1
|
Resistance to Isoniazid and Ethionamide in Mycobacterium tuberculosis: Genes, Mutations, and Causalities. Microbiol Spectr 2016; 2:MGM2-0014-2013. [PMID: 26104204 DOI: 10.1128/microbiolspec.mgm2-0014-2013] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Isoniazid (INH) is the cornerstone of tuberculosis (TB) chemotherapy, used for both treatment and prophylaxis of TB. The antimycobacterial activity of INH was discovered in 1952, and almost as soon as its activity was published, the first INH-resistant Mycobacterium tuberculosis strains were reported. INH and its structural analog and second-line anti-TB drug ethionamide (ETH) are pro-drugs. INH is activated by the catalase-peroxidase KatG, while ETH is activated by the monooxygenase EthA. The resulting active species reacts with NAD+ to form an INH-NAD or ETH-NAD adduct, which inhibits the enoyl ACP reductase InhA, leading to mycolic acid biosynthesis inhibition and mycobacterial cell death. The major mechanism of INH resistance is mutation in katG, encoding the activator of INH. One specific KatG variant, S315T, is found in 94% of INH-resistant clinical isolates. The second mechanism of INH resistance is a mutation in the promoter region of inhA (c-15t), which results in inhA overexpression and leads to titration of the drug. Mutations in the inhA open reading frame and promoter region are also the major mechanism of resistance to ETH, found more often in ETH-resistant clinical isolates than mutations in the activator of ETH. Other mechanisms of resistance to INH and ETH include expression changes of the drugs' activators, redox alteration, drug inactivation, and efflux pump activation. In this article, we describe each known mechanism of resistance to INH and ETH and its importance in M. tuberculosis clinical isolates.
Collapse
|
2
|
Jagielski T, Bakuła Z, Roeske K, Kamiński M, Napiórkowska A, Augustynowicz-Kopeć E, Zwolska Z, Bielecki J. Mutation profiling for detection of isoniazid resistance in Mycobacterium tuberculosis clinical isolates. J Antimicrob Chemother 2015; 70:3214-21. [PMID: 26311839 DOI: 10.1093/jac/dkv253] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/21/2015] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Progress in the detection of drug-resistant TB has been underpinned by the development and implementation of new, reliable and rapid diagnostic tools. These rely mostly on the detection of specific mutations conferring resistance to anti-TB drugs. The aim of this study was to search for mutations associated with isoniazid resistance among Mycobacterium tuberculosis clinical isolates. METHODS A collection of 150 M. tuberculosis strains, including 50 MDR, 50 isoniazid-monoresistant and 50 pan-susceptible strains, was used. For all the strains, seven structural genes (katG, inhA, ahpC, kasA, ndh, nat and mshA) and two regulatory regions (mabA-inhA promoter and oxyR-ahpC intergenic region) were PCR amplified and sequenced in their entirety. RESULTS Sixty-six distinct mutations were detected at all nine loci investigated, accounting for 109 (72.7%) of the strains tested. The number of strains with any mutation among the MDR, isoniazid-monoresistant and pan-susceptible groups was 49 (98%), 37 (74%) and 23 (46%), respectively. Mutations in the katG gene predominated, with 29 different types distributed among 46 (92%) MDR, 31 (62%) isoniazid-monoresistant and 2 (4%) pan-susceptible strains. Twenty-nine and 19 mutations were found exclusively in MDR and isoniazid-monoresistant strains, respectively. CONCLUSIONS This study revealed 17 mutations, previously unreported, that might be of potential use as new surrogate markers of isoniazid resistance. Their diagnostic accuracy needs to be confirmed on larger strain samples and from different geographical settings. For isoniazid resistance detection, molecular approaches should still be a complement to rather than a replacement for conventional drug susceptibility testing. This is supported by the lack of mutations in any of the nine genetic loci investigated in 18 isoniazid-resistant strains from this study.
