1
|
Mendum TA, Chandran A, Williams K, Vordermeier HM, Villarreal-Ramos B, Wu H, Singh A, Smith AA, Butler RE, Prasad A, Bharti N, Banerjee R, Kasibhatla SM, Bhatt A, Stewart GR, McFadden J. Transposon libraries identify novel Mycobacterium bovis BCG genes involved in the dynamic interactions required for BCG to persist during in vivo passage in cattle. BMC Genomics 2019; 20:431. [PMID: 31138110 PMCID: PMC6540422 DOI: 10.1186/s12864-019-5791-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/10/2019] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND BCG is the most widely used vaccine of all time and remains the only licensed vaccine for use against tuberculosis in humans. BCG also protects other species such as cattle against tuberculosis, but due to its incompatibility with current tuberculin testing regimens remains unlicensed. BCG's efficacy relates to its ability to persist in the host for weeks, months or even years after vaccination. It is unclear to what degree this ability to resist the host's immune system is maintained by a dynamic interaction between the vaccine strain and its host as is the case for pathogenic mycobacteria. RESULTS To investigate this question, we constructed transposon mutant libraries in both BCG Pasteur and BCG Danish strains and inoculated them into bovine lymph nodes. Cattle are well suited to such an assay, as they are naturally susceptible to tuberculosis and are one of the few animal species for which a BCG vaccination program has been proposed. After three weeks, the BCG were recovered and the input and output libraries compared to identify mutants with in vivo fitness defects. Less than 10% of the mutated genes were identified as affecting in vivo fitness, they included genes encoding known mycobacterial virulence functions such as mycobactin synthesis, sugar transport, reductive sulphate assimilation, PDIM synthesis and cholesterol metabolism. Many other attenuating genes had not previously been recognised as having a virulence phenotype. To test these genes, we generated and characterised three knockout mutants that were predicted by transposon mutagenesis to be attenuating in vivo: pyruvate carboxylase, a hypothetical protein (BCG_1063), and a putative cyclopropane-fatty-acyl-phospholipid synthase. The knockout strains survived as well as wild type during in vitro culture and in bovine macrophages, yet demonstrated marked attenuation during passage in bovine lymph nodes confirming that they were indeed involved in persistence of BCG in the host. CONCLUSION These data show that BCG is far from passive during its interaction with the host, rather it continues to employ its remaining virulence factors, to interact with the host's innate immune system to allow it to persist, a property that is important for its protective efficacy.
Collapse
Affiliation(s)
- Tom A. Mendum
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH UK
| | - Aneesh Chandran
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH UK
| | - Kerstin Williams
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH UK
| | | | | | - H. Wu
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH UK
| | - Albel Singh
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Alex A. Smith
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH UK
| | - Rachel E. Butler
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH UK
| | - Aravind Prasad
- HPC-Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Innovation Park, Panchavati, Pashan, Pune, Maharashtra 411008 India
| | - Neeraj Bharti
- HPC-Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Innovation Park, Panchavati, Pashan, Pune, Maharashtra 411008 India
| | - Ruma Banerjee
- HPC-Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Innovation Park, Panchavati, Pashan, Pune, Maharashtra 411008 India
| | - Sunitha M. Kasibhatla
- HPC-Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Innovation Park, Panchavati, Pashan, Pune, Maharashtra 411008 India
| | - Apoorva Bhatt
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Graham R. Stewart
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH UK
| | - Johnjoe McFadden
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH UK
| |
Collapse
|
2
|
Gong W, Liang Y, Wu X. The current status, challenges, and future developments of new tuberculosis vaccines. Hum Vaccin Immunother 2018; 14:1697-1716. [PMID: 29601253 DOI: 10.1080/21645515.2018.1458806] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Mycobacterium tuberculosis complex causes tuberculosis (TB), one of the top 10 causes of death worldwide. TB results in more fatalities than multi-drug resistant (MDR) HIV strain related coinfection. Vaccines play a key role in the prevention and control of infectious diseases. Unfortunately, the only licensed preventive vaccine against TB, bacilli Calmette-Guérin (BCG), is ineffective for prevention of pulmonary TB in adults. Therefore, it is very important to develop novel vaccines for TB prevention and control. This literature review provides an overview of the innate and adaptive immune response during M. tuberculosis infection, and presents current developments and challenges to novel TB vaccines. A comprehensive understanding of vaccines in preclinical and clinical studies provides extensive insight for the development of safer and more efficient vaccines, and may inspire new ideas for TB prevention and treatment.
