1
|
Our Experience over 20 Years: Antimicrobial Peptides against Gram Positives, Gram Negatives, and Fungi. Pharmaceutics 2022; 15:pharmaceutics15010040. [PMID: 36678669 PMCID: PMC9862542 DOI: 10.3390/pharmaceutics15010040] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/04/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Antibiotic resistance is rapidly increasing, and new anti-infective therapies are urgently needed. In this regard, antimicrobial peptides (AMPs) may represent potential candidates for the treatment of infections caused by multiresistant microorganisms. In this narrative review, we reported the experience of our research group over 20 years. We described the AMPs we evaluated against Gram-positive, Gram-negative, and fungi. In conclusion, our experience shows that AMPs can be a key option for treating multiresistant infections and overcoming resistance mechanisms. The combination of AMPs allows antibiotics and antifungals that are no longer effective to exploit the synergistic effect by restoring their efficacy. A current limitation includes poor data on human patients, the cost of some AMPs, and their safety, which is why studies on humans are needed as soon as possible.
Collapse
|
2
|
Matching amino acids membrane preference profile to improve activity of antimicrobial peptides. Commun Biol 2022; 5:1199. [PMID: 36347951 PMCID: PMC9643456 DOI: 10.1038/s42003-022-04164-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
Antimicrobial peptides (AMPs) are cationic antibiotics that can kill multidrug-resistant bacteria via membrane insertion. However, their weak activity limits their clinical use. Ironically, the cationic charge of AMPs is essential for membrane binding, but it obstructs membrane insertion. In this study, we postulate that this problem can be overcome by locating cationic amino acids at the energetically preferred membrane surface. All amino acids have an energetically preferred or less preferred membrane position profile, and this profile is strongly related to membrane insertion. However, most AMPs do not follow this profile. One exception is protegrin-1, a powerful but neglected AMP. In the present study, we found that a potent AMP, WCopW5, strongly resembles protegrin-1 and that the match between its sequence and the preferred position profile closely correlates with its antimicrobial activity. One of its derivatives, WCopW43, has antimicrobial activity comparable to that of the most effective AMPs in clinical use.
Collapse
|
3
|
Role of Daptomycin in Cutaneous Wound Healing: A Narrative Review. Antibiotics (Basel) 2022; 11:antibiotics11070944. [PMID: 35884198 PMCID: PMC9311791 DOI: 10.3390/antibiotics11070944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023] Open
Abstract
Daptomycin is active against Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA) and the on-label indications for its use include complicated skin and skin structure infections (cSSSI). We performed a narrative review of the literature with the aim to evaluate the role of daptomycin in the skin wound healing process, proposing our point of view on the possible association with other molecules that could improve the skin healing process. Daptomycin may improve wound healing in MRSA-infected burns, surgical wounds, and diabetic feet, but further studies in humans with histological examination are needed. In the future, the combination of daptomycin with other molecules with synergistic action, such as vitamin E and derivates, IB-367, RNA III-inhibiting peptide (RIP), and palladium nanoflowers, may help to improve wound healing and overcome forms of antibiotic resistance.
Collapse
|
4
|
Efficacy of Cathelicidin LL-37 in an MRSA Wound Infection Mouse Model. Antibiotics (Basel) 2021; 10:antibiotics10101210. [PMID: 34680791 PMCID: PMC8532939 DOI: 10.3390/antibiotics10101210] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 11/20/2022] Open
Abstract
Background: LL-37 is the only human antimicrobial peptide that belongs to the cathelicidins. The aim of the study was to evaluate the efficacy of LL-37 in the management of MRSA-infected surgical wounds in mice. Methods: A wound on the back of adult male BALB/c mice was made and inoculated with Staphylococcus aureus. Two control groups were formed (uninfected and not treated, C0; infected and not treated, C1) and six contaminated groups were treated, respectively, with: teicoplanin, LL-37, given topically and /or systemically. Histological examination of VEGF expression and micro-vessel density, and bacterial cultures of wound tissues, were performed. Results: Histological examination of wounds in the group treated with topical and intraperitoneal LL-37 showed increased re-epithelialization, formation of the granulation tissue, collagen organization, and angiogenesis. Conclusions: Based on the mode of action, LL-37 has a potential future role in the management of infected wounds.
