1
|
Nateghizad H, Sajadi R, Shivaee A, Shirazi O, Sharifian M, Tadi DA, Amini K. Resistance of Vibrio cholera to antibiotics that inhibit cell wall synthesis: A systematic review and meta-analysis. Front Pharmacol 2023; 14:1027277. [PMID: 37021056 PMCID: PMC10069679 DOI: 10.3389/fphar.2023.1027277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/10/2023] [Indexed: 04/07/2023] Open
Abstract
Objective: Cholera is a challenging ancient disease caused by Vibrio cholera (V. cholera). Antibiotics that prevent cell wall synthesis are among the first known antibiotic groups. Due to its high consumption, V. cholera has developed resistance to the majority of antibiotics in this class. Resistance to recommended antibiotics for the treatment of V. cholera has also increased. In light of the decrease in consumption of certain antibiotics in this group that inhibit cell wall synthesis and the implementation of new antibiotics, it is necessary to determine the antibiotic resistance pattern of V. cholera and to employ the most effective treatment antibiotic. Method: An comprehensive systematic search for relevant articles was conducted in PubMed, Web of Science, Scopus, and EMBASE through October 2020. Stata version 17.1 utilized the Metaprop package to execute a Freeman-Tukey double arcsine transformation in order to estimate weighted pooled proportions. Results: A total of 131 articles were included in the meta-analysis. Ampicillin was the most investigated antibiotic. The prevalence of antibiotic resistance was in order aztreonam (0%), cefepime (0%), imipenem (0%), meropenem (3%), fosfomycin (4%), ceftazidime (5%), cephalothin (7%), augmentin (8%), cefalexin (8%), ceftriaxone (9%), cefuroxime (9%), cefotaxime (15%), cefixime (37%), amoxicillin (42%), penicillin (44%), ampicillin (48%), cefoxitin (50%), cefamandole (56%), polymyxin-B (77%), carbenicillin (95%) respectively. Discussion: Aztreonam, cefepime, and imipenem are the most efficient V. cholera cell wall synthesis inhibitors. There has been an increase in resistance to antibiotics such as cephalothin, ceftriaxone, amoxicillin, and meropenem. Over the years, resistance to penicillin, ceftazidime, and cefotaxime, has decreased.
Collapse
Affiliation(s)
- Hossein Nateghizad
- Department of Biology, Faculty of Basic Sciences, East of Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Rojina Sajadi
- Department of Biology, Faculty of Basic Sciences, East of Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ali Shivaee
- Department of Microbiology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Shirazi
- Department of Veterinary medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohadeseh Sharifian
- Department of Veterinary medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Danyal Abbasi Tadi
- Department Of Veterinary, Azad University Of Shahr-E Kord, Shahrekord, Iran
| | - Kumarss Amini
- Department of Microbiology, Saveh Branch, Islamic Azad University, Saveh, Iran
- *Correspondence: Kumarss Amini,
| |
Collapse
|
2
|
Liu C, Wang Y, Azizian K, Omidi N, Kaviar VH, Kouhsari E, Maleki A. Antimicrobial resistance in Vibrio cholerae O1/O139 clinical isolates: a systematic review and meta-analysis. Expert Rev Anti Infect Ther 2022; 20:1217-1231. [PMID: 35790112 DOI: 10.1080/14787210.2022.2098114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Vibrio cholerae O1/O139 is responsible for cholera epidemics; that remains a huge public health menace across the globe. Furthermore, an increasing resistance rate among V. cholerae strains has been reported around the world. Therefore, the objective of this meta-analysis was to evaluate the weighted pooled resistance (WPR) rates in clinical V. cholerae O1/O139 isolates based on different years, areas, antimicrobial susceptibility testing, and resistance rates. RESEARCH DESIGN AND METHODS : We searched the studies in PubMed, Scopus, Embase, and Web of Science (until January 2020). Statistical analyses were conducted using STATA software (ver. 14.0). RESULTS : A total of 139 studies investigating 24062 V. cholerae O1/O139 isolates were analyzed. The majority of the studies originated in Asia (n=102). The WPR rates were as follows: azithromycin 1%, erythromycin 36%, ciprofloxacin 3%, cotrimoxazole 79%, doxycycline 7%, tetracycline 20%. There was increased resistance to cotrimoxazole, ciprofloxacin, and tetracycline during the 1980 to 2020 years. CONCLUSIONS : Temporal changes in antibiotic resistance rate found in this study demonstrated the critical continuous surveillance of antibiotic resistance. Also, ciprofloxacin, azithromycin, gentamicin, cephalexin, imipenem, ofloxacin, and norfloxacin were found to be the best antibiotics against V. cholera, with the highest and the lowest effectiveness resistance rate.