Collapse
Affiliation(s)
- Tomasz Jagielski
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland
| | - Zofia Bakuła
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland
| | - Katarzyna Roeske
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland
| | - Michał Kamiński
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland
| | - Agnieszka Napiórkowska
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland
| | - Ewa Augustynowicz-Kopeć
- Department of Microbiology, National Tuberculosis and Lung Diseases Research Institute, Płocka 26, 01-138 Warsaw, Poland
| | - Zofia Zwolska
- Department of Microbiology, National Tuberculosis and Lung Diseases Research Institute, Płocka 26, 01-138 Warsaw, Poland
| | - Jacek Bielecki
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland
| |
Collapse
|
3
|
Sim E, Abuhammad A, Ryan A. Arylamine N-acetyltransferases: from drug metabolism and pharmacogenetics to drug discovery. Br J Pharmacol 2014; 171:2705-25. [PMID: 24467436 PMCID: PMC4158862 DOI: 10.1111/bph.12598] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 08/15/2013] [Accepted: 08/26/2013] [Indexed: 12/12/2022] Open
Abstract
Arylamine N-acetyltransferases (NATs) are polymorphic drug-metabolizing enzymes, acetylating arylamine carcinogens and drugs including hydralazine and sulphonamides. The slow NAT phenotype increases susceptibility to hydralazine and isoniazid toxicity and to occupational bladder cancer. The two polymorphic human NAT loci show linkage disequilibrium. All mammalian Nat genes have an intronless open reading frame and non-coding exons. The human gene products NAT1 and NAT2 have distinct substrate specificities: NAT2 acetylates hydralazine and human NAT1 acetylates p-aminosalicylate (p-AS) and the folate catabolite para-aminobenzoylglutamate (p-abaglu). Human NAT2 is mainly in liver and gut. Human NAT1 and its murine homologue are in many adult tissues and in early embryos. Human NAT1 is strongly expressed in oestrogen receptor-positive breast cancer and may contribute to folate and acetyl CoA homeostasis. NAT enzymes act through a catalytic triad of Cys, His and Asp with the architecture of the active site-modulating specificity. Polymorphisms may cause unfolded protein. The C-terminus helps bind acetyl CoA and differs among NATs including prokaryotic homologues. NAT in Salmonella typhimurium supports carcinogen activation and NAT in mycobacteria metabolizes isoniazid with polymorphism a minor factor in isoniazid resistance. Importantly, nat is in a gene cluster essential for Mycobacterium tuberculosis survival inside macrophages. NAT inhibitors are a starting point for novel anti-tuberculosis drugs. Human NAT1-specific inhibitors may act in biomarker detection in breast cancer and in cancer therapy. NAT inhibitors for co-administration with 5-aminosalicylate (5-AS) in inflammatory bowel disease has prompted ongoing investigations of azoreductases in gut bacteria which release 5-AS from prodrugs including balsalazide.