Collapse
|
5
|
Lawless SP, Cohen ND, Lawhon SD, Chamoun-Emanuelli AM, Wu J, Rivera-Vélez A, Weeks BR, Whitfield-Cargile CM. Effect of gallium maltolate on a model of chronic, infected equine distal limb wounds. PLoS One 2020; 15:e0235006. [PMID: 32559258 PMCID: PMC7304909 DOI: 10.1371/journal.pone.0235006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/06/2020] [Indexed: 02/06/2023] Open
Abstract
Distal limb wounds are common injuries sustained by horses and their healing is fraught with complications due to equine anatomy, prevalence of infection, and challenges associated with wound management. Gallium is a semi-metallic element that has been shown to possess antimicrobial properties and aid in wound healing in various preclinical models. The effects of Gallium have not been studied in equine wound healing. Therefore, the objective of this study was to compare healing rates between gallium-treated and untreated wounds of equine distal limbs and to demonstrate the antimicrobial effects of gallium on wounds inoculated with S. aureus. Using an established model of equine wound healing we demonstrated beneficial effects of 0.5% topical gallium maltolate on equine wound healing. Specifically we documented reduced healing times, reduced bioburden, and reduced formation of exuberant granulation tissue in wounds treated with gallium maltolate as compared with untreated wounds. Gallium appeared to exert its beneficial effects via its well-described antimicrobial actions as well as by altering the expression of specific genes known to be involved in wound healing of horses and other animals. Specifically, gallium maltolate appeared to increase expression of transforming growth factor-β in both infected and un-infected wounds. Further work is needed to document the effects of gallium on naturally occurring equine wounds and to compare the effects of gallium with other wound treatment options. These data, however, suggest that gallium may be an attractive and novel means of improving equine distal limb wound healing.
Collapse
Affiliation(s)
- Shauna P. Lawless
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Noah D. Cohen
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Sara D. Lawhon
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Ana M. Chamoun-Emanuelli
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Jing Wu
- Veterinary Medical Teaching Hospital, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Andrés Rivera-Vélez
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Brad R. Weeks
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Canaan M. Whitfield-Cargile
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
6
|
Koppen BC, Mulder PPG, de Boer L, Riool M, Drijfhout JW, Zaat SAJ. Synergistic microbicidal effect of cationic antimicrobial peptides and teicoplanin against planktonic and biofilm-encased Staphylococcus aureus. Int J Antimicrob Agents 2018; 53:143-151. [PMID: 30315918 DOI: 10.1016/j.ijantimicag.2018.10.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 09/07/2018] [Accepted: 10/06/2018] [Indexed: 12/11/2022]
Abstract
Antibiotic resistance and biofilm formation are the main reasons for failure in treatment of bacterial infections. This study aimed to identify synergistic combinations of conventional antibiotics and novel synthetic antimicrobial and antibiofilm peptides (SAAPs) inspired by the structures of the natural human cationic peptides LL-37 and thrombocidin-1 (TC-1). The LL-37-inspired lead peptide SAAP-148 was combined with antibiotics of different classes against Staphylococcus aureus, and showed synergy with teicoplanin. Synergy with teicoplanin was also observed with LL-37, the LL-37-inspired SAAP-276 and the TC-1-inspired TC84. Interestingly, no synergy was observed against Staphylococcus epidermidis. Furthermore, teicoplanin combined with SAAP-148 or SAAP-276 showed strong interaction against S. aureus biofilms. The dltABCD operon and the mprF gene in S. aureus conferred resistance to LL-37, but SAAP-148 proved to be indifferently potent against wild-type, ΔdltA and ΔmprF S. aureus strains. When used alone, relatively high concentrations of both LL-37 and teicoplanin (30-120 µM and 4-32 mg/L, respectively) were required to kill S. aureus. Resistance to LL-37 in S. aureus was overcome by combined use of teicoplanin and LL-37. Thus, teicoplanin potentiates peptide LL-37, enhancing the efficacy of the innate defence, and combining the novel peptides with teicoplanin offers potential for enhanced efficacy of treatment of S. aureus infections, including biofilms.