Collapse
Affiliation(s)
- Chaoying Liu
- Zhumadian Academy of Industry Innovation and Development, Huanghuai University, Zhumadian 463000, China
| | - Ye Wang
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian 463000, China
| | - Khalil Azizian
- Department of Microbiology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Nazanin Omidi
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Vahab Hassan Kaviar
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Ebrahim Kouhsari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, Iran
| | - Abbas Maleki
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
3
|
Behera DR, Nayak AK, Nayak SR, Nayak D, Swain S, Maharana PK, Biswal B, Pany S, Pati S, Pal BB. Genomic diversities of ctxB, tcpA and rstR alleles of Vibrio cholerae O139 strains isolated from Odisha, India. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:376-384. [PMID: 34668341 DOI: 10.1111/1758-2229.13016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
The genome of Vibrio cholerae O139 strains has undergone cryptic changes since its first emergence in 1992 in South India. This study aimed to determine the presence of genotypic changes marked in ctxB, tcpA and rstR genes located within the CTX prophages among the strains of V. cholerae O139 isolated from 1999 to 2017 in Odisha. Antibiotic susceptibility test was conducted on 59 V. cholerae O139 strains. A conventional PCR assay was done for ctxB gene typing followed by sequencing along with identification of rstR and tcpA gene. Pulsed-field gel electrophoresis (PFGE) was carried out to reveal clonal variations among the V. cholerae O139 strains. Among V. cholerae O139 isolates more than 60% showed resistance to ampicillin, co-trimoxazole, furazolidone, streptomycin, neomycin and nalidixic acid. The ctxB sequencing and rstR allele-specific PCR assay revealed the presence of three genotypes 1, 3 and 4 with at least one copy of CTX Calc φ in addition to CTX ET and CTX Cl prophages in V. cholerae O139 isolates. PFGE analysis revealed 13 pulsotypes with two clades having 60% similarity among V. cholerae O139 strains. The circulating V. cholerae O139 strains in Odisha showed variation in genotypes with multiple clonal expansions over the years.
Collapse
Affiliation(s)
- Dipti Ranjan Behera
- Microbiology Division, ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, OR, 751023, India
| | - Ashish Kumar Nayak
- Microbiology Division, ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, OR, 751023, India
| | - Smruti Ranjan Nayak
- Microbiology Division, ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, OR, 751023, India
| | - Dilena Nayak
- Microbiology Division, ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, OR, 751023, India
| | - Sipraswati Swain
- Microbiology Division, ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, OR, 751023, India
| | - Pradeep Kumar Maharana
- Microbiology Division, ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, OR, 751023, India
| | - Bhagyalaxmi Biswal
- Microbiology Division, ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, OR, 751023, India
| | - Swatishree Pany
- Microbiology Division, ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, OR, 751023, India
| | - Sanghamitra Pati
- Microbiology Division, ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, OR, 751023, India
| | - Bibhuti Bhusan Pal
- Microbiology Division, ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, OR, 751023, India
| |
Collapse
|
4
|
Globally Vibrio cholera antibiotics resistance to RNA and DNA effective antibiotics: A systematic review and meta-analysis. Microb Pathog 2022; 172:105514. [DOI: 10.1016/j.micpath.2022.105514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/19/2022]
|
5
|
Soysa HSM, Aunkham A, Schulte A, Suginta W. Single-channel properties, sugar specificity, and role of chitoporin in adaptive survival of Vibrio cholerae type strain O1. J Biol Chem 2020; 295:9421-9432. [PMID: 32409576 PMCID: PMC7363139 DOI: 10.1074/jbc.ra120.012921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/12/2020] [Indexed: 11/06/2022] Open
Abstract
Vibrio cholerae is a Gram-negative, facultative anaerobic bacterial species that causes serious disease and can grow on various carbon sources, including chitin polysaccharides. In saltwater, its attachment to chitin surfaces not only serves as the initial step of nutrient recruitment but is also a crucial mechanism underlying cholera epidemics. In this study, we report the first characterization of a chitooligosaccharide-specific chitoporin, VcChiP, from the cell envelope of the V. cholerae type strain O1. We modeled the structure of VcChiP, revealing a trimeric cylinder that forms single channels in phospholipid bilayers. The membrane-reconstituted VcChiP channel was highly dynamic and voltage induced. Substate openings O1', O2', and O3', between the fully open states O1, O2, and O3, were polarity selective, with nonohmic conductance profiles. Results of liposome-swelling assays suggested that VcChiP can transport monosaccharides, as well as chitooligosaccharides, but not other oligosaccharides. Of note, an outer-membrane porin (omp)-deficient strain of Escherichia coli expressing heterologous VcChiP could grow on M9 minimal medium supplemented with small chitooligosaccharides. These results support a crucial role of chitoporin in the adaptive survival of bacteria on chitinous nutrients. Our findings also suggest a promising means of vaccine development based on surface-exposed outer-membrane proteins and the design of novel anticholera agents based on chitooligosaccharide-mimicking analogs.