Collapse
Affiliation(s)
- Wenping Gong
- a Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research , Haidian District, Beijing , China
| | - Yan Liang
- a Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research , Haidian District, Beijing , China
| | - Xueqiong Wu
- a Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research , Haidian District, Beijing , China
| |
Collapse
|
3
|
Bahal RK, Mathur S, Chauhan P, Tyagi AK. An attenuated quadruple gene mutant of Mycobacterium tuberculosis imparts protection against tuberculosis in guinea pigs. Biol Open 2018; 7:bio.029546. [PMID: 29242198 PMCID: PMC5829500 DOI: 10.1242/bio.029546] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Previously we had developed a triple gene mutant of Mycobacterium tuberculosis (MtbΔmms) harboring disruption in three genes, namely mptpA, mptpB and sapM. Though vaccination with MtbΔmms strain induced protection in the lungs of guinea pigs, the mutant strain failed to control the hematogenous spread of the challenge strain to the spleen. Additionally, inoculation with MtbΔmms resulted in some pathological damage to the spleens in the early phase of infection. In order to generate a strain that overcomes the pathology caused by MtbΔmms in spleen of guinea pigs and controls dissemination of the challenge strain, MtbΔmms was genetically modified by disrupting bioA gene to generate MtbΔmmsb strain. Further, in vivo attenuation of MtbΔmmsb was evaluated and its protective efficacy was assessed against virulent M. tuberculosis challenge in guinea pigs. MtbΔmmsb mutant strain was highly attenuated for growth and virulence in guinea pigs. Vaccination with MtbΔmmsb mutant generated significant protection in comparison to sham-immunized animals at 4 and 12 weeks post-infection in lungs and spleen of infected animals. However, the protection imparted by MtbΔmmsb was significantly less in comparison to BCG immunized animals. This study indicates the importance of attenuated multiple gene deletion mutants of M. tuberculosis for generating protection against tuberculosis. Summary: In this study, a mutant of M. tuberculosis with the deletion of four important genes has been evaluated in guinea pigs for its attenuation and protective efficacy against tuberculosis.
Collapse
Affiliation(s)
- Ritika Kar Bahal
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Shubhita Mathur
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Priyanka Chauhan
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Anil K Tyagi
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India .,Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, New Delhi 110078, India
| |
Collapse
|
4
|
Abstract
Coevolution of pathogens and host has led to many metabolic strategies employed by intracellular pathogens to deal with the immune response and the scarcity of food during infection. Simply put, bacterial pathogens are just looking for food. As a consequence, the host has developed strategies to limit nutrients for the bacterium by containment of the intruder in a pathogen-containing vacuole and/or by actively depleting nutrients from the intracellular space, a process called nutritional immunity. Since metabolism is a prerequisite for virulence, such pathways could potentially be good targets for antimicrobial therapies. In this chapter, we review the current knowledge about the in vivo diet of Mycobacterium tuberculosis, with a focus on amino acid and cofactors, discuss evidence for the bacilli's nutritionally independent lifestyle in the host, and evaluate strategies for new chemotherapeutic interventions.
Collapse
|
5
|
Sakthi S, Palaniyandi K, Gupta UD, Gupta P, Narayanan S. Lipoprotein LpqS deficient M. tuberculosis mutant is attenuated for virulence in vivo and shows protective efficacy better than BCG in guinea pigs. Vaccine 2016; 34:735-43. [PMID: 26768127 DOI: 10.1016/j.vaccine.2015.12.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 12/19/2015] [Accepted: 12/28/2015] [Indexed: 12/22/2022]
Abstract
Bacterial lipoproteins are a functionally diverse class of membrane anchored proteins. Lipoproteins constitute nearly 2.5% of the Mycobacterium tuberculosis proteome. Inactivation of genes coding for individual lipoproteins results in attenuated phenotype of the mutants. LpqS is a lipoprotein highly conserved among slow growing pathogenic mycobacteria. Our previous study has shown that the lpqS gene deletion mutant of M. tuberculosis (MtbΔlpqS) poorly replicates in THP1-(human acute monocytic leukemia cell line) derived macrophagic cell line. In addition, guinea pigs, when infected with the mutant strain exhibited significantly reduced bacterial burden and pathological damage in the infected tissues in comparison with the parental strain infected group. Subsequently, we evaluated the protective efficacy of the mutant by immunization of guinea pigs through aerosol and subcutaneous routes. We observed that immunization of guinea pigs with MtbΔlpqS offered superior protection in lungs as compared to BCG. In addition, MtbΔlpqS also prevented the haematogenous spread of the disease which was evident from the significantly reduced splenic bacillary load compared to saline vaccinated animals. The gross pathological observations and the histopathological observations well corroborated the bacterial findings. We also observed that aerogenic route of immunization imparts superior protection compared to subcutaneous route of immunization. These findings well establishes the efficacy of M. tuberculosis mutant in imparting protection against pulmonary TB.