Collapse
Affiliation(s)
- E Sim
- Faculty of Science Engineering and Computing, Kingston University, Kingston, UK; Department of Pharmacology, Oxford University, Oxford, UK
| | | | | |
Collapse
|
4
|
Correia I, Adão P, Roy S, Wahba M, Matos C, Maurya MR, Marques F, Pavan FR, Leite CQF, Avecilla F, Costa Pessoa J. Hydroxyquinoline derived vanadium(IV and V) and copper(II) complexes as potential anti-tuberculosis and anti-tumor agents. J Inorg Biochem 2014; 141:83-93. [PMID: 25226436 DOI: 10.1016/j.jinorgbio.2014.07.019] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/25/2014] [Accepted: 07/29/2014] [Indexed: 12/31/2022]
Abstract
Several mixed ligand vanadium and copper complexes were synthesized containing 8-hydroxyquinoline (8HQ) and a ligand such as picolinato (pic(-)), dipicolinato (dipic(2-)) or a Schiff base. The complexes were characterized by spectroscopic techniques and by single-crystal X-ray diffraction in the case of [V(V)O(L-pheolnaph-im)(5-Cl-8HQ)] and [V(V)O(OMe)(8HQ)2], which evidenced the distorted octahedral geometry of the complexes. The electronic absorption data showed the presence of strong ligand to metal charge transfer bands, significant solvent effects, and methoxido species in methanol, which was further confirmed by (51)V-NMR spectroscopy. The structures of [Cu(II)(dipic)(8HQ)]Na and [V(IV)O(pic)(8HQ)] were confirmed by EPR spectroscopy, showing only one species in solution. The biological activity of the compounds was assessed through the minimal inhibitory concentration (MIC) of the compounds against Mycobacterium tuberculosis (Mtb) and the cytotoxic activity against the cisplatin sensitive/resistant ovarian cells A2780/A2780cisR and the non-tumorigenic HEK cells (IC50 values). Almost all tested vanadium complexes were very active against Mtb and the MICs were comparable to, or better than, the MICs of drugs, such as streptomycin. The activity of the complexes against the A2780 cell line was dependent on incubation time presenting IC50 values in the 3-14 μM (at 48 h) range. In these conditions, the complexes were significantly (*P<0.05-**P<0.001) more active than cisplatin (22 μM), in the A2780 cells and even surpassing its activity in the cisplatin-resistant cells A2780cisR (2.4-8 μM vs. 75.4; **P<0.001). In the non-tumorigenic HEK cells poor selectivity toward cancer cells for most of the complexes was observed, as well as for cisplatin.
Collapse
Affiliation(s)
- Isabel Correia
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Pedro Adão
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Somnath Roy
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Mohamed Wahba
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Inorganic Chemistry Dep., National Research Center, El Buhouth St., Dokki, Cairo, Egypt
| | - Cristina Matos
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Mannar R Maurya
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667, India
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10,km 139.7, 2695-066 Bobadela LRS, Portugal
| | - Fernando R Pavan
- Faculdade de Ciências Farmacêuticas, UNESP, C.P. 582, Araraquara, SP 14801-902, Brazil
| | - Clarice Q F Leite
- Faculdade de Ciências Farmacêuticas, UNESP, C.P. 582, Araraquara, SP 14801-902, Brazil
| | - Fernando Avecilla
- Departamento de Química Fundamental, Universidade da Coruña, Campus de A Zapateira, 15071 A Coruña, Spain
| | - João Costa Pessoa
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
5
|
Jagielski T, Bakuła Z, Roeske K, Kamiński M, Napiórkowska A, Augustynowicz-Kopeć E, Zwolska Z, Bielecki J. Detection of mutations associated with isoniazid resistance in multidrug-resistant Mycobacterium tuberculosis clinical isolates. J Antimicrob Chemother 2014; 69:2369-75. [PMID: 24855126 DOI: 10.1093/jac/dku161] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES To determine the prevalence of isoniazid resistance-conferring mutations among multidrug-resistant (MDR) isolates of Mycobacterium tuberculosis from Poland. METHODS Nine genetic loci, including structural genes (katG, inhA, ahpC, kasA, ndh, nat and mshA) and regulatory regions (i.e. the mabA-inhA promoter and oxyR-ahpC intergenic region) of 50 MDR M. tuberculosis isolates collected throughout Poland were PCR-amplified in their entirety and screened for mutations by direct sequencing methodology. RESULTS Forty-six (92%) MDR M. tuberculosis isolates had mutations in the katG gene, and the katG Ser315Thr substitution predominated (72%). Eight (16%) isolates (six with a mutated katG allele) had mutations in the inhA promoter region and two such isolates also had single inhA structural gene mutations. Mutations in the oxyR-ahpC locus were found in five (10%) isolates, of which all but one had at least one additional mutation in katG. Mutations in the remaining genetic loci (kasA, ndh, nat and mshA) were detected in 12 (24%), 4 (8%), 5 (10%) and 17 (34%) MDR isolates, respectively. All non-synonymous mutants for these genes harboured mutations in katG. One isolate had no mutations in any of the analysed loci. CONCLUSIONS This study accentuates the usefulness of katG and inhA promoter mutations as predictive markers of isoniazid resistance. Testing only for katG 315 and inhA -15 mutations would detect isoniazid resistance in 84% of the MDR M. tuberculosis sample. This percentage would increase to 96% if the sequence analysis was extended to the entire katG gene. Analysis of the remaining genetic loci did not contribute greatly to the identification of isoniazid resistance.