Collapse
Affiliation(s)
| | - Anuwat Aunkham
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, Rayong, Thailand
| | - Albert Schulte
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, Rayong, Thailand
| | - Wipa Suginta
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, Rayong, Thailand
| |
Collapse
|
6
|
Lan H, Hosomi K, Kunisawa J. Clostridium perfringens enterotoxin-based protein engineering for the vaccine design and delivery system. Vaccine 2019; 37:6232-6239. [PMID: 31466706 DOI: 10.1016/j.vaccine.2019.08.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 08/02/2019] [Indexed: 02/07/2023]
Abstract
Clostridium perfringens is a major cause of food poisoning worldwide, with its enterotoxin (CPE) being the major virulence factor. The C-terminus of CPE (C-CPE) is non-toxic and is the part of the toxin that binds to epithelial cells via the claudins in tight junctions; however, C-CPE has low antigenicity. To address this issue, we have used protein engineering technology to augment the antigenicity of C-CPE and have developed a C-CPE-based vaccine against C. perfringens-mediated food poisoning. Moreover, C-CPE has properties that make it potentially useful for the development of vaccines against other bacterial toxins that cause food poisoning. For example, we hypothesized that the ability of C-CPE to bind to claudins could be harnessed to deliver vaccine antigens directly to mucosa-associated lymphoid tissues, and we successfully developed a nasally administered C-CPE-based vaccine delivery system that promotes antigen-specific mucosal and systemic immune responses. In addition, our group has revealed the roles that the nasal mucus plays in lowering the efficacy of C-CPE-based nasal vaccines. Here, we review recent advances in the development of C-CPE-based vaccines against the major bacterial toxins that cause food poisoning and discuss our C-CPE-based nasal vaccine delivery system.
Collapse
Affiliation(s)
- Huangwenxian Lan
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.
| | - Koji Hosomi
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan.
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; Division of Mucosal Immunology, Department of Microbiology and Immunology and International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Kobe University Graduate School of Medicine, Hyogo, Japan; Graduate School of Medicine and Graduate School of Dentistry, Osaka University, Osaka, Japan.
| |
Collapse
|
7
|
Ghosh R, Sharma NC, Halder K, Bhadra RK, Chowdhury G, Pazhani GP, Shinoda S, Mukhopadhyay AK, Nair GB, Ramamurthy T. Phenotypic and Genetic Heterogeneity in Vibrio cholerae O139 Isolated from Cholera Cases in Delhi, India during 2001-2006. Front Microbiol 2016; 7:1250. [PMID: 27555841 PMCID: PMC4977278 DOI: 10.3389/fmicb.2016.01250] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 07/27/2016] [Indexed: 11/29/2022] Open
Abstract
Incidence of epidemic Vibrio cholerae serogroup O139 has declined in cholera endemic countries. However, sporadic cholera caused by V. cholerae O139 with notable genetic changes is still reported from many regions. In the present study, 42 V. cholerae O139 strains isolated from 2001 to 2006 in Delhi, India, were retrospectively analyzed to understand their phenotype and molecular characteristics. The majority of isolates were resistant to ampicillin, furazolidone and nalidixic acid. Though the integrative conjugative element was detected in all the O139 isolates, the 2004–2006 isolates remained susceptible to co-trimoxazole, chloramphenicol, and streptomycin. Cholera toxin genotype 1 was present in the majority of the O139 isolates while few had type 3 or a novel type 4. In the cholera toxin encoding gene (ctx) restriction fragment length polymorphism, the majority of the isolates harbored three copies of CTX element, of which one was truncated. In this study, the ctx was detected for the first time in the small chromosome of V. cholerae O139 and one isolate harbored 5 copies of CTX element, of which 3 were truncated. The ribotype BII pattern was found in most of the O139 isolates. Three V. cholerae O139 isolated in 2001 had a new ribotype BVIII. Pulsed-field gel electrophoresis analysis revealed clonal variation in 2001 isolates compared to the 2004–2006 isolates. Molecular changes in V. cholerae O139 have to be closely monitored as this information may help in understanding the changing genetic features of this pathogen in relation to the epidemiology of cholera.