Collapse
Affiliation(s)
- Suba Sakthi
- Department of Immunology, National Institute for Research in Tuberculosis, Mayor Sathiyamoorthy Road, Chetpet, Chennai 600031, India
| | - Kannan Palaniyandi
- Department of Immunology, National Institute for Research in Tuberculosis, Mayor Sathiyamoorthy Road, Chetpet, Chennai 600031, India
| | - Umesh D Gupta
- National JALMA Institute for Leprosy and Other Mycabacterial Diseases, Tajganj, Agra 282001, India
| | - Pushpa Gupta
- National JALMA Institute for Leprosy and Other Mycabacterial Diseases, Tajganj, Agra 282001, India
| | - Sujatha Narayanan
- Department of Immunology, National Institute for Research in Tuberculosis, Mayor Sathiyamoorthy Road, Chetpet, Chennai 600031, India.
| |
Collapse
|
6
|
Higgins KA, Peng H, Luebke JL, Chang FMJ, Giedroc DP. Conformational Analysis and Chemical Reactivity of the Multidomain Sulfurtransferase, Staphylococcus aureus CstA. Biochemistry 2015; 54:2385-98. [DOI: 10.1021/acs.biochem.5b00056] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Khadine A. Higgins
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Hui Peng
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
- Graduate Program in Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Justin L. Luebke
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Feng-Ming James Chang
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - David P. Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
7
|
Luebke JL, Arnold RJ, Giedroc DP. Selenite and tellurite form mixed seleno- and tellurotrisulfides with CstR from Staphylococcus aureus. Metallomics 2013; 5:335-42. [PMID: 23385876 DOI: 10.1039/c3mt20205d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Staphylococcus aureus CstR (CsoR-like sulfur transferase repressor) is a member of the CsoR family of transition metal sensing metalloregulatory proteins. Unlike CsoR, CstR does not form a stable complex with transition metals but instead reacts with sulfite to form a mixture of di- and trisulfide species, CstR2(RS-SR') and CstR2(RS-S-SR')n)n=1 or 2, respectively. Here, we investigate if CstR performs similar chemistry with related chalcogen oxyanions selenite and tellurite. In this work we show by high resolution tandem mass spectrometry that CstR is readily modified by selenite (SeO3(2-)) or tellurite (TeO3(2-)) to form a mixture of intersubunit disulfides and selenotrisulfides or tellurotrisulfides, respectively, between Cys31 and Cys60'. Analogous studies with S. aureus CsoR reveals no reaction with selenite and minimal reaction with tellurite. All cross-linked forms of CstR exhibit reduced DNA binding affinity. We show that Cys31 initiates the reaction with sulfite through the formation of S-sulfocysteine (RS-SO3(2-)) and Cys60 is required to fully derivatize CstR to CstR2(RS-SR') and CstR2(RS-S-SR'). The modification of Cys31 also drives an allosteric switch that negatively regulates DNA binding while derivatization of Cys60 alone has no effect on DNA binding. These results highlight the differences between CstRs and CsoRs in chemical reactivity and metal ion selectivity and establish Cys31 as the functionally important cysteine residue in CstRs.
