1
|
Fatima R, Hynes AP. Temperate phage-antibiotic synergy is widespread-extending to Pseudomonas-but varies by phage, host strain, and antibiotic pairing. mBio 2025; 16:e0255924. [PMID: 39704503 PMCID: PMC11796409 DOI: 10.1128/mbio.02559-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/15/2024] [Indexed: 12/21/2024] Open
Abstract
Bacteriophages (phages) are bacterial-specific viruses that can be used alone or with antibiotics to reduce bacterial load. Most phages are unsuitable for therapy because they are "temperate" and can integrate into the host genome, forming a lysogen that is protected from subsequent phage infections. However, integrated phages can be awakened by stressors such as antibiotics. Supported by this interaction, here we explore the potential use of combined temperate phage and antibiotic against the multi-drug-resistant pathogen, Pseudomonas aeruginosa. In all, thirty-nine temperate phages were isolated from clinical strains, and a subset was screened for synergy with six antibiotics (ciprofloxacin, levofloxacin, meropenem, piperacillin, tobramycin, and polymyxin B), using checkerboard assays. Interestingly, our screen identified phages that can synergize with each antibiotic, despite their widely differing targets; however, these are highly phage-antibiotic and phage-host pairing specific. Screening across multiple clinical strains reveals that temperate phages can reduce the antibiotic minimum inhibitory concentration up to 32-fold, even in a resistant isolate, functionally re-sensitizing the bacterium to the antibiotic. Meropenem and tobramycin did not reduce the frequency of lysogens, suggesting a mechanism of action independent of the temperate nature of the phages. By contrast, ciprofloxacin and piperacillin were able to reduce the frequency of lysogeny, the former by inducing phages-as previously reported in E. coli. Curiously, synergy with piperacillin reduced lysogen survivors, but not by inducing the phages, suggesting an alternative mechanism for biasing the phage lysis-lysogeny equilibrium. Overall, our findings indicate that temperate phages can act as adjuvants in clinically relevant pathogens, even in the presence of antibiotic resistance, thereby drastically expanding their therapeutic potential. IMPORTANCE The recent discovery that otherwise therapeutically unusable temperate phages can potentiate the activity of antibiotics, resulting in a potent synergy, has only been tested in E. coli, and with a single model phage. Here, working with clinical isolates of Pseudomonas and phages from these isolates, we highlight the broad applicability of this synergy-across a variety of mechanisms but also highlight the limitations of predicting the phage, host, and antibiotic combinations that will synergize.
Collapse
Affiliation(s)
- Rabia Fatima
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Alexander P. Hynes
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
2
|
Sagini JPN, Possamai Rossatto FC, Souza F, Pilau E, Quines CB, Ávila DS, Ligabue-Braun R, Zimmer AR, Pereira RI, Zimmer KR. Inhibition of Staphylococcus epidermidis and Pseudomonas aeruginosa biofilms by grape and rice agroindustrial residues. Microb Pathog 2024; 197:107019. [PMID: 39442815 DOI: 10.1016/j.micpath.2024.107019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Agroindustrial wastes are generated daily and seem to be rich in bioactive molecules. Thus, they can potentially be used as source of compounds able to control bacterial biofilms. We investigated the potential of extracts from the residues of rice and grape to combat clinically important bacterial biofilms. Extracts of grape pomace and rice bran were obtained using different extractive methodologies and subjected to the evaluation of its antimicrobial and antibiofilm activities. After the in vivo toxicity, the chemical characterization of the most promising extract was assessed. The mass spectrometry analysis revealed the presence of dipeptides, alkaloids and phenolic compounds. Most grape extracts presented antibiofilm and antimicrobial activities against Staphylococcus epidermidis ATCC 35984 and Pseudomonas aeruginosa PA14. The hydromethanolic grape pomace extract obtained by ultrasound assisted extraction (MeOH 80 UAE) presented the most promising activity, being able to inhibit in 99 % and 80 % the biofilm formation of S. epidermidis and P. aeruginosa, respectively. Against the gram-negative model, this extract eradicated the biofilm by 80 %, induced the swarming motility and displayed a physical effect. It also did not present acute or chronic toxicity in Caenorhabditis elegans model. In this way, agroindustrial residues represent a promising source of molecules capable of controlling bacterial biofilms.
Collapse
Affiliation(s)
- João Pedro Nunes Sagini
- Programa de Pós-Graduação em Biociências, Laboratório de Biofilmes e Modelos Alternativos (BioModal), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite 245, 90050-170, Porto Alegre, RS, Brazil
| | - Fernanda Cristina Possamai Rossatto
- Programa de Pós-Graduação em Biociências, Laboratório de Biofilmes e Modelos Alternativos (BioModal), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite 245, 90050-170, Porto Alegre, RS, Brazil
| | - Felipe Souza
- Laboratório de Biomoléculas e Espectrometria de Massas (Labiomass), Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Eduardo Pilau
- Laboratório de Biomoléculas e Espectrometria de Massas (Labiomass), Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Caroline Brandão Quines
- Programa de Pós-Graduação em Bioquímica, Laboratório de Bioquímica e Toxicologia em Caenorhabditis elegans (GBTOXCe), Universidade Federal do Pampa (UNIPAMPA), Uruguaiana, RS, 97500-970, Brazil
| | - Daiana Silva Ávila
- Programa de Pós-Graduação em Bioquímica, Laboratório de Bioquímica e Toxicologia em Caenorhabditis elegans (GBTOXCe), Universidade Federal do Pampa (UNIPAMPA), Uruguaiana, RS, 97500-970, Brazil
| | - Rodrigo Ligabue-Braun
- Programa de Pós-Graduação em Biociências, Laboratório de Biofilmes e Modelos Alternativos (BioModal), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite 245, 90050-170, Porto Alegre, RS, Brazil
| | - Aline Rigon Zimmer
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil
| | - Rebeca Inhoque Pereira
- Programa de Pós-Graduação em Biociências, Laboratório de Biofilmes e Modelos Alternativos (BioModal), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite 245, 90050-170, Porto Alegre, RS, Brazil
| | - Karine Rigon Zimmer
- Programa de Pós-Graduação em Biociências, Laboratório de Biofilmes e Modelos Alternativos (BioModal), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite 245, 90050-170, Porto Alegre, RS, Brazil.
| |
Collapse
|
3
|
Liu J, Han Y, Dou X, Liang W. Effect of toluene on m-xylene removal in a biotrickling filter: Performance, biofilm characteristics, and microbial analysis. ENVIRONMENTAL RESEARCH 2024; 245:117978. [PMID: 38142726 DOI: 10.1016/j.envres.2023.117978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 12/26/2023]
Abstract
Hydrophobic volatile organic compounds (VOCs) pose a challenge to the removal efficiency in biotrickling filters (BTFs). The addition of relatively hydrophilic substances presents a promising approach for enhancing the elimination of hydrophobic VOCs. In this study, toluene was introduced into the BTF system alongside m-xylene, and their mixing ratios were changed to explore the interactions and mechanisms under different conditions. The result showed that the most pronounced synergistic interaction occurred when the mixing concentration ratio of m-xylene and toluene was 2:1. The removal efficiency (RE) of m-xylene increased from 88% to 97%, and the elimination capacity (EC) of m-xylene changed from 64 to 72 g m-3 h-1. Under this condition, there was a notable increase in biomass, extracellular polymeric substance (EPS) content, and relative hydrophobicity. Microbial diversity was enhanced observably with Berkeleyces and Mycobacterium potentially playing a positive role in co-degradation. Meanwhile, microbial metabolic function prediction indicated a significant enhancement in metabolic functions. Therefore, the introduction of relatively hydrophilic VOCs represents an effective strategy for enhancing the removal of hydrophobic VOCs in the BTFs.
Collapse
Affiliation(s)
- Jia Liu
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing, 100124, China.
| | - Yueyang Han
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing, 100124, China
| | - Xiaona Dou
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing, 100124, China
| | - Wenjun Liang
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
4
|
Bagherian MS, Zargham P, Zarharan H, Bakhtiari M, Mortezaee Ghariyeh Ali N, Yousefi E, Es-Haghi A, Taghavizadeh Yazdi ME. Antimicrobial and antibiofilm properties of selenium-chitosan-loaded salicylic acid nanoparticles for the removal of emerging contaminants from bacterial pathogens. World J Microbiol Biotechnol 2024; 40:86. [PMID: 38319399 DOI: 10.1007/s11274-024-03917-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/01/2024] [Indexed: 02/07/2024]
Abstract
In this study salicylic acid loaded containing selenium nanoparticles was synthesized and called SA@CS-Se NPs. the chitosan was used as a natural stabilizer during the synthesis process. Fourier transforms infrared spectroscopy (FTIR), Powder X-ray diffraction (XRD), field emission electron microscopy (FESEM), and transmission electron microscopy (TEM) were used to describe the physicochemical characteristics of the SA@CS-Se NPs. The PXRD examination revealed that the grain size was around 31.9 nm. TEM and FESEM techniques showed the spherical shape of SA@CS-Se NPs. Additionally, the analysis of experiments showed that SA@CS-Se NPs have antibacterial properties against 4 ATCC bacteria; So that with concentrations of 75, 125, 150, and 100 µg/ml, it inhibited the biofilm formation of Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and Staphylococcus aureus respectively. Also, at the concentration of 300 µg/ml, it removed 22.76, 23.2, 10.62, and 18.08% biofilm caused by E. coli, P. aeruginosa, B. subtilis, and S. aureus respectively. The synthesized SA@CS-Se NPs may find an application to reduce the unsafe influence of pathogenic microbes and, hence, eliminate microbial contamination.
Collapse
Affiliation(s)
| | - Parisa Zargham
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Hoda Zarharan
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Maleknaz Bakhtiari
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Ehsan Yousefi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Ali Es-Haghi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | - Mohammad Ehsan Taghavizadeh Yazdi
- Department of Pharmacology, Medicinal Plants Pharmacological Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Milani F, Adibkia K, Hamishehkar H, Gholikhani T, Bani F, Milani M. Increased antibiofilm and growth inhibitory effect of Imipenem/Cilastatin nanoliposomes against clinical Pseudomonas aeruginosa isolates. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:47. [PMID: 37735291 PMCID: PMC10514128 DOI: 10.1007/s10856-023-06752-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 09/06/2023] [Indexed: 09/23/2023]
Abstract
Numerous infections are linked to Pseudomonas aeruginosa. It is one of the major medical concerns because of virulence and antibiotic resistance. Antibiotic encapsulation in liposomes is a good strategy for controlling infections caused by this microorganism. Evaluation of anti-Pseudomonas aeruginosa effect of liposomal form of Imipenem/Cilastatin in vitro condition. By using the disk agar diffusion technique, the isolates' pattern of antibiotic resistance was identified. The antibiotic was placed into the nanoliposome after it had been made using the thin layer and ethanol injection techniques. SEM and DLS were used to determine the size, shape, and zeta potential of the encapsulated drug form and the empty nanoliposome. Additionally, Imipenem/Cilastatin encapsulation in nanoliposomes was studied using FT-IR spectroscopy. In the microbial assay experiments the MIC, MBC and MBEC of liposomal and free drug forms were determined. The nanoparticles were spherical, with a diameter ranging from 30 to 39 nm, and the EE% in the thin layer and ethanol injection procedures were 97 and 98, respectively. Imipenem/Cilastatin nanoliposomes showed peaks at 3009 cm-1 and 1650 cm-1, demonstrating the thermodynamic stability for the chemical structure of the drug enclosed and validating the encapsulation of antibiotic in the nanoliposomes. When compared to free drug forms, nanoliposomes had lower MIC and MBC values in the majority of the isolates and had a greater ability to eradicate the biofilm formation. It was shown that the two nanoliposome preparation techniques were more efficient in 80% of the isolates, which had outcomes that were consistent with those of numerous other investigations. Overall, we demonstrated that the antibacterial activity of nanoliposomes was higher than that of the free drug form based on the evaluation of their MIC and MBC. Pharmaceutical nanoliposome techniques provide an excellent future perspective on how to manage microbial infections that are resistant to antibiotics.