Collapse
Affiliation(s)
- Raikamal Ghosh
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases Kolkata, India
| | | | - Kalpataru Halder
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology Kolkata, India
| | - Rupak K Bhadra
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology Kolkata, India
| | - Goutam Chowdhury
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases Kolkata, India
| | - Gururaja P Pazhani
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases Kolkata, India
| | - Sumio Shinoda
- Collaborative Research Center of Okayama University for Infectious Diseases in India, National Institute of Cholera and Enteric Diseases Kolkata, India
| | - Asish K Mukhopadhyay
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases Kolkata, India
| | - G Balakrish Nair
- Center for Human Microbial Ecology, Translational Health Science and Technology Institute Faridabad, India
| | - Thadavarayan Ramamurthy
- Center for Human Microbial Ecology, Translational Health Science and Technology Institute Faridabad, India
| |
Collapse
|
8
|
Mohaptra SS, Mantri CK, Bhotra T, Singh DV. Characteristics of Vibrio cholerae O1 isolated from water of the River Ganga, Varanasi, India. Indian J Med Microbiol 2015; 33:507-15. [PMID: 26470956 DOI: 10.4103/0255-0857.167327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Vibrio cholerae is an autochthonous inhabitant of fresh and brackish water and estuarine system. Investigation of V. cholerae from the River Ganga seems important to find variation in CTX arrangement and genomic diversity. OBJECTIVES To investigate V. cholerae O1 strains for the presence of virulence and regulatory genes, variation in number and organisation of the pre-CTXΦ and/or CTXΦ, and for the genomic diversity. MATERIALS AND METHODS Polymerase chain reaction (PCR) was used to detect virulence and regulatory genes, type of rstR and location of CTXΦ on the chromosome. Southern hybridisation was conducted to see the number and arrangement of pre-CTXΦ and CTXΦ. Ribotyping and pulsed-field gel electrophoresis were used to find genetic relatedness. RESULTS Seven strains gave positive results by PCR for the gene encoding for ctx A, zot, ace, tcp A (El Tor), omp U, and tox R, except one strain that was negative for the ctx A. Three strains were positive for the tcp A (El Tor), omp U and tox R genes. Determination of CTX organisation showed that among the ctx-positive strains, four harboured two copies of CTXETΦ arranged in tandem and two harboured one copy of CTXETΦ, and one ctx-negative strain harboured only one copy of pre-CTXETΦ. Pulsotype and ribotype analysis showed existence of at least three pulsotype and ribotypes indicating diversity in genomic content among them. CONCLUSION This study thus indicates that multiple clones (ribotypes/pulsotypes) of V. cholerae O1 carrying pre-CTXΦ and/or CTXΦ and ctx-negative strains were present in the water of the River Ganga, Varanasi, India.
Collapse
Affiliation(s)
| | | | | | - D V Singh
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
| |
Collapse
|
9
|
Baldauf KJ, Royal JM, Hamorsky KT, Matoba N. Cholera toxin B: one subunit with many pharmaceutical applications. Toxins (Basel) 2015; 7:974-96. [PMID: 25802972 PMCID: PMC4379537 DOI: 10.3390/toxins7030974] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/16/2015] [Indexed: 12/22/2022] Open
Abstract
Cholera, a waterborne acute diarrheal disease caused by Vibrio cholerae, remains prevalent in underdeveloped countries and is a serious health threat to those living in unsanitary conditions. The major virulence factor is cholera toxin (CT), which consists of two subunits: the A subunit (CTA) and the B subunit (CTB). CTB is a 55 kD homopentameric, non-toxic protein binding to the GM1 ganglioside on mammalian cells with high affinity. Currently, recombinantly produced CTB is used as a component of an internationally licensed oral cholera vaccine, as the protein induces potent humoral immunity that can neutralize CT in the gut. Additionally, recent studies have revealed that CTB administration leads to the induction of anti-inflammatory mechanisms in vivo. This review will cover the potential of CTB as an immunomodulatory and anti-inflammatory agent. We will also summarize various recombinant expression systems available for recombinant CTB bioproduction.
Collapse
Affiliation(s)
- Keegan J Baldauf
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Joshua M Royal
- Owensboro Cancer Research Program of James Graham Brown Cancer Center at University of Louisville School of Medicine, Owensboro, KY 42303, USA.
| | - Krystal Teasley Hamorsky
- Owensboro Cancer Research Program of James Graham Brown Cancer Center at University of Louisville School of Medicine, Owensboro, KY 42303, USA.
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Nobuyuki Matoba
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
- Owensboro Cancer Research Program of James Graham Brown Cancer Center at University of Louisville School of Medicine, Owensboro, KY 42303, USA.
| |
Collapse
|
10
|
Abstract
Cholera is a global health problem as several thousands of cases and deaths occur each year. The unique epidemiologic attribute of the disease is its propensity to occur as outbreaks that may flare-up into epidemics, if not controlled. The causative bacterial pathogen Vibrio cholerae prevails in the environment and infects humans whenever there is a breakdown in the public health component. The Indian subcontinent is vulnerable to this disease due its vast coastlines with areas of poor sanitation, unsafe drinking water, and overcrowding. Recently, it was shown that climatic conditions also play a major role in the persistence and spread of cholera. Constant change in the biotypes and serotypes of V. cholerae are also important aspects that changes virulence and survival of the pathogen. Such continuous changes increase the infection ability of the pathogen affecting the susceptible population including the children. The short-term carrier status of V. cholerae has been studied well at community level and this facet significantly contributes to the recurrence of cholera. Several molecular tools recognized altering clonality of V. cholerae in relation with the advent of a serogroup or serotype. Rapid identification systems were formulated for the timely detection of the pathogen so as to identify and control the outbreak and institute proper treatment of the patients. The antimicrobials used in the past are no longer useful in the treatment of cholera as V. cholerae has acquired several mechanisms for multiple antimicrobial resistance. This upsurge in antimicrobial resistance directly influences the management of the disease. This chapter provides an overview of cholera prevalence in India, possible sources of infection, and molecular epidemiology along with antimicrobial resistance of V. cholerae.
