried the class 1 integron-integrase gene intI1, whereas the dfrA1, dfrA12 and dfrA14 genes were detected, mostly not inserted in the class 1 integron. Otherwise, the sul3 and intI2 genes were not found. In addition, the capability to transfer by conjugation these resistance determinants was evaluated in 22 selected strains, and sul and dfr genes were successfully transferred by 10 assayed strains, mainly mediated by a 10 kb plasmid, with a frequency of transfer of 1.4 × 10−5 to 8.4 × 10−3 transconjugant per recipient cell, and exhibiting a co-transference of resistance to florfenicol and oxytetracycline, currently the most used in Chilean salmon industry, suggesting an antibacterial co-selection phenomenon. This is the first report of the characterization and transferability of integrons as well as sul and dfr genes among bacteria associated to Chilean salmon farms, evidencing a relevant role of this environment as a reservoir of these genes.
Collapse
Affiliation(s)
- Mariana Domínguez
- Laboratorio de Investigación en Agentes Antibacterianos, Departamento de Microbiología, Universidad de Concepción, Concepción, Chile
| | - Claudio D Miranda
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo, Chile.,Centro AquaPacífico, Coquimbo, Chile
| | - Oliver Fuentes
- Laboratorio de Investigación en Agentes Antibacterianos, Departamento de Microbiología, Universidad de Concepción, Concepción, Chile.,Facultad de Medicina Veterinaria, Universidad San Sebastián, Concepción, Chile
| | - Mery de la Fuente
- Facultad de Medicina Veterinaria, Universidad San Sebastián, Concepción, Chile.,Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Talcahuano, Chile
| | - Félix A Godoy
- Centro i∼mar, Universidad de Los Lagos, Puerto Montt, Chile
| | - Helia Bello-Toledo
- Laboratorio de Investigación en Agentes Antibacterianos, Departamento de Microbiología, Universidad de Concepción, Concepción, Chile
| | - Gerardo González-Rocha
- Laboratorio de Investigación en Agentes Antibacterianos, Departamento de Microbiología, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
11
|
Khalifa HO, Soliman AM, Ahmed AM, Shimamoto T, Nariya H, Matsumoto T, Shimamoto T. High Prevalence of Antimicrobial Resistance in Gram-Negative Bacteria Isolated from Clinical Settings in Egypt: Recalling for Judicious Use of Conventional Antimicrobials in Developing Nations. Microb Drug Resist 2019; 25:371-385. [PMID: 30681401 DOI: 10.1089/mdr.2018.0380] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study was designed to investigate, at the molecular level, the antimicrobial resistance mechanisms of different antimicrobial resistance genes, including, extended-spectrum β-lactamases, AmpC β-lactamases, class 1 and 2 integrons, and plasmid-mediated quinolone resistance genes of Gram-negative bacteria isolated from clinical settings in Egypt. A total of 126 nonduplicate Gram-negative isolates were recovered from different clinical samples taken from hospitalized patients in Egypt in 2014. Antimicrobial susceptibility testing showed that, 93.6% (118/126) of the isolates had a multidrug-resistant phenotype. Interestingly, we reported a high level of antimicrobial resistance nearly for all tested antibiotics; to our knowledge, this is the first report from Egypt indicating very high level of antibiotic resistance in Egypt. Polymerase chain reaction screening and DNA sequencing revealed that, 75.4% (95/126) of the isolates harbored at least one extended-spectrum β-lactamase-encoding gene, with blaCTX-M being the most prevalent (65.9%), followed by blaSHV (46.8%). The AmpC β-lactamase, blaCMY, was detected in 7.1% (9/126) of bacterial isolates, with blaCMY-42 being the most prevalent. Class 1 integrons were detected in 50.8% (64/126) of the isolates, and class 2 integrons were detected in 2.4% (3/126) of the isolates. The plasmid-mediated quinolone resistance gene, qnr, was detected in 58.7% (74/126) of the tested isolates, with qnrS being the most prevalent. Several antimicrobial resistance determinants were identified in Egypt for the first time, such as SHV-27, SHV-28, SHV-33, SHV-63, SHV-71, SHV-82, SHV-142, CMY-42, CMY-6, and the new CMY-72 like. This study highlights the importance of the conscious use of conventional antimicrobials to overcome the multidrug resistance problem.