Collapse
Affiliation(s)
- Justin L Luebke
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | | | | |
Collapse
|
8
|
Steeb B, Claudi B, Burton NA, Tienz P, Schmidt A, Farhan H, Mazé A, Bumann D. Parallel exploitation of diverse host nutrients enhances Salmonella virulence. PLoS Pathog 2013; 9:e1003301. [PMID: 23633950 PMCID: PMC3636032 DOI: 10.1371/journal.ppat.1003301] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 02/26/2013] [Indexed: 12/20/2022] Open
Abstract
Pathogen access to host nutrients in infected tissues is fundamental for pathogen growth and virulence, disease progression, and infection control. However, our understanding of this crucial process is still rather limited because of experimental and conceptual challenges. Here, we used proteomics, microbial genetics, competitive infections, and computational approaches to obtain a comprehensive overview of Salmonella nutrition and growth in a mouse typhoid fever model. The data revealed that Salmonella accessed an unexpectedly diverse set of at least 31 different host nutrients in infected tissues but the individual nutrients were available in only scarce amounts. Salmonella adapted to this situation by expressing versatile catabolic pathways to simultaneously exploit multiple host nutrients. A genome-scale computational model of Salmonella in vivo metabolism based on these data was fully consistent with independent large-scale experimental data on Salmonella enzyme quantities, and correctly predicted 92% of 738 reported experimental mutant virulence phenotypes, suggesting that our analysis provided a comprehensive overview of host nutrient supply, Salmonella metabolism, and Salmonella growth during infection. Comparison of metabolic networks of other pathogens suggested that complex host/pathogen nutritional interfaces are a common feature underlying many infectious diseases.
Collapse
Affiliation(s)
- Benjamin Steeb
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Beatrice Claudi
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Neil A. Burton
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Petra Tienz
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Hesso Farhan
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Alain Mazé
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Dirk Bumann
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
9
|
Paritala H, Carroll KS. New targets and inhibitors of mycobacterial sulfur metabolism. Infect Disord Drug Targets 2013; 13:85-115. [PMID: 23808874 PMCID: PMC4332622 DOI: 10.2174/18715265113139990022] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 05/08/2013] [Indexed: 11/22/2022]
Abstract
The identification of new antibacterial targets is urgently needed to address multidrug resistant and latent tuberculosis infection. Sulfur metabolic pathways are essential for survival and the expression of virulence in many pathogenic bacteria, including Mycobacterium tuberculosis. In addition, microbial sulfur metabolic pathways are largely absent in humans and therefore, represent unique targets for therapeutic intervention. In this review, we summarize our current understanding of the enzymes associated with the production of sulfated and reduced sulfur-containing metabolites in Mycobacteria. Small molecule inhibitors of these catalysts represent valuable chemical tools that can be used to investigate the role of sulfur metabolism throughout the Mycobacterial lifecycle and may also represent new leads for drug development. In this light, we also summarize recent progress made in the development of inhibitors of sulfur metabolism enzymes.
Collapse
Affiliation(s)
| | - Kate S. Carroll
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida, 33458, USA
| |
Collapse
|
10
|
Singhal N, Bisht D, Joshi B. Immunoprophylaxis of tuberculosis: an update of emerging trends. Arch Immunol Ther Exp (Warsz) 2010; 58:97-106. [PMID: 20140756 DOI: 10.1007/s00005-010-0068-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 07/06/2009] [Indexed: 11/25/2022]
Abstract
Developing effective prophylactics to combat tuberculosis is currently in an exploratory stage. The HIV pandemic and emergence of multi- and extensively drug-resistant strains of Mycobacterium tuberculosis indicate that the current preventive measures against this ever-evolving pathogen are inadequate. The currently available vaccine BCG in its present form affords variable protection which usually wanes with aging. Various reasons have been cited to explain the discrepancies in the efficacy of BCG, including generic differences in the different BCG vaccine strains used in immunization program throughout the world. The low efficacy of BCG vaccine has promoted the search for novel vaccines for tuberculosis. The search strategies aim at completely replacing the existing vaccine and/or augmenting/improving the current BCG vaccine. Among new vaccine candidates are live attenuated M. tuberculosis vaccines, recombinant BCG, DNA vaccines, subunit vaccine, and fusion protein-based vaccines. More than 200 new vaccine candidates have been developed as a result of research work over the past few years. To date, at least eight vaccine candidates are undergoing clinical evaluation, with a few of them successfully qualifying in the first phase of clinical testing. These recent advances present an optimistic insight whereby a new tuberculosis vaccine might be expected to be available for public use in the next few years.