Collapse
Affiliation(s)
- Faezeh Milani
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tooba Gholikhani
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Bani
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Science, Tabriz, Iran
| | - Morteza Milani
- Infectious and Tropical Diseases Research Center, and Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
6
|
The Antioxidant, Antibacterial and Anti-Biofilm Properties of Rapeseed Creamed Honey Enriched with Selected Plant Superfoods. Antibiotics (Basel) 2023; 12:antibiotics12020235. [PMID: 36830146 PMCID: PMC9951885 DOI: 10.3390/antibiotics12020235] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
The aim of the study is to evaluate the effect of the addition of selected fruits and herbs belonging to the "superfoods" category for the bioactivity of a rapeseed honey matrix. Flavored creamed honeys with nine types of various additives (2 and 4% of content) were prepared and analyzed for the content of total phenols, flavonoids, antioxidant (FRAP, DPPH and ABTS) and antibacterial activity against four strains of bacteria. Additionally, the impact of three months of storage on the antioxidant properties of the products obtained was examined. The significant dose-dependent increase in the content of bioactive ingredients and antioxidant capacity in spiced honeys, as compared to control honey, was observed. The highest enrichment was obtained for the addition of powdered sea buckthorn leaves and black raspberry fruits. Honey with the addition of sea buckthorn leaves inhibited the growth of P. aeruginosa, S. aureus and K. pneumonia, whereas honeys with black raspberry and blackcurrant fruits showed activity only on the latter two strains. Furthermore, what is more interesting, honey supplemented with sea buckthorn leaf and black raspberry fruits inhibited S. aureus biofilm formation at the sub-minimum inhibitory concentrations (sub-MICs), showing a dose-dependent anti-biofilm effect.
Collapse
|
7
|
Karami-Zarandi M, Rahdar HA, Esmaeili H, Ranjbar R. Klebsiella pneumoniae: an update on antibiotic resistance mechanisms. Future Microbiol 2023; 18:65-81. [PMID: 36632990 DOI: 10.2217/fmb-2022-0097] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Klebsiella pneumoniae colonizes mucosal surfaces of healthy humans and is responsible for one third of all Gram-negative infections in hospitalized patients. K. pneumoniae is compatible with acquiring antibiotic resistance elements such as plasmids and transposons encoding various β-lactamases and efflux pumps. Mutations in different proteins such as β-lactamases, efflux proteins, outer membrane proteins, gene replication enzymes, protein synthesis complexes and transcription enzymes also generate resistance to antibiotics. Biofilm formation is another strategy that facilitates antibiotic resistance. Resistant strains can be treated by combination therapy using available antibiotics, though proper management of antibiotic consumption in hospitals is important to reduce the emergence and proliferation of resistance to current antibiotics.
Collapse
Affiliation(s)
- Morteza Karami-Zarandi
- Department of Microbiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, 4513956111, Iran
| | - Hossein Ali Rahdar
- Department of Microbiology, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, 7618815676, Iran
| | - Hadi Esmaeili
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, 1435916471, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Systems Biology & Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, 1435916471, Iran
| |
Collapse
|
8
|
Low Ciprofloxacin Concentrations Select Multidrug-Resistant Mutants Overproducing Efflux Pumps in Clinical Isolates of Pseudomonas aeruginosa. Microbiol Spectr 2022; 10:e0072322. [PMID: 36000896 PMCID: PMC9603996 DOI: 10.1128/spectrum.00723-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Low antibiotic concentrations present in natural environments are a severe and often neglected threat to public health. Even if they are present below their MICs, they may select for antibiotic-resistant pathogens. Notably, the minimal subinhibitory concentrations that select resistant bacteria, and define the respective sub-MIC selective windows, differ between antibiotics. The establishment of these selective concentrations is needed for risk-assessment studies regarding the presence of antibiotics in different habitats. Using short-term evolution experiments in a set of 12 Pseudomonas aeruginosa clinical isolates (including high-risk clones with ubiquitous distribution), we have determined that ciprofloxacin sub-MIC selective windows are strain specific and resistome dependent. Nonetheless, in all cases, clinically relevant multidrug-resistant (MDR) mutants emerged upon exposure to low ciprofloxacin concentrations, with these concentrations being below the levels reported in ciprofloxacin-polluted natural habitats where P. aeruginosa can be present. This feature expands the conditions and habitats where clinically relevant quinolone-resistant mutants can emerge. In addition, we established the lowest concentration threshold beyond which P. aeruginosa, regardless of the strain, becomes resistant to ciprofloxacin. Three days of exposure under this sub-MIC "risk concentration" led to the selection of MDR mutants that displayed resistance mechanisms usually ascribed to high selective pressures, i.e., the overproduction of the efflux pumps MexCD-OprJ and MexEF-OprN. From a One-Health viewpoint, these data stress the transcendent role of low drug concentrations, which can be encountered in natural ecosystems, in aggravating the antibiotic resistance problem, especially when it comes to pathogens of environmental origin. IMPORTANCE It has been established that antibiotic concentrations below MICs can select antibiotic-resistant pathogens, a feature of relevance for analyzing the role of nonclinical ecosystems in antibiotic resistance evolution. The range of concentrations where this selection occurs defines the sub-MIC selective window, whose width depends on the antibiotic. Herein, we have determined the ciprofloxacin sub-MIC selective windows of a set of Pseudomonas aeruginosa clinical isolates (including high-risk clones with worldwide distribution) and established the lowest concentration threshold, notably an amount reported to be present in natural ecosystems, beyond which this pathogen acquires resistance. Importantly, our results show that this ciprofloxacin sub-MIC selects for multidrug-resistant mutants overproducing clinically relevant efflux pumps. From a One-Health angle, this information supports that low antimicrobial concentrations, present in natural environments, may have a relevant role in worsening the antibiotic resistance crisis, particularly regarding pathogens with environmental niches, such as P. aeruginosa.
Collapse
|
9
|
Yuan Y, Yang X, Zeng Q, Li H, Fu R, Du L, Liu W, Zhang Y, Zhou X, Chu Y, Zhang X, Zhao K. Repurposing Dimetridazole and Ribavirin to disarm Pseudomonas aeruginosa virulence by targeting the quorum sensing system. Front Microbiol 2022; 13:978502. [PMID: 36046018 PMCID: PMC9421001 DOI: 10.3389/fmicb.2022.978502] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/27/2022] [Indexed: 11/15/2022] Open
Abstract
Pseudomonas aeruginosa relies on its complex cellular regulatory network to produce a series of virulence factors and to cause various acute and chronic infections in a wide range of hosts. Compared with traditional antibiotics which frequently accompany with widespread antibiotic resistance, crippling the virulence system of bacteria is expected to be a promising anti-infective strategy. In this study, Dimetridazole and Ribavirin, which had poor antibacterial activities on P. aeruginosa reference isolate PAO1 in nutrient medium but significantly inhibited the growth of P. aeruginosa PAO1 in M9-adenosine, were selected from 40 marketed compounds with similar core structure (furan, benzofuran, or flavonoids) to the acyl-homoserine lactone signals of P. aeruginosa quorum sensing (QS) system. The production of QS-controlled proteases, pyocyanin, and biofilm formation of P. aeruginosa PAO1 and the clinical isolates were significantly decreased by the presence of Dimetridazole or Ribavirin. Correspondingly, the majority of QS-activated genes in P. aeruginosa, including the key regulatory genes lasR, rhlR, and pqsR and their downstream genes, were significantly inhibited by Ribavirin or Dimetridazole, as determined by RNA-sequencing and quantitative PCR. Furthermore, the susceptibilities of drug-resistant P. aeruginosa isolates to polymyxin B, meropenem, and kanamycin were remarkably promoted by the synergistic application of Dimetridazole or Ribavirin. Finally, the treatment of Ribavirin or Dimetridazole effectively protected Caenorhabditis elegans and mice from P. aeruginosa infection. In conclusion, this study reports the antivirulence potentials of Dimetridazole and Ribavirin on P. aeruginosa and provides structural basis and methodological reference for the development of anti-pseudomonal drugs.
Collapse
Affiliation(s)
- Yang Yuan
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Affiliated Hospital/Clinical College of Chengdu University, Chengdu, Sichuan, China
| | - Xiting Yang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Affiliated Hospital/Clinical College of Chengdu University, Chengdu, Sichuan, China
| | - Qianglin Zeng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Affiliated Hospital/Clinical College of Chengdu University, Chengdu, Sichuan, China
| | - Heyue Li
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Ruyi Fu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Affiliated Hospital/Clinical College of Chengdu University, Chengdu, Sichuan, China
| | - Lianming Du
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Affiliated Hospital/Clinical College of Chengdu University, Chengdu, Sichuan, China
| | - Wei Liu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Affiliated Hospital/Clinical College of Chengdu University, Chengdu, Sichuan, China
| | - Yamei Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Affiliated Hospital/Clinical College of Chengdu University, Chengdu, Sichuan, China
| | - Xikun Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Yiwen Chu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Affiliated Hospital/Clinical College of Chengdu University, Chengdu, Sichuan, China
| | - Xiuyue Zhang
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Xiuyue Zhang,
| | - Kelei Zhao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Affiliated Hospital/Clinical College of Chengdu University, Chengdu, Sichuan, China
- *Correspondence: Kelei Zhao,
| |
Collapse
|
10
|
Zong TX, Silveira AP, Morais JAV, Sampaio MC, Muehlmann LA, Zhang J, Jiang CS, Liu SK. Recent Advances in Antimicrobial Nano-Drug Delivery Systems. NANOMATERIALS 2022; 12:nano12111855. [PMID: 35683711 PMCID: PMC9182179 DOI: 10.3390/nano12111855] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/28/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022]
Abstract
Infectious diseases are among the major health issues of the 21st century. The substantial use of antibiotics over the years has contributed to the dissemination of multidrug resistant bacteria. According to a recent report by the World Health Organization, antibacterial (ATB) drug resistance has been one of the biggest challenges, as well as the development of effective long-term ATBs. Since pathogens quickly adapt and evolve through several strategies, regular ATBs usually may result in temporary or noneffective treatments. Therefore, the demand for new therapies methods, such as nano-drug delivery systems (NDDS), has aroused huge interest due to its potentialities to improve the drug bioavailability and targeting efficiency, including liposomes, nanoemulsions, solid lipid nanoparticles, polymeric nanoparticles, metal nanoparticles, and others. Given the relevance of this subject, this review aims to summarize the progress of recent research in antibacterial therapeutic drugs supported by nanobiotechnological tools.
Collapse
Affiliation(s)
- Tong-Xin Zong
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (T.-X.Z.); (J.Z.)
| | - Ariane Pandolfo Silveira
- Institute of Biological Sciences, University of Brasília, Brasilia 70910900, Brazil; (A.P.S.); (J.A.V.M.); (M.C.S.)
| | | | - Marina Carvalho Sampaio
- Institute of Biological Sciences, University of Brasília, Brasilia 70910900, Brazil; (A.P.S.); (J.A.V.M.); (M.C.S.)
| | - Luis Alexandre Muehlmann
- Institute of Biological Sciences, University of Brasília, Brasilia 70910900, Brazil; (A.P.S.); (J.A.V.M.); (M.C.S.)
- Faculty of Ceilandia, University of Brasilia, Brasilia 72220900, Brazil
- Correspondence: (L.A.M.); (C.-S.J.); (S.-K.L.)
| | - Juan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (T.-X.Z.); (J.Z.)
| | - Cheng-Shi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (T.-X.Z.); (J.Z.)
- Correspondence: (L.A.M.); (C.-S.J.); (S.-K.L.)
| | - Shan-Kui Liu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (T.-X.Z.); (J.Z.)
- Correspondence: (L.A.M.); (C.-S.J.); (S.-K.L.)
| |
Collapse
|
11
|
Anju VT, Busi S, Kumar S, Suchiang K, Kumavath R, Ranganathan S, Ampasala DR, Dyavaiah M. Alantolactone modulates the production of quorum sensing mediated virulence factors and biofilm formation in Pseudomonas aeruginosa. BIOFOULING 2022; 38:331-347. [PMID: 35469529 DOI: 10.1080/08927014.2022.2064747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen in immunocompromised patients and accounts for mortality worldwide. Quorum sensing (QS) and QS mediated biofilm formation of P. aeruginosa increase the severity of infection in the host. New and effective therapeutics are in high demand to eliminate Pseudomonas infections. The current study investigated the quorum quenching and biofilm inhibition properties of alantolactone (ATL) against P. aeruginosa PAO1. The production of key virulence factors and biofilm components were affected in bacteria when treated with sub-MIC of ATL and further validated by qRT-PCR studies. The anti-infective potential of ATL was corroborated in an in vivo model with improved survival of infected Caenorhabditis elegans and reduced bacterial colonization. In silico studies suggested the molecular interactions of ATL to QS proteins as stable. Finally, ATL was explored in the present study to inhibit QS pathways and holds the potential to develop into an effective anti-infective agent against P. aeruginosa.