Collapse
Affiliation(s)
- Hazim O Khalifa
- 1 Department of Infectious Diseases, Graduate School of Medicine, International University of Health and Welfare, Narita, Japan.,2 Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Ahmed M Soliman
- 3 Laboratory of Food Microbiology and Hygiene, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan.,4 Department of Microbiology and Immunology, Faculty of Pharmacy, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Ashraf M Ahmed
- 5 Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Toshi Shimamoto
- 3 Laboratory of Food Microbiology and Hygiene, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Hirofumi Nariya
- 3 Laboratory of Food Microbiology and Hygiene, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Tetsuya Matsumoto
- 1 Department of Infectious Diseases, Graduate School of Medicine, International University of Health and Welfare, Narita, Japan
| | - Tadashi Shimamoto
- 3 Laboratory of Food Microbiology and Hygiene, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
12
|
Prevalence of Integrons and Insertion Sequences in ESBL-Producing E. coli Isolated from Different Sources in Navarra, Spain. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15102308. [PMID: 30347800 PMCID: PMC6209886 DOI: 10.3390/ijerph15102308] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/11/2018] [Accepted: 10/18/2018] [Indexed: 11/17/2022]
Abstract
Mobile genetic elements play an important role in the dissemination of antibiotic resistant bacteria among human and environmental sources. Therefore, the aim of this study was to determine the occurrence and patterns of integrons and insertion sequences of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli isolated from different sources in Navarra, northern Spain. A total of 150 isolates coming from food products, farms and feeds, aquatic environments, and humans (healthy people and hospital inpatients), were analyzed. PCRs were applied for the study of class 1, 2, and 3 integrons (intI1, intI2, and intI3), as well as for the determination of insertion sequences (IS26, ISEcp1, ISCR1, and IS903). Results show the wide presence and dissemination of intI1 (92%), while intI3 was not detected. It is remarkable, the prevalence of intI2 among food isolates, as well as the co-existence of class 1 and class 2 (8% of isolates). The majority of isolates have two or three IS elements, with the most common being IS26 (99.4%). The genetic pattern IS26⁻ISEcp1 (related with the pathogen clone ST131) was present in the 22% of isolates (including human isolates). In addition, the combination ISEcp1⁻IS26⁻IS903⁻ISCR1 was detected in 11 isolates being, to our knowledge, the first study that describes this genetic complex. Due to the wide variability observed, no relationship was determined among these mobile genetic elements and β-lactam resistance. More investigations regarding the genetic composition of these elements are needed to understand the role of multiple types of integrons and insertion sequences on the dissemination of antimicrobial resistance genes among different environments.
Collapse
|
13
|
Moosavian M, Khoshkholgh Sima M, Haddadzadeh Shoushtari M, Fazeli Naserabad MA. Detection of Class 1 Integrons among Gram-negative Bacilli Isolated from Sputum Cultures of Patients with Lower Respiratory Tract Infections in Ahvaz, Iran. JOURNAL OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASES 2018. [DOI: 10.29252/jommid.6.4.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
14
|
Harnisz M, Korzeniewska E. The prevalence of multidrug-resistant Aeromonas spp. in the municipal wastewater system and their dissemination in the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 626:377-383. [PMID: 29353783 DOI: 10.1016/j.scitotenv.2018.01.100] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/11/2018] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
The objective of this study was to identify the determinants of antibiotic resistance and virulence of Aeromonas spp. isolated from treated wastewater (WW) and from samples of river water collected upstream (URW) and downstream (DRW) from the effluent discharge point. The resistance of Aeromonas spp. to antibiotics that are widely used in human and veterinary medicine, including beta-lactams, tetracyclines, glycylcyclines, fluoroquinolones, aminoglycosides and sulfamethoxazole-trimethoprim, was analyzed by disk diffusion method. The prevalence of hemolysins, aerolysins (virulence factors) and integrase genes was determined. A total of 83 Aeromonas spp. strains were selected from the isolates obtained from river water and wastewater samples. The highest percentage (81.8%) of multidrug-resistant isolates was noted in DRW samples. The analyzed isolates were most frequently resistant to beta-lactams, tetracyclines and aminoglycosides, whereas resistance to glycylcyclines was least common. Isolates resistant to beta-lactams most frequently harbored blaTEM and blaOXA genes. The group of genes encoding resistance to tetracyclines was most frequently represented by tet(E) and tet(O). Genes encoding virulence ahh1 (heat-labile hemolysin) or integrase intI1 occurred more frequently in the strains isolated from DRW than URW. An analysis of genetic relatedness revealed two main clusters - one with closely related WW and DRW isolates and one with less related isolates from all analyzed samples. The results of this study indicate that regardless of the applied treatment, municipal sewage may be a reservoir of antibiotic-resistant bacteria, antibiotic resistance and virulence genes and that treated water can contaminate other environmental domains.