Collapse
Affiliation(s)
- Tomasz Jagielski
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland
| | - Zofia Bakuła
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland
| | - Katarzyna Roeske
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland
| | - Michał Kamiński
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland
| | - Agnieszka Napiórkowska
- Department of Microbiology, National Tuberculosis and Lung Diseases Research Institute, Płocka 26, 01-138 Warsaw, Poland
| | - Ewa Augustynowicz-Kopeć
- Department of Microbiology, National Tuberculosis and Lung Diseases Research Institute, Płocka 26, 01-138 Warsaw, Poland
| | - Zofia Zwolska
- Department of Microbiology, National Tuberculosis and Lung Diseases Research Institute, Płocka 26, 01-138 Warsaw, Poland
| | - Jacek Bielecki
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland
| |
Collapse
|
6
|
Characterization of an acetyltransferase that detoxifies aromatic chemicals in Legionella pneumophila. Biochem J 2012; 445:219-28. [PMID: 22545684 DOI: 10.1042/bj20120528] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Legionella pneumophila is an opportunistic pathogen and the causative agent of Legionnaires' disease. Despite being exposed to many chemical compounds in its natural and man-made habitats (natural aquatic biotopes and man-made water systems), L. pneumophila is able to adapt and survive in these environments. The molecular mechanisms by which this bacterium detoxifies these chemicals remain poorly understood. In particular, the expression and functions of XMEs (xenobiotic-metabolizing enzymes) that could contribute to chemical detoxification in L. pneumophila have been poorly documented at the molecular and functional levels. In the present paper we report the identification and biochemical and functional characterization of a unique acetyltransferase that metabolizes aromatic amine chemicals in three characterized clinical strains of L. pneumophila (Paris, Lens and Philadelphia). Strain-specific sequence variations in this enzyme, an atypical member of the arylamine N-acetyltransferase family (EC 2.3.1.5), produce enzymatic variants with different structural and catalytic properties. Functional inactivation and complementation experiments showed that this acetyltransferase allows L. pneumophila to detoxify aromatic amine chemicals and grow in their presence. The present study provides a new enzymatic mechanism by which the opportunistic pathogen L. pneumophila biotransforms and detoxifies toxic aromatic chemicals. These data also emphasize the role of XMEs in the environmental adaptation of certain prokaryotes.