Collapse
Affiliation(s)
- Neelja Singhal
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Indian Council of Medical Research, Tajganj, Agra 282001, India
| | | | | |
Collapse
|
11
|
Gonzalo-Asensio J, Mostowy S, Harders-Westerveen J, Huygen K, Hernández-Pando R, Thole J, Behr M, Gicquel B, Martín C. PhoP: a missing piece in the intricate puzzle of Mycobacterium tuberculosis virulence. PLoS One 2008; 3:e3496. [PMID: 18946503 PMCID: PMC2566814 DOI: 10.1371/journal.pone.0003496] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Accepted: 09/25/2008] [Indexed: 11/18/2022] Open
Abstract
Inactivation of the transcriptional regulator PhoP results in Mycobacterium tuberculosis attenuation. Preclinical testing has shown that attenuated M. tuberculosis phoP mutants hold promise as safe and effective live vaccine candidates. We focused this study to decipher the virulence networks regulated by PhoP. A combined transcriptomic and proteomic analysis revealed that PhoP controls a variety of functions including: hypoxia response through DosR crosstalking, respiratory metabolism, secretion of the major T-cell antigen ESAT-6, stress response, synthesis of pathogenic lipids and the M. tuberculosis persistence through transcriptional regulation of the enzyme isocitrate lyase. We also demonstrate that the M. tuberculosis phoP mutant SO2 exhibits an antigenic capacity similar to that of the BCG vaccine. Finally, we provide evidence that the SO2 mutant persists better in mouse organs than BCG. Altogether, these findings indicate that PhoP orchestrates a variety of functions implicated in M. tuberculosis virulence and persistence, making phoP mutants promising vaccine candidates.
Collapse
Affiliation(s)
- Jesús Gonzalo-Asensio
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Mallorca, Illes Balears, Spain
| | - Serge Mostowy
- Division of Infectious Diseases and Medical Microbiology, Montreal General Hospital, Montreal, Canada
| | | | - Kris Huygen
- WIV-Pasteur Institute Brussels, Brussels, Belgium
| | - Rogelio Hernández-Pando
- Experimental Pathology Section, Department of Pathology, National Institute of Medical Sciences and Nutrition “Salvador Zubiràn”, Mexico City, Mexico
| | - Jelle Thole
- TuBerculosis Vaccine Initiative, Lelystad, The Netherlands
| | - Marcel Behr
- Division of Infectious Diseases and Medical Microbiology, Montreal General Hospital, Montreal, Canada
| | - Brigitte Gicquel
- Unité de Génétique Mycobactérienne, Institut Pasteur, Paris, France
| | - Carlos Martín
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Mallorca, Illes Balears, Spain
- * E-mail:
| |
Collapse
|
12
|
A Replication-Limited Recombinant Mycobacterium bovis BCG vaccine against tuberculosis designed for human immunodeficiency virus-positive persons is safer and more efficacious than BCG. Infect Immun 2008; 76:5200-14. [PMID: 18725418 DOI: 10.1128/iai.00434-08] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tuberculosis is the leading cause of death in AIDS patients, yet the current tuberculosis vaccine, Mycobacterium bovis bacillus Calmette-Guérin (BCG), is contraindicated for immunocompromised individuals, including human immunodeficiency virus-positive persons, because it can cause disseminated disease; moreover, its efficacy is suboptimal. To address these problems, we have engineered BCG mutants that grow normally in vitro in the presence of a supplement, are preloadable with supplement to allow limited growth in vivo, and express the highly immunoprotective Mycobacterium tuberculosis 30-kDa major secretory protein. The limited replication in vivo renders these vaccines safer than BCG in SCID mice yet is sufficient to induce potent cell-mediated and protective immunity in the outbred guinea pig model of pulmonary tuberculosis. In the case of one vaccine, rBCG(mbtB)30, protection was superior to that with BCG (0.3-log fewer CFU of M. tuberculosis in the lung [P < 0.04] and 0.6-log fewer CFU in the spleen [P = 0.001] in aerosol-challenged animals [means for three experiments]); hence, rBCG(mbtB)30 is the first live mycobacterial vaccine that is both more attenuated than BCG in the SCID mouse and more potent than BCG in the guinea pig. Our study demonstrates the feasibility of developing safer and more potent vaccines against tuberculosis. The novel approach of engineering a replication-limited vaccine expressing a recombinant immunoprotective antigen and preloading it with a required nutrient, such as iron, that is capable of being stored should be generally applicable to other live vaccine vectors targeting intracellular pathogens.
Collapse
|