Collapse
Affiliation(s)
- Monika Harnisz
- Department of Environmental Microbiology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720 Olsztyn, Poland.
| | - Ewa Korzeniewska
- Department of Environmental Microbiology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720 Olsztyn, Poland
| |
Collapse
|
15
|
Chen CM, Ke SC, Li CR, Wu YC, Chen TH, Lai CH, Wu XX, Wu LT. High Diversity of Antimicrobial Resistance Genes, Class 1 Integrons, and Genotypes of Multidrug-ResistantEscherichia coliin Beef Carcasses. Microb Drug Resist 2017; 23:915-924. [DOI: 10.1089/mdr.2016.0223] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Chih-Ming Chen
- Department of Health Food, Chung Chou University of Science and Technology, Changhua, Taiwan
- Department of Internal Medicine, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Se-Chin Ke
- Infection Control Office, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Chia-Ru Li
- Department of Medical Research, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Ying-Chen Wu
- Graduate Institute of Veterinary Pathology, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Ter-Hsin Chen
- Graduate Institute of Veterinary Pathology, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chih-Ho Lai
- Institute of Basic Medical Science, School of Medicine, China Medical University and Hospital, Taichung, Taiwan
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Department of Nursing, Asia University, Taichung, Taiwan
| | - Xin-Xia Wu
- Department of Microbiology, The Institute of Medical Science, China Medical University Hospital, Taichung, Taiwan
| | - Lii-Tzu Wu
- Department of Microbiology, The Institute of Medical Science, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
16
|
Rizk DE, El-Mahdy AM. Emergence of class 1 to 3 integrons among members of Enterobacteriaceae in Egypt. Microb Pathog 2017; 112:50-56. [PMID: 28942177 DOI: 10.1016/j.micpath.2017.09.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/09/2017] [Accepted: 09/11/2017] [Indexed: 10/18/2022]
Abstract
In spite of the role of integrons as the main contributor to multidrug resistance worldwide, their prevalence in Egypt is still underestimated. In this work, we announce the emergence of class 2 and 3 integrons among Enterobacteriacae isolates from Mansoura University Hospitals. Ninety-three clinical isolates were obtained from different clinical sources, among which 70% of E. coli, 94.8% of K. pneumoniae and 85.7% of Enterobacter spp. were assigned to be multidrug resistant (MDR). Subsequently, the occurrence of class 1-3 integrons was confirmed by multiplex PCR. Class 1 integron was the most predominant being harbored by 42.8%, 90% and 25% of MDR E. coli, K. pneumoniae and Enterobacter spp. isolates, respectively. This was followed by class 2 and 3 integrons which were, for the first time, reported in these hospitals. Also, coexistence of integrons 1and 2 was revealed in 36.9% of integron positive isolates. A significant association was noticed only between resistance to gentamicin and integron prevalence among MDR E. coli isolates (P = 0.02). In conclusion, this work represents the first report for detection of class 2 and 3 integrons, beside the previously detected class 1 integrons. This highlights the high incidence of integrons among MDR Enterobacteriacae isolates which indicates the selective pressure of antibiotics in these hospitals. Moreover, this study confirms the possibility of the use of integrons as markers for MDR identification.