Collapse
|
7
|
Interaction of wild type, G68R and L125M isoforms of the arylamine-N-acetyltransferase from Mycobacterium tuberculosis with isoniazid: a computational study on a new possible mechanism of resistance. J Mol Model 2012; 18:4013-24. [DOI: 10.1007/s00894-012-1383-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 02/14/2012] [Indexed: 11/27/2022]
|
8
|
Arylamine N-Acetyltransferases – from Drug Metabolism and Pharmacogenetics to Identification of Novel Targets for Pharmacological Intervention. CURRENT CONCEPTS IN DRUG METABOLISM AND TOXICOLOGY 2012; 63:169-205. [DOI: 10.1016/b978-0-12-398339-8.00005-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Coelho MB, Costa ERD, Vasconcellos SEG, Linck N, Ramos RM, Amorim HLND, Suffys PN, Santos AR, Silva PEAD, Ramos DF, Silva MSN, Rossetti MLR. Sequence and structural characterization of tbnat gene in isoniazid-resistant Mycobacterium tuberculosis: identification of new mutations. Mutat Res 2011; 712:33-39. [PMID: 21514309 DOI: 10.1016/j.mrfmmm.2011.03.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 03/30/2011] [Accepted: 03/31/2011] [Indexed: 05/30/2023]
Abstract
The present study was carried out to investigate the presence of polymorphism in the N-acetyltransferase gene of 41 clinical isolates of Mycobacterium tuberculosis, that were resistant to isoniazid (INH) with no mutations in the hot spots of the genes previously described to be involved in INH resistance (katG, inhA and ahpC). We observed single nucleotide polymorphisms (SNPs) in ten of these, including the G619A SNP in five isolates and an additional four so far un-described mutations in another five isolates. Among the latter SNPs, two were synonymous (C276T, n=1 and C375G, n=3), while two more non-synonymous SNPs were composed of C373A (Leu→Met) and T503G (Met→Arg) were observed in respectively one and two isolates. Molecular modeling and structural analysis based in a constructed full length 3D models of wild type TBNAT (TBNAT_H37Rv) and the isoforms (TBNAT_L125M and TBNAT_M168R) were also performed. The refined models show that, just as observed in human NATs, the carboxyl terminus extends deep within the folded enzyme, into close proximity to the buried catalytic triad. Analysis of tbnat that present non-synonymous mutations indicates that both substitutions are plausible to affect enzyme specificity or acetyl-CoA binding capacity. The results contribute to a better understanding of structure-function relationships of NATs. However, further investigation including INH-sensitive strains as a control group is needed to get better understanding of the possible role of these new mutations on tuberculosis control.
Collapse
Affiliation(s)
- Millene Borges Coelho
- Post-Graduation Program in Applied Genetics and Toxicology Program, Lutheran University of Brazil (PPGGTA/ULBRA), Canoas, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Vasconcellos SEG, Huard RC, Niemann S, Kremer K, Santos AR, Suffys PN, Ho JL. Distinct genotypic profiles of the two major clades of Mycobacterium africanum. BMC Infect Dis 2010; 10:80. [PMID: 20350321 PMCID: PMC2859774 DOI: 10.1186/1471-2334-10-80] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 03/29/2010] [Indexed: 12/03/2022] Open
Abstract
Background Mycobacterium tuberculosis is the principal etiologic agent of human tuberculosis (TB) and a member of the M. tuberculosis complex (MTC). Additional MTC species that cause TB in humans and other mammals include Mycobacterium africanum and Mycobacterium bovis. One result of studies interrogating recently identified MTC phylogenetic markers has been the recognition of at least two distinct lineages of M. africanum, known as West African-1 and West African-2. Methods We screened a blinded non-random set of MTC strains isolated from TB patients in Ghana (n = 47) for known chromosomal region-of-difference (RD) loci and single nucleotide polymorphisms (SNPs). A MTC PCR-typing panel, single-target standard PCR, multi-primer PCR, PCR-restriction fragment analysis, and sequence analysis of amplified products were among the methods utilized for the comparative evaluation of targets and identification systems. The MTC distributions of novel SNPs were characterized in the both the Ghana collection and two other diverse collections of MTC strains (n = 175 in total). Results The utility of various polymorphisms as species-, lineage-, and sublineage-defining phylogenetic markers for M. africanum was determined. Novel SNPs were also identified and found to be specific to either M. africanum West African-1 (Rv1332523; n = 32) or M. africanum West African-2 (nat751; n = 27). In the final analysis, a strain identification approach that combined multi-primer PCR targeting of the RD loci RD9, RD10, and RD702 was the most simple, straight-forward, and definitive means of distinguishing the two clades of M. africanum from one another and from other MTC species. Conclusion With this study, we have organized a series of consistent phylogenetically-relevant markers for each of the distinct MTC lineages that share the M. africanum designation. A differential distribution of each M. africanum clade in Western Africa is described.