Collapse
Affiliation(s)
- V T Anju
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Siddhardha Busi
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Sandeep Kumar
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Kitlangki Suchiang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, India
| | - Sampathkumar Ranganathan
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Dinakara Rao Ampasala
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Madhu Dyavaiah
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
12
|
Nolan C, Behrends V. Sub-Inhibitory Antibiotic Exposure and Virulence in Pseudomonas aeruginosa. Antibiotics (Basel) 2021; 10:antibiotics10111393. [PMID: 34827331 PMCID: PMC8615142 DOI: 10.3390/antibiotics10111393] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022] Open
Abstract
Pseudomonas aeruginosa is a prime opportunistic pathogen, one of the most important causes of hospital-acquired infections and the major cause of morbidity and mortality in cystic fibrosis lung infections. One reason for the bacterium's pathogenic success is the large array of virulence factors that it can employ. Another is its high degree of intrinsic and acquired resistance to antibiotics. In this review, we first summarise the current knowledge about the regulation of virulence factor expression and production. We then look at the impact of sub-MIC antibiotic exposure and find that the virulence-antibiotic interaction for P. aeruginosa is antibiotic-specific, multifaceted, and complex. Most studies undertaken to date have been in vitro assays in batch culture systems, involving short-term (<24 h) antibiotic exposure. Therefore, we discuss the importance of long-term, in vivo-mimicking models for future work, particularly highlighting the need to account for bacterial physiology, which by extension governs both virulence factor expression and antibiotic tolerance/resistance.
Collapse
|
13
|
Hemmati F, Ghotaslou R, Salehi R, Kafil HS, Hasani A, Gholizadeh P, Nouri R, Rezaee MA. Effects of Gentamicin-Loaded Chitosan-ZnO Nanocomposite on Quorum-Sensing Regulation of Pseudomonas Aeruginosa. Mol Biotechnol 2021; 63:746-756. [PMID: 34003434 DOI: 10.1007/s12033-021-00336-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/11/2021] [Indexed: 11/30/2022]
Abstract
Cell density-based intercellular signaling mechanism is known as Quorum sensing (QS); it serves a significant role in regulating the pathogenic factors. The objective of the present study was to assess the influence of chitosan-zinc oxide nanocomposite (CH-ZnO nanocomposite), alone and in combination with gentamicin, on the sensitivity to hydrogen peroxide (H2O2), the production of pathogenic factors and QS-regulated genes of Pseudomonas aeruginosa. The efficacy of the minimum inhibitory concentration (MIC) and 1/4 MIC of the CH-ZnO nanocomposite, alone and in combination with gentamicin, on the sensitivity to H2O2, pyocyanin secretion, swarming and twitching motilities was evaluated. In addition, the expression of some QS-regulated genes including rhlI, rhlR, lasI and lasR genes was measured by Real-time quantitative PCR (RT-qPCR) following exposure to the nanocomposite. The results demonstrated that at MIC concentrations, the gentamicin-loaded CH-ZnO nanocomposite significantly inhibited QS-regulated phenotypes such as pyocyanin secretion (82.4%), swarming (76%) and twitching (73.6%) motilities; further it increased the inhibition growth zone (134.5%), as well as, at 1/4 MIC concentration decreased the expression of lasI (72%), lasR (78%), rhlI (76%) and rhlR (82%) genes; as compared to untreated P. aeruginosa PAO1 (P < 0.05). Our results also demonstrated that the CH-ZnO nanocomposite combined with gentamicin could be a potential innovative candidate, which could be broadly applied in the treatment of P. aeruginosa infections.
Collapse
Affiliation(s)
- Fatemeh Hemmati
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Ghotaslou
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roya Salehi
- Drug Applied Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Hossein Samadi Kafil
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Alka Hasani
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pourya Gholizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roghayeh Nouri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Ahangarzadeh Rezaee
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
14
|
Mangiaterra G, Carotti E, Vaiasicca S, Cedraro N, Citterio B, La Teana A, Biavasco F. Contribution of Drugs Interfering with Protein and Cell Wall Synthesis to the Persistence of Pseudomonas aeruginosa Biofilms: An In Vitro Model. Int J Mol Sci 2021; 22:ijms22041628. [PMID: 33562782 PMCID: PMC7914939 DOI: 10.3390/ijms22041628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 12/28/2022] Open
Abstract
The occurrence of Pseudomonas aeruginosa (PA) persisters, including viable but non-culturable (VBNC) forms, subpopulations of tolerant cells that can survive high antibiotic doses, is the main reason for PA lung infections failed eradication and recurrence in Cystic Fibrosis (CF) patients, subjected to life-long, cyclic antibiotic treatments. In this paper, we investigated the role of subinhibitory concentrations of different anti-pseudomonas antibiotics in the maintenance of persistent (including VBNC) PA cells in in vitro biofilms. Persisters were firstly selected by exposure to high doses of antibiotics and their abundance over time evaluated, using a combination of cultural, qPCR and flow cytometry assays. Two engineered GFP-producing PA strains were used. The obtained results demonstrated a major involvement of tobramycin and bacterial cell wall-targeting antibiotics in the resilience to starvation of VBNC forms, while the presence of ciprofloxacin and ceftazidime/avibactam lead to their complete loss. Moreover, a positive correlation between tobramycin exposure, biofilm production and c-di-GMP levels was observed. The presented data could allow a deeper understanding of bacterial population dynamics during the treatment of recurrent PA infections and provide a reliable evaluation of the real efficacy of the antibiotic treatments against the bacterial population within the CF lung.
Collapse
Affiliation(s)
- Gianmarco Mangiaterra
- Department of Life and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, 60131 Ancona, Italy; (E.C.); (S.V.); (N.C.); (A.L.T.); (F.B.)
- Correspondence: ; Tel.: +39-071-220-4622; Fax: +39-071-220-4316
| | - Elisa Carotti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, 60131 Ancona, Italy; (E.C.); (S.V.); (N.C.); (A.L.T.); (F.B.)
| | - Salvatore Vaiasicca
- Department of Life and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, 60131 Ancona, Italy; (E.C.); (S.V.); (N.C.); (A.L.T.); (F.B.)
| | - Nicholas Cedraro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, 60131 Ancona, Italy; (E.C.); (S.V.); (N.C.); (A.L.T.); (F.B.)
| | - Barbara Citterio
- Department of Biomolecular Science, Biotechnology Section, University of Urbino “Carlo Bo”, via Arco d’Augusto 2, 61032 Fano, Italy;
| | - Anna La Teana
- Department of Life and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, 60131 Ancona, Italy; (E.C.); (S.V.); (N.C.); (A.L.T.); (F.B.)
| | - Francesca Biavasco
- Department of Life and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, 60131 Ancona, Italy; (E.C.); (S.V.); (N.C.); (A.L.T.); (F.B.)
| |
Collapse
|
15
|
Davis CM, McCutcheon JG, Dennis JJ. Aztreonam Lysine Increases the Activity of Phages E79 and phiKZ against Pseudomonas aeruginosa PA01. Microorganisms 2021; 9:microorganisms9010152. [PMID: 33445453 PMCID: PMC7827458 DOI: 10.3390/microorganisms9010152] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 02/07/2023] Open
Abstract
Pseudomonas aeruginosa is a pernicious bacterial pathogen that is difficult to treat because of high levels of antibiotic resistance. A promising alternative treatment option for such bacteria is the application of bacteriophages; the correct combination of phages plus antibiotics can produce synergistic inhibitory effects. In this study, we describe morphological changes induced by sub-MIC levels of the antibiotic aztreonam lysine (AzLys) on P. aeruginosa PA01, which may in part explain the observed phage–antibiotic synergy (PAS). One-step growth curves for phage E79 showed increased adsorption rates, decreased infection latency, accelerated time to lysis and a minor reduction in burst size. Phage E79 plus AzLys PAS was also able to significantly reduce P. aeruginosa biofilm growth over 3-fold as compared to phage treatment alone. Sub-inhibitory AzLys-induced filamentation of P. aeruginosa cells resulted in loss of twitching motility and a reduction in swimming motility, likely due to a reduction in the number of polar Type IV pili and flagella, respectively, on the filamented cell surfaces. Phage phiKZ, which uses Type IV pili as a receptor, did not exhibit increased activity with AzLys at lower sub-inhibitory levels, but still produced phage–antibiotic synergistic killing with sub-inhibitory AzLys. A one-step growth curve indicates that phiKZ in the presence of AzLys also exhibits a decreased infection latency and moderately undergoes accelerated time to lysis. In contrast to prior PAS studies demonstrating that phages undergo delayed time to lysis with cell filamentation, these PAS results show that phages undergo accelerated time to lysis, which therefore suggests that PAS is dependent upon multiple factors, including the type of phages and antibiotics used, and the bacterial host being tested.
Collapse
|
16
|
Aleanizy FS, Alqahtani FY, Eltayb EK, Alrumikan N, Almebki R, Alhossan A, Almangour TA, AlQahtani H. Evaluating the effect of antibiotics sub-inhibitory dose on Pseudomonas aeruginosa quorum sensing dependent virulence and its phenotypes. Saudi J Biol Sci 2020; 28:550-559. [PMID: 33424338 PMCID: PMC7785434 DOI: 10.1016/j.sjbs.2020.10.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/20/2020] [Accepted: 10/20/2020] [Indexed: 11/26/2022] Open
Abstract
The opportunistic Pseudomonas aeruginosa virulence controlled by quorum sensing (QS) also identified as, cell-cell communication. QS system is organized by the LasI-LasR and the RhlI-RhlR components. Provided that QS tends to perform a key role in virulence gene expression and host defence function, QS inhibitors have been proposed as potential antipseudomonal therapies. Sub-inhibitory concentrations (sub-MIC) of antibiotics, although having biostatic effect on bacteria, but can interfere with bacterial QS system and virulence. This research aimed to examine the impact of sub-MIC of azithromycin, imipenem, cefepime and piperacillin/tazobactam on the QS-dependent virulence including pyocyanin and biofilm production, haemolysin, protease and DNase in P. aeruginosa wildtype and mutant strains; transcriptional-regulator (ΔLasR), autoinducer synthesis protein (ΔLasI), transcriptional-regulator (ΔRhlR), protease precursor (ΔLasA) and double regulators mutants (ΔLasR/RhlR). The growth of all strains showed similar pattern, however, in presence of antibiotics significant growth variation was observed among mutant strains when compared to wild type strain. Antimicrobial activity tested by agar diffusion method of all antibiotics on all strains were used to compare the zones of therapeutic and sub-MIC doses showing a significant difference in the inhibition zone. QS-dependant virulence as biofilm, pyocyanin, protease, haemolysin and DNase production showed significant variation on all strains compared to wild type in response to antibiotics used at sub-MIC doses. In conclusion well known antibiotics can be used in sub-MIC doses to decrease the virulence of P. aeruginosa in addition to overcoming the major side effect of the high doses and the occurrence of resistance.