Collapse
Affiliation(s)
- Dina E Rizk
- Microbiology & Immunology Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Areej M El-Mahdy
- Microbiology & Immunology Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Pharmaceutical Sciences, College of Pharmacy, Princess Norah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| |
Collapse
|
17
|
Todorović D, Velhner M, Grego E, Vidanović D, Milanov D, Krnjaić D, Kehrenberg C. Molecular Characterization of Multidrug-Resistant Escherichia coli Isolates from Bovine Clinical Mastitis and Pigs in the Vojvodina Province, Serbia. Microb Drug Resist 2017; 24:95-103. [PMID: 28520501 DOI: 10.1089/mdr.2017.0016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aim of the study was to characterize multidrug-resistant (MDR) Escherichia coli isolates collected in Serbia from bovine clinical mastitis cases and diseased pigs, mainly with molecular methods. A total of 48 E. coli isolates was collected during the years 2013-2014, of which 22 were MDR and were included in further analysis. Phylogenetic typing showed that 17 isolates belonged to group A, while two isolates were classified in group B1 and a single one in group D. All isolates showed unique macrorestriction patterns. Phenotypic susceptibility testing revealed resistances of the isolates against up to 13 antimicrobial agents, including resistance to fluoroquinolones. A wide variety of resistance genes was detected by PCR amplification and sequencing of amplicons. Sequence analysis of the quinolone resistance determining regions of topoisomerase genes revealed mutations in gyrA, parC, and/or parE. Plasmid-mediated quinolone resistance genes were detected in two porcine (aac-6'-Ib-cr and qnrS, respectively) isolates and a single bovine (aac-6'-Ib-cr) isolate. Resistance genes were found to be located on conjugative plasmids in 16 cases, many of which conferred a multidrug resistance phenotype. In conclusion, the plentitude of resistance genes located on conjugative plasmids and integrons in E. coli from cows and pigs in Vojvodina, Serbia, pose a high risk for horizontal gene transfer in bacteria from livestock husbandry.
Collapse
Affiliation(s)
| | - Maja Velhner
- 1 Scientific Veterinary Institute "Novi Sad," Novi Sad, Serbia
| | - Edita Grego
- 2 Public Health Institute of Serbia , "Dr Milan Jovanović Batut," Belgrade, Serbia
| | | | | | - Dejan Krnjaić
- 4 Faculty of Veterinary Medicine, University of Belgrade , Belgrade, Serbia
| | - Corinna Kehrenberg
- 5 Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover , Foundation, Hannover, Germany
| |
Collapse
|
18
|
Oliveira-Pinto C, Diamantino C, Oliveira PL, Reis MP, Costa PS, Paiva MC, Nardi RMD, Magalhães PP, Chartone-Souza E, Nascimento AMA. Occurrence and characterization of class 1 integrons in Escherichia coli from healthy individuals and those with urinary infection. J Med Microbiol 2017; 66:577-583. [DOI: 10.1099/jmm.0.000468] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Clarisse Oliveira-Pinto
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais; Belo Horizonte, Minas Gerais, Brazil
| | - Cristiane Diamantino
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais; Belo Horizonte, Minas Gerais, Brazil
| | - Patrícia L Oliveira
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais; Belo Horizonte, Minas Gerais, Brazil
| | - Mariana P Reis
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais; Belo Horizonte, Minas Gerais, Brazil
| | - Patrícia S Costa
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais; Belo Horizonte, Minas Gerais, Brazil
| | - Magna C Paiva
- Campus Dona Lindu, Universidade Federal de São João del Rei, Divinópolis, Minas Gerais, Brazil
| | - Regina M. D Nardi
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais; Belo Horizonte, Minas Gerais, Brazil
| | - Paula P Magalhães
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais; Belo Horizonte, Minas Gerais, Brazil
| | - Edmar Chartone-Souza
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais; Belo Horizonte, Minas Gerais, Brazil
| | - Andréa M. A Nascimento
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais; Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
19
|
Trongjit S, Angkittitrakul S, Chuanchuen R. Occurrence and molecular characteristics of antimicrobial resistance of Escherichia coli from broilers, pigs and meat products in Thailand and Cambodia provinces. Microbiol Immunol 2017; 60:575-85. [PMID: 27474453 DOI: 10.1111/1348-0421.12407] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/06/2016] [Accepted: 07/24/2016] [Indexed: 11/29/2022]
Abstract
Nine hundred and forty-one samples were collected in Sa Keao, Thailand (n = 554) and Banteay Meanchey, Cambodia (n = 387) from July 2014 to January 2015. A total of 667 Escherichia coli isolates (381 isolates from Sa Keao and 286 isolates from Banteay Meanchey) were obtained and examined for antimicrobial susceptibility, class 1 integrons, ESBL genes and horizontal transfer of resistance determinants. Prevalence of E. coli in pig and broiler carcass samples from slaughterhouses and fresh markets was 36-85% in Sa Keao and 11-69% in Banteay Meanchey. The majority of these isolates were multidrug resistant (75.3%). Class 1 integrons were common in both Thai (47%) and Cambodian (62%) isolates, of which four resistance gene cassette arrays including aadA1, dfrA1-aadA1, dfrA12-aadA2 and aadA2-linF were identified. Class 1 integrons in two broiler isolates from Sa Keao (dfrA12-aadA2) and one broiler isolate from Banteay Meanchey (dfrA1-aadA1) were horizontally transferable. Sixteen isolates were confirmed to be ESBL-producing strains with ESBL gene blaCTX-M-15 , broad spectrum β-lactamase gene blaTEM-1 and the AmpC gene blaCMY-2 being detected. The blaTEM-1 gene was most prevalent and located on a conjugative plasmid.