Collapse
Affiliation(s)
- Bruce C Koppen
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Patrick P G Mulder
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Leonie de Boer
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Martijn Riool
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan W Drijfhout
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Centre, Leiden, The Netherlands
| | - Sebastian A J Zaat
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Role of Daptomycin on Burn Wound Healing in an Animal Methicillin-Resistant Staphylococcus aureus Infection Model. Antimicrob Agents Chemother 2017; 61:AAC.00606-17. [PMID: 28696234 DOI: 10.1128/aac.00606-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/02/2017] [Indexed: 12/19/2022] Open
Abstract
Prolonged hospitalization and antibiotic therapy are risk factors for the development of methicillin-resistant Staphylococcus aureus (MRSA) infections in thermal burn patients. We used a rat model to study the in vivo efficacy of daptomycin in the treatment of burn wound infections by S. aureus, and we evaluated the wound healing process through morphological and immunohistochemical analysis. A copper bar heated in boiling water was applied on a paraspinal site of each rat, resulting in two full-thickness burns. A small gauze was placed over each burn and inoculated with 5 × 107 CFU of S. aureus ATCC 43300. The study included two uninfected control groups with and without daptomycin treatment, an infected control group that did not receive any treatment, and two infected groups treated, respectively, with intraperitoneal daptomycin and teicoplanin. The main outcome measures were quantitative culture, histological evaluation of tissue repair, and immunohistochemical expression of wound healing markers: epidermal growth factor receptor (EGFR) and fibroblast growth factor 2 (FGF-2). The highest inhibition of infection was achieved in the group that received daptomycin, which reduced the bacterial load from 107 CFU/ml to about 103 CFU/g (P < 0.01). The groups treated with daptomycin showed better overall healing with epithelialization and significantly higher collagen scores than the other groups, and these findings were also confirmed by immunohistochemical data. In conclusion, our results support the hypothesis that daptomycin is an important modulator of wound repair by possibly reducing hypertrophic burn scar formation.
Collapse
|
8
|
Colistin enhances therapeutic efficacy of daptomycin or teicoplanin in a murine model of multiresistant Acinetobacter baumannii sepsis. Diagn Microbiol Infect Dis 2016; 86:392-398. [PMID: 27712928 DOI: 10.1016/j.diagmicrobio.2016.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 09/05/2016] [Accepted: 09/11/2016] [Indexed: 01/12/2023]
Abstract
We investigated the efficacy of colistin combined with teicoplanin or daptomycin in an experimental mouse model of multiresistant Acinetobacter baumannii infection. Animal received intraperitoneally 1ml saline containing 2×1010CFU of A. baumannii. Colistin, daptomycin, teicoplanin, and colistin plus daptomycin or teicoplanin were given by intraperitoneal administration 2h after bacterial challenge. A control group received sodium chloride solution. In the in vitro study A. baumannii showed to be susceptible only to colistin with MIC of 2mg/l. In the in vivo study, colistin alone showed a good antimicrobial efficacy. When combined with teicoplanin or daptomycin, colistin produced the lowest bacterial and the best survival rates. In immunological studies, when colistin was associated to daptomycin or teicoplanin, both the number and the cytotoxic activity of NK cells increased. In conclusion, colistin combined with teicoplanin or daptomycin may improve the therapy of multiresistant A. baumannii infection.
Collapse
|