Collapse
Affiliation(s)
- Fadilah Sfouq Aleanizy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 22452 Riyadh 11495, Saudi Arabia
| | - Fulwah Y Alqahtani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 22452 Riyadh 11495, Saudi Arabia
| | - Esra Kamal Eltayb
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 22452 Riyadh 11495, Saudi Arabia
| | - Norah Alrumikan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 22452 Riyadh 11495, Saudi Arabia
| | - Renad Almebki
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 22452 Riyadh 11495, Saudi Arabia
| | - Abdulaziz Alhossan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, P.O. Box 22452 Riyadh 11495, Saudi Arabia
| | - Thamer A Almangour
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, P.O. Box 22452 Riyadh 11495, Saudi Arabia
| | - Hajar AlQahtani
- Department of Pharmacy Service, King Abdul-Aziz Medical City, Ministry of National Guard, Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
17
|
Abdel-Rhman SH, Rizk DE, Abdelmegeed ES. Effect of Sub-Minimum Inhibitory Concentrations of Tyrosol and EDTA on Quorum Sensing and Virulence of Pseudomonas aeruginosa. Infect Drug Resist 2020; 13:3501-3511. [PMID: 33116669 PMCID: PMC7550211 DOI: 10.2147/idr.s264805] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023] Open
Abstract
Introduction Pseudomonas aeruginosa is considered a dangerous pathogen, as it causes many human diseases, besides that it is resistant to almost all types of antibacterial agents. So, new strategies to overcome P. aeruginosa infection have evolved to attenuate its virulence factors and inhibit its quorum-sensing (QS) activity. Purpose This study investigated the effect of tyrosol and EDTA as anti-quorum-sensing and antivirulence agents against P. aeruginosa PAO1. Methods Anti-quorum activity of sub-minimum inhibitory concentrations (sub-MICs) of tyrosol and EDTA was tested using Chromobacterium violaceum (CV 12,472) biosensor bioassay. Miller assay was used to assess the inhibition of QS signal molecules by β-galactosidase activity determination. Also, their effects on the production of protease, lipase, lecithinase, and motility were tested. The inhibitory effects of these molecules on QS regulatory genes and exotoxins genes expression were evaluated by real-time PCR. Results Tyrosol and EDTA at sub-MICs inhibited the production of violacein pigment. Both compounds inhibited QS molecules production and their associated virulence factors (protease, lipase, lecithinase, and motility) (P≤ 0.05). Besides, the expression levels of QS regulatory genes (lasI, lasR, rhƖI, rhIR, pqsA, and pqsR) and exotoxins genes (exoS and exoY) were significantly reduced (P≤ 0.05). Conclusion Both tyrosol and EDTA can be used to fight P. aeruginosa infection as anti-quorum-sensing and antivirulence agents at their sub-MICs.
Collapse
Affiliation(s)
- Shaymaa H Abdel-Rhman
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.,Department of Pharmaceutics and Pharmaceutical Biotechnology, Faculty of Pharmacy, Taibah University, AlMadinah Al Munawwarah, Saudi Arabia
| | - Dina E Rizk
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Eman S Abdelmegeed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
18
|
Phenotypic and genetic properties of susceptible and multidrug-resistant Pseudomonas aeruginosa isolates in Southern Serbia. Arh Hig Rada Toksikol 2020; 71:231-250. [PMID: 33074173 PMCID: PMC7968503 DOI: 10.2478/aiht-2020-71-3418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/01/2020] [Indexed: 01/11/2023] Open
Abstract
Drug resistance of Pseudomonas aeruginosa is a leading problem in hospital infections. The aim of this study was to determine the best molecular genetic discrimination method for Pseudomonas spp. isolates among 94 outpatients and inpatients and see their grouping by phenotype characteristics (biofilm formation, frequency of serotypes, pigmentation, production of different class of beta-lactamases, and susceptibility to different antibiotic classes) and genotype. The most common serotypes were P1, P6, and P11, while co-productions of pyoverdine and pyocyanin were observed in 70 % of isolates. A total of 77.66 % isolates were mostly weak and moderate biofilm producers. Isolates were susceptible to colistin (100 %), aztreonam (97.87 %), imipenem (91.49 %), doripenem (90.43 %), and meropenem (84.04 %). MICs values confirmed susceptibility to ceftazidime and cefepime and singled out meripenem as the most effective inhibitor. Most isolates were resistant to aminoglycosides and fluoroquinolones. Only two isolates produced ESBL, eight were carbapenemase producers, and five isolates produced MBLs. Twenty-nine isolates were multidrug-resistant; 82.8 % of which produced both pigments, 58.3 % were non-typeable, while the P6 and P11 serotypes were equally distributed (16.7 %). Thirteen MDR isolates were strong enzyme producers. RAPD PCR analysis using primer 272 proved the best at discriminatory fingerprinting for Pseudomonas isolates, as it allocated 12 clusters. A correlation between DNA patterns and antibiotic resistance, production of pigments, serotypes distribution, and biofilm formation was not observed, and only confirmed higher genetic heterogeneity among P. aeruginosa isolates, which suggests that other molecular methods are needed to reveal potential relations between genotypic patterns and phenotypic characteristics.
Collapse
|
19
|
Morteza M, Roya S, Hamed H, Amir Z, Abolfazl A. Synthesis and evaluation of polymeric micelle containing piperacillin/tazobactam for enhanced antibacterial activity. Drug Deliv 2020; 26:1292-1299. [PMID: 31797692 PMCID: PMC6896493 DOI: 10.1080/10717544.2019.1693708] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Infections caused by multidrug-resistant bacteria such as P. aeruginosa are important therapeutic complications. Piperacillin/Tazobactam is considered a safe antimicrobial agent. But we should not ignore the prevalence of resistant strains to this drug. In this work, a new polymeric micelle composed of Piperacillin/Tazobactam-loaded Poly (ethylene glycol) methyl ether-block-poly (lactide-co-glycolide) (PLGA-PEG) was developed to improve the antimicrobial performance of P/T. The SEM and TEM studies of PLGA-PEG micelle showed, semi-spherical morphology with a mean diameter of below 30 nm. Zeta potential results indicated that the surface charge of PLGA-PEG micelle was −2.98 mV, while after encapsulation of P/T, the surface charge decreases to −4.13 mV. Clinical strains of P. aeruginosa were isolated and their resistance pattern against different antibiotics was evaluated. The MIC of free and P/T -Loaded PLGA-PEG micelles was determined. Also, the effect of free or P/T micelle against minimal biofilm eradication concentration and motility inhibition was evaluated. The bacterial isolates were resistant to most common antibiotics. The MIC of the free drug form and micelle form ranged from 4 to 512 µg/ml and 2 to 256 µg/ml, respectively. Generally, micelle showed more effective antibiofilm activities, inhibition of bacterial motility and reducing the MIC than that free drug form.
Collapse
Affiliation(s)
- Milani Morteza
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Salehi Roya
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamishehkar Hamed
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zarebkohan Amir
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Akbarzadeh Abolfazl
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
20
|
Kwon YW, Lee SY. Effects of antibiotics at sub-minimal inhibitory concentrations on the morphology of Streptococcus mutans and Lactobacillus acidophilus. ACTA ACUST UNITED AC 2020. [DOI: 10.21851/obr.44.01.202003.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Ye Won Kwon
- Master's Student, Department of Microbiology and Immunology, College of Dentistry, Gangneung-Wonju National University, Gangneung, Republic of Korea
- Master's Student, Research Institute of Oral Science, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Si Young Lee
- Professor, Department of Microbiology and Immunology, College of Dentistry, Gangneung-Wonju National University, Gangneung, Republic of Korea
- Professor, Research Institute of Oral Science, Gangneung-Wonju National University, Gangneung, Republic of Korea
| |
Collapse
|
21
|
Olivares E, Badel-Berchoux S, Provot C, Prévost G, Bernardi T, Jehl F. Clinical Impact of Antibiotics for the Treatment of Pseudomonas aeruginosa Biofilm Infections. Front Microbiol 2020; 10:2894. [PMID: 31998248 PMCID: PMC6962142 DOI: 10.3389/fmicb.2019.02894] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/02/2019] [Indexed: 02/03/2023] Open
Abstract
Bacterial biofilms are highly recalcitrant to antibiotic therapies due to multiple tolerance mechanisms. The involvement of Pseudomonas aeruginosa in a wide range of biofilm-related infections often leads to treatment failures. Indeed, few current antimicrobial molecules are still effective on tolerant sessile cells. In contrast, studies increasingly showed that conventional antibiotics can, at low concentrations, induce a phenotype change in bacteria and consequently, the biofilm formation. Understanding the clinical effects of antimicrobials on biofilm establishment is essential to avoid the use of inappropriate treatments in the case of biofilm infections. This article reviews the current knowledge about bacterial growth within a biofilm and the preventive or inducer impact of standard antimicrobials on its formation by P. aeruginosa. The effect of antibiotics used to treat biofilms of other bacterial species, as Staphylococcus aureus or Escherichia coli, was also briefly mentioned. Finally, it describes two in vitro devices which could potentially be used as antibiotic susceptibility testing for adherent bacteria.
Collapse
Affiliation(s)
- Elodie Olivares
- University of Strasbourg, CHRU Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, EA7290, Institut de Bactériologie, Strasbourg, France.,BioFilm Pharma SAS, Saint-Beauzire, France
| | | | - Christian Provot
- BioFilm Pharma SAS, Saint-Beauzire, France.,BioFilm Control SAS, Saint-Beauzire, France
| | - Gilles Prévost
- University of Strasbourg, CHRU Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, EA7290, Institut de Bactériologie, Strasbourg, France
| | - Thierry Bernardi
- BioFilm Pharma SAS, Saint-Beauzire, France.,BioFilm Control SAS, Saint-Beauzire, France
| | - François Jehl
- University of Strasbourg, CHRU Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, EA7290, Institut de Bactériologie, Strasbourg, France
| |
Collapse
|
22
|
Haghi F, Nezhad BB, Zeighami H. Effect of subinhibitory concentrations of imipenem and piperacillin on Pseudomonas aeruginosa toxA and exoS transcriptional expression. New Microbes New Infect 2019; 32:100608. [PMID: 31719997 PMCID: PMC6838800 DOI: 10.1016/j.nmni.2019.100608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/09/2019] [Accepted: 09/29/2019] [Indexed: 11/25/2022] Open
|
23
|
Srivastava P, Sivashanmugam K. Combinatorial Drug Therapy for Controlling Pseudomonas aeruginosa and Its Association With Chronic Condition of Diabetic Foot Ulcer. INT J LOW EXTR WOUND 2019; 19:7-20. [DOI: 10.1177/1534734619873785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diabetic foot ulcer (DFU) is a major complication of diabetes mellitus, major observations of DFU cases have reported on amputation of foot region, and microbial bioburden during DFU is a major cause that affects healing of the wound regions. Pathogenic microbes are routinely isolated from these wound regions, especially Staphylococcus, Pseudomonas, Klebsiella, and Escherichia coli have been reported, whereas higher prevalence of Pseudomonas species during chronic condition in the deeper part of the wound, when left untreated, leads to gangrene. Multiple drug-resistant Pseudomonas strains are a new threat because of their biofilm-forming ability, making it more potent and incurable. Acyl homoserine lactones (AHL) are a group of signaling molecules that can regulate biofilm growth, and Las and Rhl operon generally work in tandem to initiate biofilm formation by Pseudomonas species. These signaling molecules also initiate virulence factors that correlates upregulation of inflammatory responses, and AHL can be a therapeutic target in order to prevent the efficacy of multiple drug-resistant strains that form biofilm and also can be an alternative solution against control of multiple drug-resistant strains.
Collapse
|
24
|
Trotsko N, Kosikowska U, Andrzejczuk S, Paneth A, Wujec M. Influence of Thiazolidine-2,4-Dione Derivatives with Azolidine or Thiosemicarbazone Moieties on Haemophilus spp. Planktonic or Biofilm-Forming Cells. Molecules 2019; 24:E1051. [PMID: 30884874 PMCID: PMC6471098 DOI: 10.3390/molecules24061051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/07/2019] [Accepted: 03/14/2019] [Indexed: 01/22/2023] Open
Abstract
Biofilm, naturally formed by microorganisms as integrated surface-bound communities, is one of the reasons for the development of antimicrobial resistance. Haemophilus spp. are common and representative opportunistic Gram-negative rods forming from the upper respiratory tract microbiota. The aim of this paper was to evaluate the influence of thiazolidine-2,4-dionebased azolidine and chlorophenylthiosemicarbazone hybrids against both planktonic and biofilm-forming Haemophilus spp. cells. The in vitro activity against planktonic and biofilm-forming cells of the tested compounds were evaluated by using the broth microdilution method. These activities were detected against reference and clinical strains of Haemophilus spp. on the basis of MICs (minimal inhibitory concentrations) and MBICs (minimal biofilm inhibitory concentrations). In addition, anti-adhesive properties of these compounds were examined. The target compounds showed potential activity against planktonic cells with MIC = 62.5⁻500 mg/L and biofilm-forming cells with MBIC = 62.5⁻1000 mg/L. The observed anti-adhesive properties of the tested compounds were reversible during long-term incubation in a lower concentration of compounds.