Collapse
Affiliation(s)
- Suthathip Trongjit
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sunpetch Angkittitrakul
- Research Group for Prevention Technology in Livestock, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, 40000, Thailand
| | - Rungtip Chuanchuen
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
20
|
Knowles M, Stinson S, Lambert D, Carrillo C, Koziol A, Gauthier M, Blais B. Genomic Tools for Customized Recovery and Detection of Foodborne Shiga Toxigenic Escherichia coli. J Food Prot 2016; 79:2066-2077. [PMID: 28221970 DOI: 10.4315/0362-028x.jfp-16-220] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Genomic antimicrobial resistance (AMR) prediction tools have the potential to support foodborne illness outbreak investigations through their application in the analysis of bacterial genomes from causative strains. The AMR marker profile of a strain of interest, initially identified in outbreak-associated clinical samples, may serve as the basis for customization of selective enrichment media, facilitating its recovery from samples in a food safety investigation. Different possibilities for AMR analyses include the use of comprehensive AMR gene databases such as the Comprehensive Antibiotic Resistance Database, which can be mined with in-house bioinformatics alignment tools (e.g., Antimicrobial Resistance Marker Identifier), or publicly available tools based on clinically relevant acquired AMR gene databases (e.g., ResFinder). In combination with a previously reported pipeline (SigSeekr) designed to identify specific DNA sequences associated with a particular strain for its rapid identification by PCR, it should be possible to deploy custom recovery and identification tools for the efficient detection of priority pathogens such as Shiga toxigenic Escherichia coli (STEC) outbreak strains within the time frame of an active investigation. Using a laboratory STEC strain as a model, trimethoprim resistance identified by both Antimicrobial Resistance Marker Identifier and ResFinder was used as the basis for its selective recovery against a background of commensal E. coli bacteria in ground beef samples. Enrichment in modified tryptic soy broth containing trimethoprim greatly enhanced the recovery of low numbers of model strain cells inoculated in ground beef samples, as verified by the enumeration of colonies on plating media using a strain-specific PCR method to determine the recovery efficiency for the target strain. We discuss the relative merits of different AMR marker prediction tools for this purpose and describe how such tools can be utilized to good effect in a typical outbreak investigation scenario.
Collapse
Affiliation(s)
- Michael Knowles
- Research and Development Section, Ottawa Laboratory (Carling), Canadian Food Inspection Agency, 960 Carling Avenue, Building 22, Central Experimental Farm, Ottawa, Ontario, Canada K1A 0C6
| | - Sara Stinson
- Research and Development Section, Ottawa Laboratory (Carling), Canadian Food Inspection Agency, 960 Carling Avenue, Building 22, Central Experimental Farm, Ottawa, Ontario, Canada K1A 0C6
| | - Dominic Lambert
- Research and Development Section, Ottawa Laboratory (Carling), Canadian Food Inspection Agency, 960 Carling Avenue, Building 22, Central Experimental Farm, Ottawa, Ontario, Canada K1A 0C6
| | - Catherine Carrillo
- Research and Development Section, Ottawa Laboratory (Carling), Canadian Food Inspection Agency, 960 Carling Avenue, Building 22, Central Experimental Farm, Ottawa, Ontario, Canada K1A 0C6