Collapse
|
11
|
Liu B, Knirel YA, Feng L, Perepelov AV, Senchenkova SN, Reeves PR, Wang L. Structural diversity in Salmonella O antigens and its genetic basis. FEMS Microbiol Rev 2013; 38:56-89. [PMID: 23848592 DOI: 10.1111/1574-6976.12034] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 05/15/2013] [Accepted: 07/05/2013] [Indexed: 11/30/2022] Open
Abstract
This review covers the structures and genetics of the 46 O antigens of Salmonella, a major pathogen of humans and domestic animals. The variation in structures underpins the serological specificity of the 46 recognized serogroups. The O antigen is important for the full function and virulence of many bacteria, and the considerable diversity of O antigens can confer selective advantage. Salmonella O antigens can be divided into two major groups: those which have N-acetylglucosamine (GlcNAc) or N-acetylgalactosamine (GalNAc) and those which have galactose (Gal) as the first sugar in the O unit. In recent years, we have determined 21 chemical structures and sequenced 28 gene clusters for GlcNAc-/GalNAc-initiated O antigens, thus completing the structure and DNA sequence data for the 46 Salmonella O antigens. The structures and gene clusters of the GlcNAc-/GalNAc-initiated O antigens were found to be highly diverse, and 24 of them were found to be identical or closely related to Escherichia coli O antigens. Sequence comparisons indicate that all or most of the shared gene clusters were probably present in the common ancestor, although alternative explanations are also possible. In contrast, the better-known eight Gal-initiated O antigens are closely related both in structures and gene cluster sequences.
Collapse
Affiliation(s)
- Bin Liu
- TEDA School of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, China
| | | | | | | | | | | | | |
Collapse
|
12
|
Cholera: a great global concern. ASIAN PAC J TROP MED 2012; 4:573-80. [PMID: 21803312 DOI: 10.1016/s1995-7645(11)60149-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 04/21/2011] [Accepted: 05/15/2011] [Indexed: 11/20/2022] Open
Abstract
Cholera, caused by the infection of toxigenic Vibrio cholerae (V. cholerae) to humans, is a life threatening diarrheal disease with epidemic and pandemic potential. The V. cholerae, both O1 and O139 serogroups, produce a potent enterotoxin (cholera toxin) responsible for the lethal symptoms of the disease. The O1 serogroup has two biotypes (phenotypes), classical and El Tor; each of which has two major serotypes (based on antigenic responses), Ogawa and Inaba and the extremely rare Hikojima. V. cholerae O1 strains interconvert and switch between the Ogawa and Inaba serotypes. Fluid and electrolyte replacement is the mainstay of treatment of cholera patients; the severe cases require antibiotic treatment to reduce the duration of illness and replacement of fluid intake. The antibiotic therapy currently has faced difficulties due to the rapid emergence and spread of multidrug resistant V. cholerae causing several outbreaks in the globe. Currently, cholera has been becoming endemic in an increasing number of geographical areas, reflecting a failure in implementation of control measures. However, the current safe oral vaccines lower the number of resistant infections and could thus represent an effective intervention measure to control antibiotic resistance in cholera. Overall, the priorities for cholera control remain public health interventions through improved drinking water, sanitation, surveillance and access to health care facilities, and further development of safe, effective and appropriate vaccines. Thus, this review describes the facts and phenomena related to the disease cholera, which is still a great threat mainly to the developing countries, and hence a grave global concern too.
Collapse
|
13
|
Fazil MT, Bhanumathi R, Pandey H, Singh D. Characterization of Vibrio cholerae O139 belonging to multiple ribotypes and isolated from diarrhoeal patients in Kerala, southern India. INFECTION GENETICS AND EVOLUTION 2011; 11:454-9. [DOI: 10.1016/j.meegid.2010.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 12/07/2010] [Accepted: 12/15/2010] [Indexed: 11/30/2022]
|
14
|
Rajkumar S, Joseph Ratnam VP, Narmada N, Arakawa E, Sundararaj T. Enterotoxigenicity screening of viable environmental Vibrio cholerae strains from rainwater pools in a university campus in Chennai, South India. ACTA ACUST UNITED AC 2011; 43:325-8. [PMID: 21231812 DOI: 10.3109/00365548.2010.548079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Vibrio spp., being primarily inhabitants of the aquatic environment, pose a severe health threat to humans. This problem is escalated in developing countries where water-logging after rainfall is very common. Therefore, screening of environmental water samples for the presence of clinically important species of Vibrio becomes essential. METHODS This study was conducted for a period of 1 y. Water samples were collected every month from 4 locations where water pools formed after rains, on the campus of a university in Chennai, South India. The water samples were monitored for Vibrio species, and characterized isolates were screened for enterotoxigenicity. RESULTS Thirty isolates of Vibrio cholerae belonging to a variety of serogroups and 11 strains of Vibrio species other than cholerae were isolated from the rainwater pools. On polymerase chain reaction (PCR) screening, while all the strains were positive for the ompW gene, none tested positive for the ctxA gene. CONCLUSIONS Though all the environmental isolates of V. cholerae were non-epidemic, 4 isolates demonstrated enterotoxigenicity by rabbit ileal loop method and antibiotic resistance to drugs. This is of concern and underscores the importance of screening environmental specimens and improving civic infrastructure to prevent prolonged water-logging in developing countries.