Collapse
Affiliation(s)
- Nazar Trotsko
- Department of Organic Chemistry, Faculty of Pharmacy with Medical Analytics Division, Medical University of Lublin, 4A Chodźki, 20-093 Lublin, Poland.
| | - Urszula Kosikowska
- Department of Pharmaceutical Microbiology with Laboratory for Microbiological Diagnostics, Faculty of Pharmacy with Medical Analytics Division, Medical University of Lublin, 1 Chodźki, 20-093 Lublin, Poland.
| | - Sylwia Andrzejczuk
- Department of Pharmaceutical Microbiology with Laboratory for Microbiological Diagnostics, Faculty of Pharmacy with Medical Analytics Division, Medical University of Lublin, 1 Chodźki, 20-093 Lublin, Poland.
| | - Agata Paneth
- Department of Organic Chemistry, Faculty of Pharmacy with Medical Analytics Division, Medical University of Lublin, 4A Chodźki, 20-093 Lublin, Poland.
| | - Monika Wujec
- Department of Organic Chemistry, Faculty of Pharmacy with Medical Analytics Division, Medical University of Lublin, 4A Chodźki, 20-093 Lublin, Poland.
| |
Collapse
|
25
|
Lee SY, Lee SY. Effects of sub-minimal inhibitory concentrations of antibiotics on the morphology and surface hydrophobicity of periodontopathic anaerobes. Anaerobe 2019; 55:107-111. [DOI: 10.1016/j.anaerobe.2018.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 11/06/2018] [Accepted: 11/09/2018] [Indexed: 11/16/2022]
|
26
|
TASSEW DD, MECHESSO AF, PARK NH, SONG JB, SHUR JW, PARK SC. Biofilm formation and determination of minimum biofilm eradication concentration of antibiotics in Mycoplasma hyopneumoniae. J Vet Med Sci 2017; 79:1716-1720. [PMID: 28890520 PMCID: PMC5658566 DOI: 10.1292/jvms.17-0279] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/25/2017] [Indexed: 12/05/2022] Open
Abstract
The study was aimed to investigate biofilm forming ability of Mycoplasma hyopneumoniae and to determine the minimum biofilm eradication concentrations of antibiotics. Biofilm forming ability of six strains of M. hyopneumoniae was examined using crystal violet staining on coverslips. The results demonstrated an apparent line of biofilm growth in 3 of the strains isolated from swine with confirmed cases of enzootic pneumonia. BacLight bacterial viability assay revealed that the majority of the cells were viable after 336 hr of incubation. Moreover, M. hyopneumoniae persists in the biofilm after being exposed to 10 fold higher concentration of antibiotics than the minimum inhibitory concentrations in planktonic cells. To the best of our knowledge, this is the first report of biofilm formation in M. hyopneumoniae. However, comprehensive studies on the mechanisms of biofilm formation are needed to combat swine enzootic pneumonia caused by resistant M. hyopneumoniae.
Collapse
Affiliation(s)
- Dereje Damte TASSEW
- College of Veterinary Medicine, Kyungpook National
University, 41566, Bukgu, Daegu, South Korea
- Lovelace Respiratory Research Institute, Albuquerque, NM
87108, U.S.A
| | - Abraham Fikru MECHESSO
- College of Veterinary Medicine, Kyungpook National
University, 41566, Bukgu, Daegu, South Korea
| | - Na-Hye PARK
- College of Veterinary Medicine, Kyungpook National
University, 41566, Bukgu, Daegu, South Korea
| | - Ju-Beom SONG
- Department of Chemistry Education, Kyungpook National
University, 41566, Bukgu, Daegu, South Korea
| | - Joo-Woon SHUR
- Center for Nutraceutical and Pharmaceutical Materials,
Division of Bioscience and Bioinformatics, Science Campus, Myongji University, 449-728,
Yongin, Gyeonggi, Republic of Korea
| | - Seung-Chun PARK
- College of Veterinary Medicine, Kyungpook National
University, 41566, Bukgu, Daegu, South Korea
| |
Collapse
|
27
|
Bogdan M, Drenjancevic D, Harsanji Drenjancevic I, Bedenic B, Zujic Atalic V, Talapko J, Vukovic D. In vitro effect of subminimal inhibitory concentrations of antibiotics on the biofilm formation ability of Acinetobacter baumannii clinical isolates. J Chemother 2017; 30:16-24. [PMID: 28956494 DOI: 10.1080/1120009x.2017.1378835] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The ability of A cinetobacter baumannii strains to form biofilm is one of the most important virulence factor which enables bacterial survival in a harsh environment and decreases antibiotic concentration as well. Subminimal inhibitory concentrations (subMICs) of antibiotics may change bacterial ultrastructure or have an influence on some different molecular mechanisms resulting in morphological or physiological changes in bacteria itself. The aim of this study was to determine effects of 1/2, 1/4, 1/8 and 1/16 minimal inhibitory concentrationsof imipenem, ampicillin-sulbactam, azithromycin, rifampicin and colistin on biofilm formation ability of 22 biofilm non-producing and 46 biofilm producing A. baumannii strains (30 weak producing strains and 16 moderate producing strains). Results of this study indicate that 1/2-1/16 MICs of imipenem, azithromycin, and rifampicin can reduce bacterial biofilm formation ability in moderate producing strains (p < 0.05), whereas 1/16 MIC of imipenem and 1/4-1/8 MICs of rifampicin reduce the biofilm formation in weak producing strains (p < 0.05). Statisticaly significant effect was detected among biofilm non-producing strains after their exposure to 1/16 MIC of azithromycin (p = 0.039). SubMICs of ampicillin-sulbactam and colistin did not have any significant effect on biofilm formation among tested A. baumannii strains.
Collapse
Affiliation(s)
- Maja Bogdan
- a Microbiology Service , Institute of Public Health Osijek-Baranja County , Osijek , Croatia.,b Faculty of Medicine, Department of Microbiology and Parasitology , University of Osijek , Osijek , Croatia
| | - Domagoj Drenjancevic
- b Faculty of Medicine, Department of Microbiology and Parasitology , University of Osijek , Osijek , Croatia.,c Department of Transfusion Medicine , Osijek University Hospital , Osijek , Croatia
| | - Ivana Harsanji Drenjancevic
- d Department of Anesthesiology, Reanimatology and Intensive Medicine , Osijek University Hospital , Osijek , Croatia.,e Faculty of Medicine, Department of Anesthesiology, Reanimatology and Intensive Medicine , University of Osijek , Osijek , Croatia
| | - Branka Bedenic
- f Department of Clinical and Molecular Microbiology , University Hospital Center Zagreb , Zagreb , Croatia.,g Department of Microbiology and Parasitology , School of Medicine, University of Zagreb , Zagreb , Croatia
| | - Vlasta Zujic Atalic
- a Microbiology Service , Institute of Public Health Osijek-Baranja County , Osijek , Croatia.,b Faculty of Medicine, Department of Microbiology and Parasitology , University of Osijek , Osijek , Croatia
| | - Jasminka Talapko
- b Faculty of Medicine, Department of Microbiology and Parasitology , University of Osijek , Osijek , Croatia
| | - Dubravka Vukovic
- a Microbiology Service , Institute of Public Health Osijek-Baranja County , Osijek , Croatia
| |
Collapse
|
28
|
Heidari A, Noshiranzadeh N, Haghi F, Bikas R. Inhibition of quorum sensing related virulence factors of Pseudomonas aeruginosa by pyridoxal lactohydrazone. Microb Pathog 2017; 112:103-110. [PMID: 28939255 DOI: 10.1016/j.micpath.2017.09.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 09/16/2017] [Accepted: 09/18/2017] [Indexed: 01/03/2023]
Abstract
Pseudomonas aeruginosa quorum sensing (QS) system is a cell to cell signaling mechanism that regulates virulence factors and pathogenicity. Therefore, the QS system in P. aeruginosa may be an important target for pharmacological intervention. The present study aimed to investigate the effects of sub-MIC concentrations of (S,E)-2-hydroxy-N-(3-hydroxy-5-(hydroxymethyl)-2-methylpyridin-4-yl)propane hydrazide (pyridoxal lactohydrazone) against P. aeruginosa QS related virulence factors. We investigated the effect of sub-MIC concentrations of chiral pyridoxal lactohydrazone, which formed by the reaction of chiral lactic acid hydrazide and pyridoxal (one form of Vitamin B6) as bioactive reagents, on virulence factors. Treated PAO1 cultures in the presence of tested compound at 1/4 and 1/16 MIC (32 and 8 μg/mL respectively) showed significant inhibition of virulence factors including motility, alginate and pyocyanin production and susceptibility to H2O2 (P < 0.001). Also, the pyridoxal lactohydrazone showed anti-QS activity in Chromobacterium violaceum CV026 biosensor bioassay. Because of quorum sensing is a promising target for anti-virulence therapy and also important role of LasR regulatory protein in the initiation of P. aeruginosa QS system, we carried out molecular docking for understanding the interactions of pyridoxal lactohydrazone with the LasR receptor. The results of docking study suggested that the pyridoxal lactohydrazone has potential to inhibit the LasR protein. The results indicated that sub-MIC concentrations of this compound exhibited inhibitory effect on P. aeruginosa QS related virulence factors.
Collapse
Affiliation(s)
- Azam Heidari
- Department of Chemistry, Faculty of Sciences, University of Zanjan, 45371-38791, Zanjan, IR, Iran
| | - Nader Noshiranzadeh
- Department of Chemistry, Faculty of Sciences, University of Zanjan, 45371-38791, Zanjan, IR, Iran.
| | - Fakhri Haghi
- Department of Microbiology, School of Medicine, Zanjan University of Medical Sciences, 45139-56111, Zanjan, IR, Iran.
| | - Rahman Bikas
- Department of Chemistry, Faculty of Sciences, University of Zanjan, 45371-38791, Zanjan, IR, Iran
| |
Collapse
|
29
|
Bahari S, Zeighami H, Mirshahabi H, Roudashti S, Haghi F. Inhibition of Pseudomonas aeruginosa quorum sensing by subinhibitory concentrations of curcumin with gentamicin and azithromycin. J Glob Antimicrob Resist 2017; 10:21-28. [PMID: 28591665 DOI: 10.1016/j.jgar.2017.03.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 01/08/2017] [Accepted: 03/03/2017] [Indexed: 10/19/2022] Open
Abstract
OBJECTIVES Pseudomonas aeruginosa quorum sensing (QS) circuits regulate virulence factors and co-ordinate bacterial pathogenicity. This study aimed to investigate the inhibitory activity of subinhibitory concentrations of curcumin with azithromycin and gentamicin against P. aeruginosa QS-related genes and virulence factors. METHODS The minimum inhibitory concentrations (MICs) and synergistic activity of curcumin with azithromycin and gentamicin against P. aeruginosa PAO1 were determined using broth microdilution and checkerboard titration methods, respectively. The activity of sub-MICs (1/4× and 1/16× MIC) of curcumin on the QS signal molecules was assessed using a reporter strain assay. The influence of sub-MICs of curcumin, azithromycin and gentamicin alone and in combination on motility and biofilm formation was also determined and was confirmed by RT-PCR to test the expression of the QS regulatory genes lasI, lasR, rhlI and rhlR. RESULTS Addition of curcumin drastically decreased the MIC of azithromycin and gentamicin. Curcumin showed synergistic effects with azithromycin and gentamicin. Treated PAO1 cultures in the presence of curcumin showed a significant reduction of signals C12-HSL and C4-HSL (P<0.05). Sub-MICs (1/4× and 1/16× MIC) of curcumin, azithromycin and gentamicin alone and in combination significantly reduced swarming and twitching motilities as well as biofilm formation. Expression of QS regulatory genes lasI, lasR, rhlI and rhlR using 1/4× MIC of curcumin, azithromycin and gentamicin alone and in combination was decreased significantly compared with untreated PAO1. CONCLUSIONS These results indicate that a combination of sub-MIC of curcumin with azithromycin and gentamicin exhibited synergism against P. aeruginosa QS systems.