Collapse
Affiliation(s)
- Sidra E Gonçalves Vasconcellos
- Laboratory of Molecular Biology Applied to Mycobacteria, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenida Brasil 4365, Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
11
|
Fullam E, Kawamura A, Wilkinson H, Abuhammad A, Westwood I, Sim E. Comparison of the Arylamine N-acetyltransferase from Mycobacterium marinum and Mycobacterium tuberculosis. Protein J 2009; 28:281-93. [PMID: 19636684 DOI: 10.1007/s10930-009-9193-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Arylamine N-acetyltansferase (NAT) from Mycobacterium tuberculosis (TBNAT) is a potential drug target for anti-tubercular therapy. Recombinant TBNAT is much less soluble and is produced in lower yields than the closely related NAT from Mycobacterium marinum (MMNAT). In order to explore MMNAT as a model for TBNAT in drug discovery, we compare the two mycobacterial NAT enzymes. Two site-directed mutants of MMNAT have been prepared and characterised: MMNAT71, Tyr --> Phe and MMNAT209, Met --> Thr, in which residues within 6 A of the active-site cysteine have been replaced with the corresponding residue from TBNAT. Two chimeric proteins have also been produced in which the third domain of MMNAT has been replaced by the third domain of TBNAT and vice versa. The activity profile of the chimeric proteins suggests a role for the third domain in the evolutionary divergence of NAT between these closely related mycobacterial species.
Collapse
Affiliation(s)
- Elizabeth Fullam
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | | | | | | | | | | |
Collapse
|
12
|
Arylamine N-acetyltransferases: Structural and functional implications of polymorphisms. Toxicology 2008; 254:170-83. [DOI: 10.1016/j.tox.2008.08.022] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 08/29/2008] [Accepted: 08/31/2008] [Indexed: 12/12/2022]
|
13
|
Sim E, Walters K, Boukouvala S. Arylamine N-acetyltransferases: From Structure to Function. Drug Metab Rev 2008; 40:479-510. [DOI: 10.1080/03602530802186603] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Sim E, Sandy J, Evangelopoulos D, Fullam E, Bhakta S, Westwood I, Krylova A, Lack N, Noble M. Arylamine N-acetyltransferases in mycobacteria. Curr Drug Metab 2008; 9:510-9. [PMID: 18680471 PMCID: PMC2764864 DOI: 10.2174/138920008784892100] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 05/22/2008] [Accepted: 06/06/2008] [Indexed: 11/22/2022]
Abstract
Polymorphic Human arylamine N-acetyltransferase (NAT2) inactivates the anti-tubercular drug isoniazid by acetyltransfer from acetylCoA. There are active NAT proteins encoded by homologous genes in mycobacteria including M. tuberculosis, M. bovis BCG, M. smegmatis and M. marinum. Crystallographic structures of NATs from M. smegmatis and M. marinum, as native enzymes and with isoniazid bound share a similar fold with the first NAT structure, Salmonella typhimurium NAT. There are three approximately equal domains and an active site essential catalytic triad of cysteine, histidine and aspartate in the first two domains. An acetyl group from acetylCoA is transferred to cysteine and then to the acetyl acceptor e.g. isoniazid. M. marinum NAT binds CoA in a more open mode compared with CoA binding to human NAT2. The structure of mycobacterial NAT may promote its role in synthesis of cell wall lipids, identified through gene deletion studies. NAT protein is essential for survival of M. bovis BCG in macrophage as are the proteins encoded by other genes in the same gene cluster (hsaA-D). HsaA-D degrade cholesterol, essential for mycobacterial survival inside macrophage. Nat expression remains to be fully understood but is co-ordinated with hsaA-D and other stress response genes in mycobacteria. Amide synthase genes in the streptomyces are also nat homologues. The amide synthases are predicted to catalyse intramolecular amide bond formation and creation of cyclic molecules, e.g. geldanamycin. Lack of conservation of the CoA binding cleft residues of M. marinum NAT suggests the amide synthase reaction mechanism does not involve a soluble CoA intermediate during amide formation and ring closure.