Collapse
Affiliation(s)
- Samuel Rajkumar
- Department of Microbiology, Dr A.L.M. Postgraduate Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai, India.
| | | | | | | | | |
Collapse
|
15
|
Relatedness of Vibrio cholerae O1/O139 isolates from patients and their household contacts, determined by multilocus variable-number tandem-repeat analysis. J Bacteriol 2010; 192:4367-76. [PMID: 20585059 DOI: 10.1128/jb.00698-10] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genetic relatedness of Vibrio cholerae O1/O139 isolates obtained from 100 patients and 146 of their household contacts in Dhaka, Bangladesh, between 2002 and 2005 was assessed by multilocus variable-number tandem-repeat analysis. Isolate genotypes were analyzed at five loci containing tandem repeats. Across the population, as well as within households, isolates with identical genotypes were clustered in time. Isolates from individuals within the same household were more likely to have similar or identical genotypes than were isolates from different households, but even within a household, isolates from different individuals often had different genotypes. When household contacts were sampled regularly for 3 weeks after the illness of the household index patient, isolates with genotypes related to the index patient appeared in contacts, on average, approximately 3 days after the index patient, while isolates with unrelated genotypes appeared in contacts approximately 6 days after. Limited data revealed that multiple isolates from the same individual collected within days of each other or even from a single stool sample may have identical, similar, or unrelated genotypes as well. Our results demonstrate that genetically related V. cholerae strains cluster in local outbreaks but also suggest that multiple distinct strains of V. cholerae O1 may circulate simultaneously within a household.
Collapse
|
16
|
Mantri CK, Mohapatra SS, Singh DV. Effect of storage and sodium chloride on excision of CTXPhi or pre-CTXPhi and CTXPhi from Vibrio cholerae O139 strains. INFECTION GENETICS AND EVOLUTION 2010; 10:925-30. [PMID: 20621579 DOI: 10.1016/j.meegid.2010.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 05/26/2010] [Accepted: 05/26/2010] [Indexed: 12/23/2022]
Abstract
We examined the effect of storage and sodium chloride on excision of CTXPhi or pre-CTXPhi and CTXPhi from Vibrio cholerae O139 strains. We found that one strain of V. cholerae O139 VO146P showed loss of the complete phage array, and other strain VO170P showed partial loss of the phage array giving rise to altered strains designated as VO146N and VO170N. Results of PCR and RFLP analysis revealed that both strains (VO146P and VO170P) possessed a single copy of pre-CTX(ET)Phi and two copies of CTXPhi comprising CTX(Class)Phi and CTX(Calc)Phi arranged in tandem, and integrated in the large chromosome. The presence of classical ctxB was detected in CTX(Calc)Phi of both V. cholerae O139 strains. Nucleotide sequencing of three housekeeping genes showed no difference between parent and altered strains of V. cholerae O139.
Collapse
Affiliation(s)
- Chinmay K Mantri
- Infectious Disease Biology, Institute of Life Sciences, Nalco Square, Bhubaneswar, Orrisa 751023, India
| | | | | |
Collapse
|
17
|
Okada K, Chantaroj S, Roobthaisong A, Hamada S, Sawanpanyalert P. A cholera outbreak of the Vibrio cholerae O1 El Tor variant carrying classical CtxB in northeastern Thailand in 2007. Am J Trop Med Hyg 2010; 82:875-8. [PMID: 20439970 DOI: 10.4269/ajtmh.2010.09-0537] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Cholera outbreaks occurred in Thailand in 2007. Isolates from the northeastern regions were analyzed. Interestingly, the outbreak strain was identified as biotype El Tor; serotype Ogawa with cholera toxin B subunit gene (ctxB) of the classical type and CTX prophage repressor gene of the El Tor type. The clone was genetically closely related to pulsotype H, which is predominantly found in India. It was probably introduced into Thailand recently.
Collapse
Affiliation(s)
- Kazuhisa Okada
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections (RCC-ERI), Nonthaburi, Thailand.
| | | | | | | | | |
Collapse
|
18
|
Mantri CK, Mohapatra SS, Colwell RR, Singh DV. Sequence analysis of Vibrio cholerae orfU and zot from pre-CTXΦ and CTXΦ reveals multiple origin of pre-CTXΦ and CTXΦ. ENVIRONMENTAL MICROBIOLOGY REPORTS 2010; 2:67-75. [PMID: 23766000 DOI: 10.1111/j.1758-2229.2009.00085.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A multiplex PCR was developed to detect pre-CTXΦ and CTXΦ in Vibrio cholerae. A total of 115 V. cholerae were tested, of which 42 V. cholerae O1 and 18 V. cholerae O139 contained CTXΦ. Six V. cholerae O139 contained only pre-CTXΦ and three V. cholerae O1 and 23 V. cholerae O139 contained both pre-CTXΦ and CTXΦ. None of the V. cholerae non-O1 and non-O139 that were tested had pre-CTXΦ or CTXΦ. Results of Restriction Fragment Length Polymorphism (RFLP) analysis revealed the V. cholerae isolates possessed single or multiple copies of pre-CTXΦ and CTXΦ, always proceeded by a tandemly arranged RS1 element. Comparative nucleotide sequence analyses of the core region genes, orfU and zot, of 15 V. cholerae showed pre-CTX(ET) Φ and CTX(ET) Φ lineage with V. cholerae El Tor and pre-CTX(Class) Φ, pre-CTX(Calc) Φ, and CTX(Calc) Φ with classical V. cholerae O1 and O139. Two distinct types of ctxB were detected in V. cholerae O139. Multi-locus Sequence Typing (MLST) of seven V. cholerae housekeeping genes indicated clonal origin, irrespective of the presence of pre-CTXΦ and/or CTXΦ.