Collapse
Affiliation(s)
- Shahin Bahari
- Department of Microbiology and Virology, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Habib Zeighami
- Department of Microbiology and Virology, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hesam Mirshahabi
- Department of Microbiology and Virology, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Shekoufeh Roudashti
- Department of Microbiology and Virology, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Fakhri Haghi
- Department of Microbiology and Virology, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
30
|
Heidari A, Haghi F, Noshiranzadeh N, Bikas R. (S,E)-2-hydroxy-N-(2-hydroxy-5-nitrobenzylidene) propane hydrazide as a quorum sensing inhibitor of Pseudomonas aeruginosa. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1908-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
Upadhyay A, Arsi K, Wagle BR, Upadhyaya I, Shrestha S, Donoghue AM, Donoghue DJ. Trans-Cinnamaldehyde, Carvacrol, and Eugenol Reduce Campylobacter jejuni Colonization Factors and Expression of Virulence Genes in Vitro. Front Microbiol 2017; 8:713. [PMID: 28487683 PMCID: PMC5403884 DOI: 10.3389/fmicb.2017.00713] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 04/06/2017] [Indexed: 11/13/2022] Open
Abstract
Campylobacter jejuni is a major foodborne pathogen that causes severe gastroenteritis in humans characterized by fever, diarrhea, and abdominal cramps. In the human gut, Campylobacter adheres and invades the intestinal epithelium followed by cytolethal distending toxin mediated cell death, and enteritis. Reducing the attachment and invasion of Campylobacter to intestinal epithelium and expression of its virulence factors such as motility and cytolethal distending toxin (CDT) production could potentially reduce infection in humans. This study investigated the efficacy of sub-inhibitory concentrations (SICs, concentration not inhibiting bacterial growth) of three GRAS (generally recognized as safe) status phytochemicals namely trans-cinnamaldehyde (TC; 0.005, 0.01%), carvacrol (CR; 0.001, 0.002%), and eugenol (EG; 0.005, 0.01%) in reducing the attachment, invasion, and translocation of C. jejuni on human intestinal epithelial cells (Caco-2). Additionally, the effect of these phytochemicals on Campylobacter motility and CDT production was studied using standard bioassays and gene expression analysis. All experiments had duplicate samples and were replicated three times on three strains (wild type S-8, NCTC 11168, 81-176) of C. jejuni. Data were analyzed using ANOVA with GraphPad ver. 6. Differences between the means were considered significantly different at P < 0.05. The majority of phytochemical treatments reduced C. jejuni adhesion, invasion, and translocation of Caco-2 cells (P < 0.05). In addition, the phytochemicals reduced pathogen motility and production of CDT in S-8 and NCTC 11168 (P < 0.05). Real-time quantitative PCR revealed that phytochemicals reduced the transcription of select C. jejuni genes critical for infection in humans (P < 0.05). Results suggest that TC, CR, and EG could potentially be used to control C. jejuni infection in humans.
Collapse
Affiliation(s)
- Abhinav Upadhyay
- Department of Poultry Science, University of ArkansasFayetteville, AR, USA
| | - Komala Arsi
- Department of Poultry Science, University of ArkansasFayetteville, AR, USA
| | - Basanta R Wagle
- Department of Poultry Science, University of ArkansasFayetteville, AR, USA
| | - Indu Upadhyaya
- Department of Poultry Science, University of ArkansasFayetteville, AR, USA
| | - Sandip Shrestha
- Department of Poultry Science, University of ArkansasFayetteville, AR, USA
| | - Ann M Donoghue
- Poultry Production and Product Safety Research Unit, Agricultural Research Service (USDA)Fayetteville, AR, USA
| | - Dan J Donoghue
- Department of Poultry Science, University of ArkansasFayetteville, AR, USA
| |
Collapse
|
32
|
Synergistic activity of sub-inhibitory concentrations of curcumin with ceftazidime and ciprofloxacin against Pseudomonas aeruginosa quorum sensing related genes and virulence traits. World J Microbiol Biotechnol 2017; 33:50. [DOI: 10.1007/s11274-016-2195-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/20/2016] [Indexed: 12/29/2022]
|
33
|
Hayat S, Sabri AN, McHugh TD. Chloroform extract of turmeric inhibits biofilm formation, EPS production and motility in antibiotic resistant bacteria. J GEN APPL MICROBIOL 2017; 63:325-338. [DOI: 10.2323/jgam.2017.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Sumreen Hayat
- Department of Microbiology and Molecular Genetics, University of the Punjab, Quaid-e-Azam Campus
- Department of Microbiology, Government College University
| | - Anjum N. Sabri
- Department of Microbiology and Molecular Genetics, University of the Punjab, Quaid-e-Azam Campus
| | - Timothy D. McHugh
- Center for Clinical Microbiology, Royal Free Campus, University College London
| |
Collapse
|
34
|
Das MC, Paul S, Gupta P, Tribedi P, Sarkar S, Manna D, Bhattacharjee S. 3-Amino-4-aminoximidofurazan derivatives: small molecules possessing antimicrobial and antibiofilm activity against Staphylococcus aureus and Pseudomonas aeruginosa. J Appl Microbiol 2016; 120:842-59. [PMID: 26785169 DOI: 10.1111/jam.13063] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/19/2015] [Accepted: 01/12/2016] [Indexed: 12/18/2022]
Abstract
AIM The therapeutic treatment of microbial infections involving biofilm becomes quite challenging because of its increasing antibiotic resistance capacities. Towards this direction, in the present study we have evaluated the antibiofilm property of synthesized 3-amino-4-aminoximidofurazan compounds having polyamine skeleton. These derivatives were synthesized by incorporating furazan and biguanide moieties. METHODS AND RESULTS Different 3-amino-4-aminoximidofurazan derivatives (PI1-4) were synthesized via protic acid catalysis and subsequently characterized by (1) H NMR and (13) C NMR spectra, recorded at 400 and 100 MHz respectively. We have tested the antimicrobial and antibiofilm activities of these synthetic derivatives (PI1-4) against both Staphylococcus aureus and Pseudomonas aeruginosa. The compounds so tested were also compared with standard antibiotics namely Tobramycin (Ps. aeruginosa) and Azithromycin (Staph. aureus) which were used as a positive control in all experimental sets. All these compounds (PI1-4) exhibited moderate to significant antimicrobial activities against both micro-organisms wherein compound PI3 showed maximum activity. Biofilm inhibition of both micro-organisms was then evaluated by crystal violet and safranin staining, estimation of biofilm total protein and microscopy methods using sub-MIC dose of these compounds. Results showed that all compounds executed anti biofilm activity against both Staph. aureus and Ps. aeruginosa wherein compound PI3 exhibited maximum activity. In relation with microbial biofilm inhibition, we have observed reduction in bacterial motility, proteolytic activity and secreted exo-polysaccharide (EPS) from both Staph. aureus and Ps. aeruginosa when they were grown in presence of these compounds. While addressing the issue of toxicity on host, we have observed that these molecules exhibited minimum level of R.B.C degradation. CONCLUSION These findings establish the antibacterial and anti biofilm properties of 3-amino-4-aminoximidofurazan derivatives (PI1-4). SIGNIFICANCE AND IMPACT OF THE STUDY Therefore, our current findings demonstrate that 3-amino-4-aminoximidofurazan derivatives (PI1-4) may hold promise to be effective biofilm and microbial inhibitors that may be clinically significant.
Collapse
Affiliation(s)
- M C Das
- Department of Molecular Biology & Bioinformatics, Tripura University, Agartala, Tripura, India
| | - S Paul
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - P Gupta
- Department of Molecular Biology & Bioinformatics, Tripura University, Agartala, Tripura, India
| | - P Tribedi
- Department of Microbiology, Assam Don Bosco University, Azara, Assam, India
| | - S Sarkar
- Department of Molecular Biology & Bioinformatics, Tripura University, Agartala, Tripura, India
| | - D Manna
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - S Bhattacharjee
- Department of Molecular Biology & Bioinformatics, Tripura University, Agartala, Tripura, India
| |
Collapse
|
35
|
Cinnamon Oil Inhibits Shiga Toxin Type 2 Phage Induction and Shiga Toxin Type 2 Production in Escherichia coli O157:H7. Appl Environ Microbiol 2016; 82:6531-6540. [PMID: 27590808 DOI: 10.1128/aem.01702-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/20/2016] [Indexed: 02/08/2023] Open
Abstract
This study evaluated the inhibitory effect of cinnamon oil against Escherichia coli O157:H7 Shiga toxin (Stx) production and further explored the underlying mechanisms. The MIC and minimum bactericidal concentration (MBC) of cinnamon oil against E. coli O157:H7 were 0.025% and 0.05% (vol/vol), respectively. Cinnamon oil significantly reduced Stx2 production and the stx2 mRNA expression that is associated with diminished Vero cell cytotoxicity. Consistently, induction of the Stx-converting phage where the stx2 gene is located, along with the total number of phages, decreased proportionally to cinnamon oil concentration. In line with decreased Stx2 phage induction, cinnamon oil at 0.75× and 1.0× MIC eliminated RecA, a key mediator of SOS response, polynucleotide phosphorylase (PNPase), and poly(A) polymerase (PAP I), which positively regulate Stx-converting phages, contributing to reduced Stx-converting phage induction and Stx production. Furthermore, cinnamon oil at 0.75× and 1.0× MIC strongly inhibited the qseBC and luxS expression associated with decreased AI-2 production, a universal quorum sensing signaling molecule. However, the expression of oxidative stress response genes oxyR, soxR, and rpoS was increased in response to cinnamon oil at 0.25× or 0.5× MIC, which may contribute to stunted bacterial growth and reduced Stx2 phage induction and Stx2 production due to the inhibitory effect of OxyR on prophage activation. Collectively, cinnamon oil inhibits Stx2 production and Stx2 phage induction in E. coli O157:H7 in multiple ways. IMPORTANCE This study reports the inhibitory effect of cinnamon oil on Shiga toxin 2 phage induction and Shiga toxin 2 production. Subinhibitory concentrations (concentrations below the MIC) of cinnamon oil reduced Stx2 production, stx2 mRNA expression, and cytotoxicity on Vero cells. Subinhibitory concentrations of cinnamon oil also dramatically reduced both the Stx2 phage and total phage induction in E. coli O157:H7, which may be due to the suppression of RNA polyadenylation enzyme PNPase at 0.25× to 1.0× MIC and the downregulation of bacterial SOS response key regulator RecA and RNA polyadenylation enzyme PAP I at 0.75× or 1.0× MIC. Cinnamon oil at higher levels (0.75× and 1.0× MIC) eliminated quorum sensing and oxidative stress. Therefore, cinnamon oil has potential applications as a therapeutic to control E. coli O157:H7 infection through inhibition of bacterial growth and virulence factors.
Collapse
|
36
|
Sub-Inhibitory Concentration of Piperacillin-Tazobactam May be Related to Virulence Properties of Filamentous Escherichia coli. Curr Microbiol 2015; 72:19-28. [PMID: 26364189 DOI: 10.1007/s00284-015-0912-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/05/2015] [Indexed: 10/23/2022]
Abstract
Sub-inhibitory concentrations of antibiotics are always generated as a consequence of antimicrobial therapy and the effects of such residual products in bacterial morphology are well documented, especially the filamentation generated by beta-lactams. The aim of this study was to investigate some morphological and pathological aspects (virulence factors) of Escherichia coli cultivated under half-minimum inhibitory concentration (1.0 µg/mL) of piperacillin-tazobactam (PTZ sub-MIC). PTZ sub-MIC promoted noticeable changes in the bacterial cells which reach the peak of morphological alterations (filamentation) and complexity at 16 h of antimicrobial exposure. Thereafter the filamentous cells and a control one, not treated with PTZ, were comparatively tested for growth curve; biochemical profile; oxidative stress tolerance; biofilm production and cell hydrophobicity; motility and pathogenicity in vivo. PTZ sub-MIC attenuated the E. coli growth rate, but without changes in carbohydrate fermentation or in traditional biochemical tests. Overall, the treatment of E. coli with sub-MIC of PTZ generated filamentous forms which were accompanied by the inhibition of virulence factors such as the oxidative stress response, biofilm formation, cell surface hydrophobicity, and motility. These results are consistent with the reduced pathogenicity observed for the filamentous E. coli in the murine model of intra-abdominal infection. In other words, the treatment of E. coli with sub-MIC of PTZ suggests a decrease in their virulence.