Collapse
Affiliation(s)
- Edith Sim
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX13QT, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Arylamine N-acetyltransferases (NATs), known as drug- and carcinogen-metabolising enzymes, have had historic roles in cellular metabolism, carcinogenesis and pharmacogenetics, including epidemiological studies of disease susceptibility. NAT research in the past 5 years builds on that history and additionally paves the way for establishing the following new concepts in biology and opportunities in drug discovery: i) NAT polymorphisms can be used as tools in molecular anthropology to study human evolution; ii) tracing NAT protein synthesis and degradation within cells is providing insight into protein folding in cell biology; iii) studies on control of NAT gene expression may help to understand the increase in the human NAT isoenzyme, NAT1, in breast cancer; iv) a NAT homologue in mycobacteria plays an essential role in cell-wall synthesis and mycobacterial survival inside host macrophage, thus identifying a novel biochemical pathway; v) transgenic mice, with genetic modifications of all Nat genes, provide in vivo tools for drug metabolism; and vi) structures of NAT isoenzymes provide essential in silico tools for drug discovery.
Collapse
Affiliation(s)
- Edith Sim
- University of Oxford, Department of Pharmacology, Mansfield Road, Oxford, UK.
| | | | | |
Collapse
|
16
|
Madikane VE, Bhakta S, Russell AJ, Campbell WE, Claridge TDW, Elisha BG, Davies SG, Smith P, Sim E. Inhibition of mycobacterial arylamine N-acetyltransferase contributes to anti-mycobacterial activity of Warburgia salutaris. Bioorg Med Chem 2007; 15:3579-86. [PMID: 17368035 DOI: 10.1016/j.bmc.2007.02.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 02/02/2007] [Accepted: 02/08/2007] [Indexed: 01/11/2023]
Abstract
In this study, we show that extracts and a purified compound of Warburgia salutaris exhibit anti-mycobacterial activity against Mycobacterium tuberculosis H37Rv and Mycobacterium bovis BCG Pasteur. The extracts did not inhibit growth of Escherichia coli and were not toxic to cultured mammalian macrophage cells at the concentrations at which anti-mycobacterial activity was observed. The extract and pure compound inhibited pure recombinant arylamine N-acetyltransferase (NAT), an enzyme involved in mycobacterial cell wall lipid synthesis. Moreover, neither extract nor pure compound inhibited growth of a strain of M. bovis BCG in which nat has been deleted suggesting that NAT may indeed be a target within the mycobacterial cell. The purified compound is a novel drimane sesquiterpenoid lactone, 11alpha-hydroxycinnamosmolide. These studies show that W. salutaris is a useful source of anti-tubercular compounds for further analysis and supports the hypothesis of a link between NAT inhibition and anti-mycobacterial activity.
Collapse
Affiliation(s)
- Vukani Eliya Madikane
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
For decades after its introduction, the mechanisms of action of the front-line antituberculosis therapeutic agent isoniazid (INH) remained unclear. Recent developments have shown that peroxidative activation of isoniazid by the mycobacterial enzyme KatG generates reactive species that form adducts with NAD(+) and NADP(+) that are potent inhibitors of lipid and nucleic acid biosynthetic enzymes. A direct role for some isoniazid-derived reactive species, such as nitric oxide, in inhibiting mycobacterial metabolic enzymes has also been shown. The concerted effects of these activities - inhibition of cell wall lipid synthesis, depletion of nucleic acid pools and metabolic depression - drive the exquisite potency and selectivity of this agent. To understand INH action and resistance fully, a synthesis of knowledge is required from multiple separate lines of research - including molecular genetic approaches, in vitro biochemical studies and free radical chemistry - which is the intent of this review.
Collapse
Affiliation(s)
- Graham S Timmins
- College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | | |
Collapse
|