Collapse
Affiliation(s)
- Chinmay K Mantri
- Infectious Disease Biology, Institute of Life Sciences, Nalco Square, Bhubaneswar-751023, India. Center of Bioinformatics and Computation Biology, University of Maryland Institute for Advanced Computer Studies, 3013 Molecular Sciences Building, University of Maryland, College Park, MD 20742, USA
| | | | | | | |
Collapse
|
19
|
Raychoudhuri A, Mukherjee P, Ramamurthy T, Nandy RK, Takeda Y, Nair GB, Mukhopadhyay AK. Genetic analysis of CTX prophages with special reference to ctxB and rstR alleles of Vibrio cholerae O139 strains isolated from Kolkata over a decade. FEMS Microbiol Lett 2009; 303:107-15. [PMID: 20030720 DOI: 10.1111/j.1574-6968.2009.01856.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Chronological analysis of 125 Vibrio cholerae O139 strains isolated during 1993-2005 in Kolkata revealed the prevalence of two new genotypes of cholera toxin (CT) and novel combinations of ctxB and rstR alleles resulting in variant CTX prophages. One of the new genotypes of ctxB, which first appeared in 1996 with the re-emerged V. cholerae O139 strains that had CTX Calcutta phage, was designated as genotype 4. In 1998, another new genotype, designated as genotype 5, was detected that prevailed mostly in CTX phages with El Tor rstR. The prototype El Tor CTX phage with genotype 3 gradually disappeared in O139, and since 2002 the predominant CTX prophages in O139 are Calcutta phages with genotype 4 and El Tor phages with genotype 5. Results showed that V. cholerae O139 strains of Kolkata, isolated over a decade, harboured CTX prophages in the large chromosome having no RS1 downstream of CTX prophage. During the course of its intermittent incidence over a decade, five types of O139 strains were detected based on CT genotypes. Such abrupt genetic changes in O139 strains might not favour its continued prevalence in human cases in Kolkata, India.
Collapse
Affiliation(s)
- Amit Raychoudhuri
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | | | | | | | | | | | | |
Collapse
|
20
|
Chatterjee S, Patra T, Ghosh K, Raychoudhuri A, Pazhani GP, Das M, Sarkar B, Bhadra RK, Mukhopadhyay AK, Takeda Y, Nair GB, Ramamurthy T, Nandy RK. Vibrio cholerae O1 clinical strains isolated in 1992 in Kolkata with progenitor traits of the 2004 Mozambique variant. J Med Microbiol 2009; 58:239-247. [DOI: 10.1099/jmm.0.003780-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Retrospective analysis led to the detection of two Vibrio cholerae variant O1 strains (VC51 and VC53), which were isolated in 1992 in Kolkata from clinical cases, with identical traits to 2004 Mozambique variant O1 strains. The Mozambique O1 strains that caused a huge outbreak in 2004 have been shown to have phenotypic traits of both classical and El Tor biotypes, and thereby have been reported as variant. Our study demonstrated that two O1 strains isolated in Kolkata during 1992 were of the El Tor background as evidenced by polymyxin B (50 U ml−1) resistance, positivity in Voges–Proskauer reactions and sensitivity to biotype-specific vibrio phages. With the features of classical CTX prophage, localization in the small chromosome, and an absence of RS1 and pTLC, both Mozambique and Kolkata strains appeared to be identical. Furthermore, two Kolkata strains exhibited an identical ribotype to that of the Mozambique variant, displaying ribotype pattern RI that had been assigned to Kolkata V. cholerae O1 strains isolated on or before 1992. NotI pulsotype analysis indicated that these 1992 Kolkata strains along with the Mozambique variant O1 belonged to very closely related clones. Considering the chronological events, and the typical identity at the phenotypic and the genotypic level between the two O1 strains isolated during 1992 from Kolkata and during 2004 from Mozambique, we propose that some of the 1992 Kolkata O1 strains might have acted as progenitors for Mozambique variant O1 strains.