Collapse
|
37
|
Yin HB, Chen CH, Kollanoor-Johny A, Darre MJ, Venkitanarayanan K. Controlling Aspergillus flavus and Aspergillus parasiticus growth and aflatoxin production in poultry feed using carvacrol and trans-cinnamaldehyde. Poult Sci 2015. [PMID: 26217023 DOI: 10.3382/ps/pev207] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aflatoxins (AF) are toxic metabolites primarily produced by molds, Aspergillus flavus and Aspergillus parasiticus. Contamination of poultry feed with AF is a major concern to the poultry industry due to severe economic losses stemming from poor performance, reduced egg production, and diminished egg hatchability. This study investigated the inhibitory effect of 2 generally regarded as safe (GRAS), natural plant compounds, namely carvacrol (CR) and trans-cinnamaldehyde (TC), on A. flavus and A. parasiticus growth and AF production in potato dextrose broth (PDB) and in poultry feed. In broth culture, PDB supplemented with CR (0%, 0.02%, 0.04% and 0.08%) or TC (0%, 0.005%, 0.01% and 0.02%) was inoculated with A. flavus or A. parasiticus (6 log CFU/mL), and mold counts and AF production were determined on days 0, 1, 3, and 5. Similarly, 200 g portions of poultry feed supplemented with CR or TC (0%, 0.4%, 0.8%, and 1.0%) were inoculated with each mold, and their counts and AF concentrations in the feed were determined at 0, 1, 2, 3, 4, 8, and 12 weeks of storage. Moreover, the effect of CR and TC on the expression of AF synthesis genes in A. flavus and A. parasiticus (aflC, nor1, norA, and ver1) was determined using real-time quantitative PCR (RT-qPCR). All experiments had duplicate samples and were replicated 3 times. Results indicated that CR and TC reduced A. flavus and A. parasiticus growth and AF production in broth culture and chicken feed (P<0.05). All tested concentrations of CR and TC decreased AF production in broth culture and chicken feed by at least 60% when compared to controls (P<0.05). In addition, CR and TC down-regulated the expression of major genes associated with AF synthesis in the molds (P<0.05). Results suggest the potential use of CR and TC as feed additives to control AF contamination in poultry feed.
Collapse
Affiliation(s)
- Hsin-Bai Yin
- Department of Animal Science, 3636 Horsebarn Hill Rd Ext., Unit 4040, University of Connecticut, Storrs, Connecticut, CT 06269, USA
| | - Chi-Hung Chen
- Department of Animal Science, 3636 Horsebarn Hill Rd Ext., Unit 4040, University of Connecticut, Storrs, Connecticut, CT 06269, USA
| | - Anup Kollanoor-Johny
- Department of Animal Science, University of Minnesota, St. Paul, Minnesota, MN 55108, USA
| | - Michael J Darre
- Department of Animal Science, 3636 Horsebarn Hill Rd Ext., Unit 4040, University of Connecticut, Storrs, Connecticut, CT 06269, USA
| | - Kumar Venkitanarayanan
- Department of Animal Science, 3636 Horsebarn Hill Rd Ext., Unit 4040, University of Connecticut, Storrs, Connecticut, CT 06269, USA
| |
Collapse
|
38
|
In-feed supplementation of trans-cinnamaldehyde reduces layer-chicken egg-borne transmission of Salmonella enterica serovar enteritidis. Appl Environ Microbiol 2015; 81:2985-94. [PMID: 25710365 DOI: 10.1128/aem.03809-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/11/2015] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Enteritidis is a major foodborne pathogen in the United States, causing gastroenteritis in humans, primarily through consumption of contaminated eggs. Chickens are the reservoir host of S. Enteritidis. In layer hens, S. Enteritidis colonizes the intestine and migrates to various organs, including the oviduct, leading to egg contamination. This study investigated the efficacy of in-feed supplementation with trans-cinnamaldehyde (TC), a generally recognized as safe (GRAS) plant compound obtained from cinnamon, in reducing S. Enteritidis cecal colonization and systemic spread in layers. Additionally, the effect of TC on S. Enteritidis virulence factors critical for macrophage survival and oviduct colonization was investigated in vitro. The consumer acceptability of eggs was also determined by a triangle test. Supplementation of TC in feed for 66 days at 1 or 1.5% (vol/wt) for 40- or 25-week-old layer chickens decreased the amounts of S. Enteritidis on eggshell and in yolk (P<0.001). Additionally, S. Enteritidis persistence in the cecum, liver, and oviduct in TC-supplemented birds was decreased compared to that in controls (P<0.001). No significant differences in feed intake, body weight, or egg production in birds or in consumer acceptability of eggs were observed (P>0.05). In vitro cell culture assays revealed that TC reduced S. Enteritidis adhesion to and invasion of primary chicken oviduct epithelial cells and reduced S. Enteritidis survival in chicken macrophages (P<0.001). Follow-up gene expression analysis using real-time quantitative PCR (qPCR) showed that TC downregulated the expression of S. Enteritidis virulence genes critical for chicken oviduct colonization (P<0.001). The results suggest that TC may potentially be used as a feed additive to reduce egg-borne transmission of S. Enteritidis.
Collapse
|
39
|
Antipseudomonal agents exhibit differential pharmacodynamic interactions with human polymorphonuclear leukocytes against established biofilms of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2015; 59:2198-205. [PMID: 25645829 DOI: 10.1128/aac.04934-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is the most common pathogen infecting the lower respiratory tract of cystic fibrosis (CF) patients, where it forms tracheobronchial biofilms. Pseudomonas biofilms are refractory to antibacterials and to phagocytic cells with innate immunity, leading to refractory infection. Little is known about the interaction between antipseudomonal agents and phagocytic cells in eradication of P. aeruginosa biofilms. Herein, we investigated the capacity of three antipseudomonal agents, amikacin (AMK), ceftazidime (CAZ), and ciprofloxacin (CIP), to interact with human polymorphonuclear leukocytes (PMNs) against biofilms and planktonic cells of P. aeruginosa isolates recovered from sputa of CF patients. Three of the isolates were resistant and three were susceptible to each of these antibiotics. The concentrations studied (2, 8, and 32 mg/liter) were subinhibitory for biofilms of resistant isolates, whereas for biofilms of susceptible isolates, they ranged between sub-MIC and 2 × MIC values. The activity of each antibiotic alone or in combination with human PMNs against 48-h mature biofilms or planktonic cells was determined by XTT [2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] assay. All combinations of AMK with PMNs resulted in synergistic or additive effects against planktonic cells and biofilms of P. aeruginosa isolates compared to each component alone. More than 75% of CAZ combinations exhibited additive interactions against biofilms of P. aeruginosa isolates, whereas CIP had mostly antagonistic interaction or no interaction with PMNs against biofilms of P. aeruginosa. Our findings demonstrate a greater positive interaction between AMK with PMNs than that observed for CAZ and especially CIP against isolates of P. aeruginosa from the respiratory tract of CF patients.
Collapse
|
40
|
Type IV pilus glycosylation mediates resistance of Pseudomonas aeruginosa to opsonic activities of the pulmonary surfactant protein A. Infect Immun 2015; 83:1339-46. [PMID: 25605768 DOI: 10.1128/iai.02874-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pseudomonas aeruginosa is a major bacterial pathogen commonly associated with chronic lung infections in cystic fibrosis (CF). Previously, we have demonstrated that the type IV pilus (Tfp) of P. aeruginosa mediates resistance to antibacterial effects of pulmonary surfactant protein A (SP-A). Interestingly, P. aeruginosa strains with group I pilins are O-glycosylated through the TfpO glycosyltransferase with a single subunit of O-antigen (O-ag). Importantly, TfpO-mediated O-glycosylation is important for virulence in mouse lungs, exemplified by more frequent lung infection in CF with TfpO-expressing P. aeruginosa strains. However, the mechanism underlying the importance of Tfp glycosylation in P. aeruginosa pathogenesis is not fully understood. Here, we demonstrated one mechanism of increased fitness mediated by O-glycosylation of group 1 pilins on Tfp in the P. aeruginosa clinical isolate 1244. Using an acute pneumonia model in SP-A+/+ versus SP-A-/- mice, the O-glycosylation-deficient ΔtfpO mutant was found to be attenuated in lung infection. Both 1244 and ΔtfpO strains showed equal levels of susceptibility to SP-A-mediated membrane permeability. In contrast, the ΔtfpO mutant was more susceptible to opsonization by SP-A and by other pulmonary and circulating opsonins, SP-D and mannose binding lectin 2, respectively. Importantly, the increased susceptibility to phagocytosis was abrogated in the absence of opsonins. These results indicate that O-glycosylation of Tfp with O-ag specifically confers resistance to opsonization during host-mediated phagocytosis.
Collapse
|
41
|
Freitas MC, Silva VL, Gameiro J, Ferreira-Machado AB, Coelho CM, Cara DC, Diniz CG. Bacteroides fragilis response to subinhibitory concentrations of antimicrobials includes different morphological, physiological and virulence patterns after in vitro selection. Microb Pathog 2015; 78:103-13. [DOI: 10.1016/j.micpath.2014.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 12/11/2014] [Accepted: 12/13/2014] [Indexed: 10/24/2022]
|
42
|
Antibiotic Resistance Related to Biofilm Formation in Klebsiella pneumoniae. Pathogens 2014; 3:743-58. [PMID: 25438022 PMCID: PMC4243439 DOI: 10.3390/pathogens3030743] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 02/07/2023] Open
Abstract
The Gram-negative opportunistic pathogen, Klebsiella pneumoniae, is responsible for causing a spectrum of community-acquired and nosocomial infections and typically infects patients with indwelling medical devices, especially urinary catheters, on which this microorganism is able to grow as a biofilm. The increasingly frequent acquisition of antibiotic resistance by K. pneumoniae strains has given rise to a global spread of this multidrug-resistant pathogen, mostly at the hospital level. This scenario is exacerbated when it is noted that intrinsic resistance to antimicrobial agents dramatically increases when K. pneumoniae strains grow as a biofilm. This review will summarize the findings about the antibiotic resistance related to biofilm formation in K. pneumoniae.
Collapse
|
43
|
Plant-derived antimicrobials reduce E. coli O157:H7 virulence factors critical for colonization in cattle gastrointestinal tract in vitro. BIOMED RESEARCH INTERNATIONAL 2014; 2014:212395. [PMID: 25050328 PMCID: PMC4090510 DOI: 10.1155/2014/212395] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 05/31/2014] [Indexed: 12/30/2022]
Abstract
This study investigated the effect of subinhibitory concentrations (SIC) of five plant-derived antimicrobials (PDAs), namely, trans cinnamaldehyde, eugenol, carvacrol, thymol, and β-resorcylic acid, on E. coli O157:H7 (EHEC) attachment and invasion of cultured bovine colonic (CO) and rectoanal junction (RAJ) epithelial cells. In addition, PDAs' effect on EHEC genes critical for colonization of cattle gastrointestinal tract (CGIT) was determined in bovine rumen fluid (RF) and intestinal contents (BICs). Primary bovine CO and RAJ epithelial cells were established and were separately inoculated with three EHEC strains with or without (control) SIC of each PDA. Following incubation, EHEC that attached and invaded the cells were determined. Furthermore, the expression of EHEC genes critical for colonization in cattle was investigated using real-time, quantitative polymerase chain reaction in RF and BICs. All the PDAs decreased EHEC invasion of CO and RAJ epithelial cells (P < 0.05). The PDAs also downregulated (P < 0.05) the expression of EHEC genes critical for colonization in CGIT. Results suggest that the PDAs could potentially be used to control EHEC colonization in cattle; however follow-up in vivo studies in cattle are warranted.
Collapse
|
44
|
The interaction of bacteria with engineered nanostructured polymeric materials: a review. ScientificWorldJournal 2014; 2014:410423. [PMID: 25025086 PMCID: PMC4084677 DOI: 10.1155/2014/410423] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/08/2014] [Accepted: 05/10/2014] [Indexed: 12/17/2022] Open
Abstract
Bacterial infections are a leading cause of morbidity and mortality worldwide. In spite of great advances in biomaterials research and development, a significant proportion of medical devices undergo bacterial colonization and become the target of an implant-related infection. We present a review of the two major classes of antibacterial nanostructured materials: polymeric nanocomposites and surface-engineered materials. The paper describes antibacterial effects due to the induced material properties, along with the principles of bacterial adhesion and the biofilm formation process. Methods for antimicrobial modifications of polymers using a nanocomposite approach as well as surface modification procedures are surveyed and discussed, followed by a concise examination of techniques used in estimating bacteria/material interactions. Finally, we present an outline of future sceneries and perspectives on antibacterial applications of nanostructured materials to resist or counteract implant infections.