| | - Adam Koziol
- Research and Development Section, Ottawa Laboratory (Carling), Canadian Food Inspection Agency, 960 Carling Avenue, Building 22, Central Experimental Farm, Ottawa, Ontario, Canada K1A 0C6
| | - Martine Gauthier
- Research and Development Section, Ottawa Laboratory (Carling), Canadian Food Inspection Agency, 960 Carling Avenue, Building 22, Central Experimental Farm, Ottawa, Ontario, Canada K1A 0C6
| | - Burton Blais
- Research and Development Section, Ottawa Laboratory (Carling), Canadian Food Inspection Agency, 960 Carling Avenue, Building 22, Central Experimental Farm, Ottawa, Ontario, Canada K1A 0C6
| |
Collapse
|
21
|
Tew LS, She LY, Chew CH. Isolation, Antimicrobial Susceptibility Profile and Detection of Sul1, blaTEM, and blaSHV in Amoxicillin-Clavulanate-Resistant Bacteria Isolated From Retail Sausages in Kampar, Malaysia. Jundishapur J Microbiol 2016; 9:e37897. [PMID: 27942365 PMCID: PMC5136445 DOI: 10.5812/jjm.37897] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 08/23/2016] [Accepted: 08/31/2016] [Indexed: 11/16/2022] Open
Abstract
Background Due to the overuse of antibiotics in livestock as a growth-promoting agent, the emergence of multi-antibiotic resistant bacteria is becoming a concern. Objectives In this study, we aimed to detect the presence and discover the molecular determinants of foodborne bacteria in retail sausages resistant towards the antibacterial agent amoxicillin-clavulanate. Methods Two grams of sausages were chopped into small pieces and transferred into sterile Luria-Bertani (LB) enrichment broths overnight before they were plated on MacConkey agar petri dishes. The bacteria isolated were then screened for amoxicillin-clavulanate resistance, and an antimicrobial susceptibility test of each isolate was performed by using the disc diffusion method. Double synergy and phenotypic tests were carried out to detect the presence of extended spectrum β-lactamase (ESBL). API 20E kit was used to identify the Enterobacteriaceae. All isolates were further examined by polymerase chain reaction (PCR) for resistant genes blaOXA-1, blaOXA-10, plasmid-mediated AmpC (blaCMY and blaDHA), and the chromosome-mediated AmpC, Sul1, blaTEM, and blaSHV genes. Results A total of 18 amoxicillin-clavulanate resistant isolates were obtained from seven different types of retail sausages. Only half of them were identified as Enterobacteriaceae, but none were ESBL-producers. All the 18 isolated strains demonstrated resistance towards amoxicillin-clavulanate, penicillin and oxacillin (100%), cefotaxime (71.4%), cefpodoxime (66.7%), and ampicillin (83.3%). blaTEM was the most frequently detected β-lactamase gene. Both plasmid- and chromosomal-bound blaTEM genes were detected in all of the isolated Enterobacteriaceae. blaSHV and Sul1 accounted for 22.2% and 11.1% of the amoxicillin-clavulanate resistant isolates, respectively, whereas blaAMPC, blaCMY, blaDHA, blaOXA-1, and blaOXA-10 were not found in any of the isolates. The only one ESBL-producing bacteria detected in this study was Chryseobacterium meningosepticum, which harbored the blaTEM gene. Conclusions The multidrug resistant bacteria that carry antibiotic resistant genes from retail sausages may increase the risk of transmission to humans via the consumption of contaminated sausages. Stricter measures must be taken to address the use of antibiotics in animal agriculture and to consider their potential impact on human health.