Collapse
Affiliation(s)
| | - Tapas Patra
- National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Kausik Ghosh
- National Institute of Cholera and Enteric Diseases, Kolkata, India
| | | | | | - Mayukh Das
- National Institute of Cholera and Enteric Diseases, Kolkata, India
| | | | | | | | - Yoshifumi Takeda
- Collaborative Research Center of Okayama University for Infectious Diseases, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | | | | | - Ranjan K. Nandy
- National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
21
|
Incidence, virulence factors, and clonality among clinical strains of non-O1, non-O139 Vibrio cholerae isolates from hospitalized diarrheal patients in Kolkata, India. J Clin Microbiol 2009; 47:1087-95. [PMID: 19158257 DOI: 10.1128/jcm.02026-08] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The incidence of Vibrio cholerae non-O1, non-O139 strains from hospitalized patients with acute diarrhea constituted 27.4% (n = 54) of the total 197 V. cholerae strains isolated from patients in Kolkata, India, in 2003. Of 197 strains, 135 were identified as O1 serotype Ogawa and 2 were identified as O139. In the same time period, six O1 background rough strains that possessed all known virulence factors were identified. Serotype analysis of the non-O1, non-O139 strains placed 42 strains into 19 serogroups, while 12 remained O nontypeable (ONT); the existing serotyping scheme involved antisera to 206 serogroups. Detection of a good number of ONT strains suggested that additional serogroups have arisen that need to be added to the current serotyping scheme. The non-O1, non-O139 strains were nontoxigenic except for an O36 strain (SC124), which regulated expression of cholera toxin as O1 classical strains did. Additionally, strain SC124 carried alleles of tcpA and toxT that were different from those of the O1 counterpart, and these were also found in five clonally related strains belonging to different serogroups. Strains carrying tcpA exhibited higher colonization in an animal model compared to those lacking tcpA. PCR-based analyses revealed remarkable variations in the distribution of other virulence factors, including hlyA, rtxA, Vibrio seventh pandemic island I (VSP-I), VSP-II, and type III secretion system (TTSS). Most strains contained hlyA (87%) and rtxA (81.5%) and secreted cytotoxic factors when grown in vitro. Approximately one-third of the strains (31.5%) contained the TTSS gene cluster, and most of these strains were more motile and hemolytic against rabbit erythrocytes. Partial nucleotide sequence analysis of the TTSS-containing strains revealed silent nucleotide mutations within vcsN2 (type III secretion cytoplasmic ATPase), indicating functional conservation of the TTSS apparatus.
Collapse
|
22
|
Singh DV, Mohapatra H. Application of DNA-based methods in typing Vibrio cholerae strains. Future Microbiol 2008; 3:87-96. [DOI: 10.2217/17460913.3.1.87] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Molecular biology-based techniques based on microbial genotype or DNA sequence have emerged as a basic tool in biological research and in the establishment of large databases of characterized organisms. Genotyping methods have the potential to provide information on subtypes of the organism and their source and/or origin of infection, and to recognize particularly virulent strains of the organism and monitor vaccination programs. Pulsed-field gel electrophoresis, ribotyping, CTX typing, amplified fragment length polymorphism, enterobacterial intergenic consensus sequence-PCR, multilocus sequence typing and microarray methods are more often used for the determination of genetic changes of toxigenic and nontoxigenic Vibrio cholerae strains, origin of infection and relationship between clinical and environmental strains, with the simultaneous detection of the number of copies and types of CTX prophages and genes required for persistence in diverse aquatic environments. This review will discuss DNA-based techniques for the molecular analysis of V. cholerae, its application and future directions.
Collapse
Affiliation(s)
- Durg V Singh
- Institute of Life Sciences, Nalco Square, Bhubaneswar-751023, India
| | | |
Collapse
|
23
|
Raychoudhuri A, Chatterjee S, Pazhani GP, Nandy RK, Bhattacharya MK, Bhattacharya SK, Ramamurthy T, Mukhopadhyay AK. Molecular characterization of recent Vibrio cholerae O1, El Tor, Inaba strains isolated from hospitalized patients in Kolkata, India. J Infect 2007; 55:431-8. [PMID: 17854903 DOI: 10.1016/j.jinf.2007.07.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 07/26/2007] [Accepted: 07/27/2007] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To study the phenotypic and genotypic characterization of newly emerged V. cholerae O1, Inaba strains isolated from patients with diarrhoea. METHODS Bacterial characterization was made using polymerase chain reaction, ribotyping, PFGE and RFLP. RESULTS After its first appearance in July 2004, O1 Inaba became the dominant serotype by March 2005 and totally replaced the former dominant serotype, Ogawa from May 2005. Most of the Inaba isolates belong to a new ribotype RIV. Ogawa and also some Inaba strains isolated during the same period were identified as RIII. Similarly, the majority of the Inaba isolates belong to 'H1' pulsotype and one isolate is type 'H', while the Ogawa isolates were mostly 'H' pulsotype. Presence of CTX prophage was detected in a single site of the chromosome with at least two RS elements. CONCLUSIONS There has been a switch of dominant serotype from Ogawa to Inaba in the Kolkata region. This is not necessarily due to emergence of a new clone but does serve as an epidemiological marker. Further analysis at the molecular level will be required to define this trend and to monitor future spread to other regions.
Collapse
|