Collapse
|
45
|
Sub-inhibitory concentrations of trans-cinnamaldehyde attenuate virulence in Cronobacter sakazakii in vitro. Int J Mol Sci 2014; 15:8639-55. [PMID: 24837831 PMCID: PMC4057751 DOI: 10.3390/ijms15058639] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 04/28/2014] [Accepted: 05/05/2014] [Indexed: 12/21/2022] Open
Abstract
Cronobacter sakazakii is a foodborne pathogen, which causes a life-threatening form of meningitis, necrotizing colitis and meningoencephalitis in neonates and children. Epidemiological studies implicate dried infant formula as the principal source of C. sakazakii. In this study, we investigated the efficacy of sub-inhibitory concentrations (SIC) of trans-cinnamaldehyde (TC), an ingredient in cinnamon, for reducing C. sakazakii virulence in vitro using cell culture, microscopy and gene expression assays. TC significantly (p ≤ 0.05) suppressed C. sakazakii adhesion to and invasion of human and rat intestinal epithelial cells, and human brain microvascular endothelial cells. In addition, TC inhibited C. sakazakii survival and replication in human macrophages. We also observed that TC reduced the ability of C. sakazakii to cause cell death in rat intestinal cells, by inhibiting nitric oxide production. Results from gene expression studies revealed that TC significantly downregulated the virulence genes critical for motility, host tissue adhesion and invasion, macrophage survival, and LPS (Lipopolysaccharide) synthesis in C. sakazakii. The efficacy of TC in attenuating these major virulence factors in C. sakazakii underscores its potential use in the prevention and/or control of infection caused by this pathogen.
Collapse
|
46
|
Alasil SM, Omar R, Ismail S, Yusof MY. Antibiofilm activity, compound characterization, and acute toxicity of extract from a novel bacterial species of paenibacillus. Int J Microbiol 2014; 2014:649420. [PMID: 24790603 PMCID: PMC3982407 DOI: 10.1155/2014/649420] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 02/10/2014] [Indexed: 11/17/2022] Open
Abstract
The effectiveness of many antimicrobial agents is currently decreasing; therefore, it is important to search for alternative therapeutics. Our study was carried out to assess the in vitro antibiofilm activity using microtiter plate assay, to characterize the bioactive compounds using Ultra Performance Liquid Chromatography-Diode Array Detection and Liquid Chromatography-Mass Spectrometry and to test the oral acute toxicity on Sprague Dawley rats of extract derived from a novel bacterial species of Paenibacillus strain 139SI. Our results indicate that the crude extract and its three identified compounds exhibit strong antibiofilm activity against a broad range of clinically important pathogens. Three potential compounds were identified including an amino acid antibiotic C8H20N3O4P (MW 253.237), phospholipase A2 inhibitor C21H36O5 (MW 368.512), and an antibacterial agent C14H11N3O2 (MW 253.260). The acute toxicity test indicates that the mortality rate among all rats was low and that the biochemical parameters, hematological profile, and histopathology examination of liver and kidneys showed no significant differences between experimental groups (P > 0.05). Overall, our findings suggest that the extract and its purified compounds derived from novel Paenibacillus sp. are nontoxic exhibiting strong antibiofilm activity against Gram-positive and Gram-negative pathogens that can be useful towards new therapeutic management of biofilm-associated infections.
Collapse
Affiliation(s)
- Saad Musbah Alasil
- Department of Microbiology, Faculty of Medicine, MAHSA University, 59100 Kuala Lumpur, Malaysia
| | - Rahmat Omar
- Pantai Hospital Cheras, 56100 Kuala Lumpur, Malaysia
| | - Salmah Ismail
- Institute of Biological Science, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mohd Yasim Yusof
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
47
|
Upadhyaya I, Upadhyay A, Kollanoor-Johny A, Darre MJ, Venkitanarayanan K. Effect of plant derived antimicrobials on Salmonella enteritidis adhesion to and invasion of primary chicken oviduct epithelial cells in vitro and virulence gene expression. Int J Mol Sci 2013; 14:10608-25. [PMID: 23698782 PMCID: PMC3676857 DOI: 10.3390/ijms140510608] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/23/2013] [Accepted: 05/01/2013] [Indexed: 11/16/2022] Open
Abstract
Salmonella Enteritidis (SE) is a major foodborne pathogen in the United States and one of the most frequently reported Salmonella serotypes globally. Eggs are the most common food product associated with SE infections in humans. The pathogen colonizes the intestinal tract in layers, and migrates to reproductive organs systemically. Since adhesion to and invasion of chicken oviduct epithelial cells (COEC) is critical for SE colonization in reproductive tract, reducing these virulence factors could potentially decrease egg yolk contamination. This study investigated the efficacy of sub-inhibitory concentrations of three plant-derived antimicrobials (PDAs), namely carvacrol, thymol and eugenol in reducing SE adhesion to and invasion of COEC, and survival in chicken macrophages. In addition, the effect of PDAs on SE genes critical for oviduct colonization and macrophage survival was determined using real-time quantitative PCR (RT-qPCR). All PDAs significantly reduced SE adhesion to and invasion of COEC (p < 0.001). The PDAs, except thymol consistently decreased SE survival in macrophages (p < 0.001). RT-qPCR results revealed down-regulation in the expression of genes involved in SE colonization and macrophage survival (p < 0.001). The results indicate that PDAs could potentially be used to control SE colonization in chicken reproductive tract; however, in vivo studies validating these results are warranted.
Collapse
Affiliation(s)
- Indu Upadhyaya
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA.
| | | | | | | | | |
Collapse
|
48
|
Zimmer KR, Macedo AJ, Nicastro GG, Baldini RL, Termignoni C. Egg wax from the cattle tick Rhipicephalus (Boophilus) microplus inhibits Pseudomonas aeruginosa biofilm. Ticks Tick Borne Dis 2013; 4:366-76. [PMID: 23583751 DOI: 10.1016/j.ttbdis.2013.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 01/10/2013] [Indexed: 12/18/2022]
Abstract
Rhipicephalus (Boophilus) microplus is constantly challenged during its life cycle by microorganisms present in their hosts or in the environment. Tick eggs may be especially vulnerable to environmental conditions because they are exposed to a rich and diverse microflora in the soil. Despite being oviposited in such hostile sites, tick eggs remain viable, suggesting that the egg surface has defense mechanisms against opportunistic and/or pathogenic organisms. R. microplus engorged females deposit a superficial wax layer onto their eggs during oviposition. This egg wax is essential for preventing desiccation as well as acting as a barrier against attack by microorganisms. In this study, we report the detection of anti-biofilm activity of R. microplus egg wax against Pseudomonas aeruginosa PA14. Genes involved in the functions of production and maintenance of the biofilm extracellular matrix, pelA and cdrA, respectively, were markedly downregulated by a tick egg-wax extract. Moreover, this extract strongly inhibited fliC gene expression. Instead of a compact extracellular matrix, P. aeruginosa PA14 treated with egg-wax extract produces a fragile one. Also, the colony morphology of cells treated with egg-wax extract appears much paler and brownish, instead of the bright purple characteristic of normal colonies. Swarming motility was also inhibited by treatment with the egg-wax extract. The inhibition of P. aeruginosa biofilm does not seem to depend on inhibition of the quorum sensing system since mRNA levels of the 3 regulators of this system were not inhibited by egg-wax extract.
Collapse
Affiliation(s)
- Karine R Zimmer
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970, Porto Alegre, RS, Brazil
| | | | | | | | | |
Collapse
|
49
|
Gomes DLR, Peixoto RS, Barbosa EAB, Napoleão F, Sabbadini PS, Dos Santos KRN, Mattos-Guaraldi AL, Hirata R. SubMICs of penicillin and erythromycin enhance biofilm formation and hydrophobicity of Corynebacterium diphtheriae strains. J Med Microbiol 2013; 62:754-760. [PMID: 23449875 DOI: 10.1099/jmm.0.052373-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Subinhibitory concentrations (subMICs) of antibiotics may alter bacterial surface properties and change microbial physiology. This study aimed to investigate the effect of a subMIC (⅛ MIC) of penicillin (PEN) and erythromycin (ERY) on bacterial morphology, haemagglutinating activity, cell-surface hydrophobicity (CSH) and biofilm formation on glass and polystyrene surfaces, as well as the distribution of cell-surface acidic anionic residues of Corynebacterium diphtheriae strains (HC01 tox(-) strain; CDC-E8392 and 241 tox(+) strains). All micro-organisms tested were susceptible to PEN and ERY. Growth in the presence of PEN induced bacterial filamentation, whereas subMIC of ERY caused cell-size reduction of strains 241 and CDC-E8392. Adherence to human erythrocytes was reduced after growth in the presence of ERY, while CSH was increased by a subMIC of both antibiotics in bacterial adherence to n-hexadecane assays. Conversely, antibiotic inhibition of biofilm formation was not observed. All strains enhanced biofilm formation on glass after treatment with ERY, while only strain 241 increased glass adherence after cultivation in the presence of PEN. Biofilm production on polystyrene surfaces was improved by ⅛ MIC of ERY. After growth in the presence of both antimicrobial agents, strains 241 and CDC-E8392 exhibited anionic surface charges with focal distribution. In conclusion, subMICs of PEN and ERY modified bacterial surface properties and enhanced not only biofilm formation but also cell-surface hydrophobicity. Antibiotic-induced biofilm formation may contribute to the inconsistent success of antimicrobial therapy for C. diphtheriae infections.
Collapse
Affiliation(s)
- D L R Gomes
- Faculty of Pharmacy, Federal Institute of Education, Science and Technology of Rio de Janeiro, IFRJ, Rio de Janeiro RJ, Brazil
- Laboratory of Diphtheria and Corynebacteria of Medical Relevance, Faculty of Medical Sciences, Rio de Janeiro State University, UERJ, Rio de Janeiro RJ, Brazil
| | - R S Peixoto
- Department of Medical Microbiology, Institute of Microbiology, Rio de Janeiro Federal University, UFRJ, Rio de Janeiro RJ, Brazil
- Laboratory of Diphtheria and Corynebacteria of Medical Relevance, Faculty of Medical Sciences, Rio de Janeiro State University, UERJ, Rio de Janeiro RJ, Brazil
| | - E A B Barbosa
- Faculty of Pharmacy, Federal Institute of Education, Science and Technology of Rio de Janeiro, IFRJ, Rio de Janeiro RJ, Brazil
| | - F Napoleão
- Laboratory of Diphtheria and Corynebacteria of Medical Relevance, Faculty of Medical Sciences, Rio de Janeiro State University, UERJ, Rio de Janeiro RJ, Brazil
| | - P S Sabbadini
- Laboratory of Diphtheria and Corynebacteria of Medical Relevance, Faculty of Medical Sciences, Rio de Janeiro State University, UERJ, Rio de Janeiro RJ, Brazil
| | - K R N Dos Santos
- Department of Medical Microbiology, Institute of Microbiology, Rio de Janeiro Federal University, UFRJ, Rio de Janeiro RJ, Brazil
| | - A L Mattos-Guaraldi
- Laboratory of Diphtheria and Corynebacteria of Medical Relevance, Faculty of Medical Sciences, Rio de Janeiro State University, UERJ, Rio de Janeiro RJ, Brazil
| | - R Hirata
- Laboratory of Diphtheria and Corynebacteria of Medical Relevance, Faculty of Medical Sciences, Rio de Janeiro State University, UERJ, Rio de Janeiro RJ, Brazil
| |
Collapse
|
50
|
Liu Z, Wang W, Zhu Y, Gong Q, Yu W, Lu X. Antibiotics at subinhibitory concentrations improve the quorum sensing behavior ofChromobacterium violaceum. FEMS Microbiol Lett 2013; 341:37-44. [DOI: 10.1111/1574-6968.12086] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 12/28/2012] [Accepted: 01/16/2013] [Indexed: 01/25/2023] Open
|