Collapse
Affiliation(s)
- Lih-Shin Tew
- Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar Perak, Malaysia
| | - Li-Yen She
- Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar Perak, Malaysia
| | - Choy-Hoong Chew
- Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar Perak, Malaysia
- Corresponding author: Choy-Hoong Chew, Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar Perak, Malaysia. Tel: +605-4688888, Fax: +605-4661676, E-mail:
| |
Collapse
|
22
|
Kheiri R, Akhtari L. Antimicrobial resistance and integron gene cassette arrays in commensal Escherichia coli from human and animal sources in IRI. Gut Pathog 2016; 8:40. [PMID: 27582900 PMCID: PMC5006490 DOI: 10.1186/s13099-016-0123-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/22/2016] [Indexed: 11/18/2022] Open
Abstract
Background The human and animal intestinal tract harbors a complex community of microbes which enables bacteria to inherit antibiotic resistance genes. The aims of this study were to investigate clonality, antimicrobial resistance, prevalence and gene cassette arrays of class I and II integrons among commensal Escherichia coli from human and animals. Methods A total of 200 E. coli isolates from human, chicken, cattle, and sheep were isolated followed by phenotypic antibiotic susceptibility testing and detection of class I and II integrons gene cassettes arrays. The clonal relationship of the isolates were analyzed by (GTG)5-PCR. Results Of 200 isolates, 136 isolates were multi drug resistance (MDR) including 47, 40, 31 and 18 isolates from chicken, human, cattle and sheep, respectively. Class I integron was detected in 50, 38, 6 and 16 %, while class II was detected in 26, 8, 0 and 4 % of chicken, human, cattle and sheep isolates, respectively. Variable regions were amplified and sequenced. Cassette arrays in class I integrons were: dfrA1, dfrA5, dfrA7, dfrA12, aadA1, dfrA17 aadA1, aadA22, aadB–aadA2 and dfrA12–orfF–aadA2, and for class II, dfrA1-sat-aadA1, and sat-sat1-aadA1 were detected. Six class I and three class II positive strains did not produce any amplicons for variable region. Integron-positive isolates showed higher rate of resistance to streptomycin and trimethoprim–sulphamethoxazole, especially in chicken isolates which were fed antibiotics. Low similarity and great genetic diversity of class I and II integrons carrying isolates indicated no clonal relation. Conclusions Integrons encoding for antibiotic resistance are significantly present among non-pathogenic commensal E. coli, especially from the hosts medicated by antibiotics. Uncontrolled use of antibiotics will increase the numbers of multiple drug resistant isolates and integrons prevalence.
Collapse
Affiliation(s)
- Roohollah Kheiri
- Molecular Microbiology, Quality Control Office, Alborz Province Water and Wastewater Company, Karaj, Alborz Islamic Republic of Iran
| | - Leili Akhtari
- Water Treatment Plant, Tehran Water and Wastewater Supply and Treatment Company, Tehran, Islamic Republic of Iran
| |
Collapse
|
23
|
Al-Marzooq F, Mohd Yusof MY, Tay ST. Molecular Analysis of Antibiotic Resistance Determinants and Plasmids in Malaysian Isolates of Multidrug Resistant Klebsiella pneumoniae. PLoS One 2015. [PMID: 26203651 PMCID: PMC4512681 DOI: 10.1371/journal.pone.0133654] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Infections caused by multidrug resistant Klebsiella pneumoniae have been increasingly reported in many parts of the world. A total of 93 Malaysian multidrug resistant K. pneumoniae isolated from patients attending to University of Malaya Medical Center, Kuala Lumpur, Malaysia from 2010-2012 were investigated for antibiotic resistance determinants including extended-spectrum beta-lactamases (ESBLs), aminoglycoside and trimethoprim/sulfamethoxazole resistance genes and plasmid replicons. CTX-M-15 (91.3%) was the predominant ESBL gene detected in this study. aacC2 gene (67.7%) was the most common gene detected in aminoglycoside-resistant isolates. Trimethoprim/sulfamethoxazole resistance (90.3%) was attributed to the presence of sul1 (53.8%) and dfrA (59.1%) genes in the isolates. Multiple plasmid replicons (1-4) were detected in 95.7% of the isolates. FIIK was the dominant replicon detected together with 13 other types of plasmid replicons. Conjugative plasmids (1-3 plasmids of ~3-100 kb) were obtained from 27 of 43 K. pneumoniae isolates. An ESBL gene (either CTX-M-15, CTX-M-3 or SHV-12) was detected from each transconjugant. Co-detection with at least one of other antibiotic resistance determinants [sul1, dfrA, aacC2, aac(6ˊ)-Ib, aac(6ˊ)-Ib-cr and qnrB] was noted in most conjugative plasmids. The transconjugants were resistant to multiple antibiotics including β-lactams, gentamicin and cotrimoxazole, but not ciprofloxacin. This is the first study describing the characterization of plasmids circulating in Malaysian multidrug resistant K. pneumoniae isolates. The results of this study suggest the diffusion of highly diverse plasmids with multiple antibiotic resistance determinants among the Malaysian isolates. Effective infection control measures and antibiotic stewardship programs should be adopted to limit the spread of the multidrug resistant bacteria in healthcare settings.
Collapse
Affiliation(s)
- Farah Al-Marzooq
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd Yasim Mohd Yusof
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sun Tee Tay
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail:
| |
Collapse
|
24
|
Domingues S, Nielsen KM, da Silva GJ. Global dissemination patterns of common gene cassette arrays in class 1 integrons. Microbiology (Reading) 2015; 161:1313-37. [DOI: 10.1099/mic.0.000099] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
25
|
Malek MM, Amer FA, Allam AA, El-Sokkary RH, Gheith T, Arafa MA. Occurrence of classes I and II integrons in Enterobacteriaceae collected from Zagazig University Hospitals, Egypt. Front Microbiol 2015; 6:601. [PMID: 26157425 PMCID: PMC4477160 DOI: 10.3389/fmicb.2015.00601] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/01/2015] [Indexed: 12/30/2022] Open
Abstract
Integrons are genetic units characterized by the ability to capture and incorporate gene cassettes, thus can contribute to the emergence and transfer of antibiotic resistance. The objectives of this study were: (1) to investigate the presence and distribution of class I and class II integrons and the characteristics of the gene cassettes they carry in Enterobacteriaceae isolated from nosocomial infections at Zagzig University Hospital in Egypt, (2) to determine their impact on resistance, and (3) to identify risk factors for the existence of integrons. Relevant samples and full clinical history were collected from 118 inpatients. Samples were processed; isolated microbes were identified and tested for antibiotic susceptibilities. Integrons were detected by polymerase chain reaction (PCR) and were characterized into class I or II by restriction fragment length polymorphism (RFLP). Integron-positive isolates were subjected to another PCR to detect gene cassette, followed by gene cassette sequencing. Risk factors were analyzed by logistic regression analysis. Seventy-six Enterobacteriaceae isolates were recognized, 41 of them (53.9%) were integron-positive; 39 strains carried class I and 2 strains carried class II integrons. Integrons had gene cassettes encoding different combinations and types of resistance determinants. Interestingly, blaOXA129 gene was found and ereA gene was carried on class I integrons. The same determinants were carried within isolates of the same species as well as isolates of different species. The presence of integrons was significantly associated with multidrug resistance (MDR). No risk factors were associated for integron carriage. We conclude that integrons carrying gene cassettes encoding antibiotic resistance are significantly present among Enterobacteriaceae causing nosocomial infection in our hospital. Risk factors for acquisition remain to be identified.
Collapse
Affiliation(s)
- Mai M. Malek
- Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig UniversityCairo, Egypt
| | - Fatma A. Amer
- Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig UniversityCairo, Egypt
| | - Ayman A. Allam
- Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig UniversityCairo, Egypt
| | - Rehab H. El-Sokkary
- Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig UniversityCairo, Egypt
| | - Tarek Gheith
- Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig UniversityCairo, Egypt
| | - Mohamed A. Arafa
- Pediatrics Department, Faculty of Medicine, Zagazig UniversityZagazig, Egypt
| |
Collapse
|
26
|
Abstract
Integrons are versatile gene acquisition systems commonly found in bacterial genomes. They are ancient elements that are a hot spot for genomic complexity, generating phenotypic diversity and shaping adaptive responses. In recent times, they have had a major role in the acquisition, expression, and dissemination of antibiotic resistance genes. Assessing the ongoing threats posed by integrons requires an understanding of their origins and evolutionary history. This review examines the functions and activities of integrons before the antibiotic era. It shows how antibiotic use selected particular integrons from among the environmental pool of these elements, such that integrons carrying resistance genes are now present in the majority of Gram-negative pathogens. Finally, it examines the potential consequences of widespread pollution with the novel integrons that have been assembled via the agency of human antibiotic use and speculates on the potential uses of integrons as platforms for biotechnology.
Collapse
|
27
|
Hsiao KY, Lee MF, Peng CF. Detection and characterization of class 1 integron-associated gene cassettes from Pseudomonas aeruginosa isolates in southern Taiwan. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.bgm.2014.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Kiddee A, Henghiranyawong K, Yimsabai J, Tiloklurs M, Niumsup PR. Nosocomial spread of class 1 integron-carrying extensively drug-resistant Pseudomonas aeruginosa isolates in a Thai hospital. Int J Antimicrob Agents 2013; 42:301-6. [DOI: 10.1016/j.ijantimicag.2013.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/14/2013] [Accepted: 05/16/2013] [Indexed: 10/26/2022]
|