1
|
Guliaev A, Hjort K, Rossi M, Jonsson S, Nicoloff H, Guy L, Andersson DI. Machine learning detection of heteroresistance in Escherichia coli. EBioMedicine 2025; 113:105618. [PMID: 39986174 PMCID: PMC11893328 DOI: 10.1016/j.ebiom.2025.105618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Heteroresistance (HR) is a significant type of antibiotic resistance observed for several bacterial species and antibiotic classes where a susceptible main population contains small subpopulations of resistant cells. Mathematical models, animal experiments and clinical studies associate HR with treatment failure. Currently used susceptibility tests do not detect heteroresistance reliably, which can result in misclassification of heteroresistant isolates as susceptible which might lead to treatment failure. Here we examined if whole genome sequence (WGS) data and machine learning (ML) can be used to detect bacterial HR. METHODS We classified 467 Escherichia coli clinical isolates as HR or non-HR to the often used β-lactam/inhibitor combination piperacillin-tazobactam using pre-screening and Population Analysis Profiling tests. We sequenced the isolates, assembled the whole genomes and created a set of predictors based on current knowledge of HR mechanisms. Then we trained several machine learning models on 80% of this data set aiming to detect HR isolates. We compared performance of the best ML models on the remaining 20% of the data set with a baseline model based solely on the presence of β-lactamase genes. Furthermore, we sequenced the resistant sub-populations in order to analyse the genetic mechanisms underlying HR. FINDINGS The best ML model achieved 100% sensitivity and 84.6% specificity, outperforming the baseline model. The strongest predictors of HR were the total number of β-lactamase genes, β-lactamase gene variants and presence of IS elements flanking them. Genetic analysis of HR strains confirmed that HR is caused by an increased copy number of resistance genes via gene amplification or plasmid copy number increase. This aligns with the ML model's findings, reinforcing the hypothesis that this mechanism underlies HR in Gram-negative bacteria. INTERPRETATION We demonstrate that a combination of WGS and ML can identify HR in bacteria with perfect sensitivity and high specificity. This improved detection would allow for better-informed treatment decisions and potentially reduce the occurrence of treatment failures associated with HR. FUNDING Funding provided to DIA from the Swedish Research Council (2021-02091) and NIH (1U19AI158080-01).
Collapse
Affiliation(s)
- Andrei Guliaev
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Karin Hjort
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Michele Rossi
- Department of Biosciences, University of Milan, Milan, Italy; Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Sofia Jonsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Hervé Nicoloff
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Lionel Guy
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden; SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Dan I Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
2
|
Balta I, Lemon J, Gadaj A, Cretescu I, Stef D, Pet I, Stef L, McCleery D, Douglas A, Corcionivoschi N. The interplay between antimicrobial resistance, heavy metal pollution, and the role of microplastics. Front Microbiol 2025; 16:1550587. [PMID: 40092036 PMCID: PMC11906687 DOI: 10.3389/fmicb.2025.1550587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
Environmental pollution with heavy metals (HMs) and microplastics (MPs) could enhance the global health challenge antimicrobial resistance (AMR). Herein, we explore the complicated mechanics of how HMs, MPs, and AMR are interlinked within microbial ecosystems, as well as the co-selection and cross-resistance mechanisms. Unlike antibiotics, HMs have influenced microbial evolution for billions of years, promoting resistance mechanisms that predate antibiotic resistance genes (ARGs). At the same time, this conundrum is further complicated by the pervasive spread of MPs in the aquatic and terrestrial environments, acting as substrates for bacterial pathogenic biofilms and accelerates the horizontal gene transfer (HGT) of ARGs and heavy metal resistance genes (MRGs). This review highlights that HMs such as lead (Pb), mercury (Hg), arsenic (As), chromium (Cr), cadmium (Cd), and nickel (Ni) have persistently selected for resistance traits through efflux systems and genetic co-regulation. Together, these interactions are amplified by MPs that create genetic exchange hotspots due to biofilm formation. These dynamics are modulated by organic matter, which serves both as a nutrient source and a mediator of HM bioavailability, directly influencing ARG abundance. Soil and water ecosystems, including riverine systems and landfill leachate, are reservoirs for ARGs and ARG-MRG combinations, with notable contributions originating from anthropogenic activities. This review also emphasizes the urgent need for integrated environmental and public health strategies to mitigate pollutant-driven AMR. This work seeks to approach HMs and MPs as synergistic drivers of AMR such that both HMs and MPs are upstream (causes) levers, a foundation from which future research on sustainable environmental management practices and health policy (One Health Approach), aimed at curbing the spread of resistance determinants can proceed.
Collapse
Affiliation(s)
- Igori Balta
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, Timisoara, Romania
| | - Joanne Lemon
- Chief Scientific Adviser's Office, Department of Agriculture, Environment and Rural Affairs for Northern Ireland, Belfast, United Kingdom
| | - Anna Gadaj
- Chemical Surveillance Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom
| | - Iuliana Cretescu
- Department of Functional Sciences, Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Ducu Stef
- Faculty of Food Engineering, University of Life Sciences King Mihai I from Timisoara, Timisoara, Romania
| | - Ioan Pet
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, Timisoara, Romania
| | - Lavinia Stef
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, Timisoara, Romania
| | - David McCleery
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom
| | - Alastair Douglas
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom
| | - Nicolae Corcionivoschi
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom
- Academy of Romanian Scientists, Bucharest, Romania
| |
Collapse
|
3
|
Gorelik MG, Yakhnin H, Pannuri A, Walker AC, Pourciau C, Czyz D, Romeo T, Babitzke P. Multitier regulation of the E. coli extreme acid stress response by CsrA. J Bacteriol 2024; 206:e0035423. [PMID: 38319100 PMCID: PMC11210196 DOI: 10.1128/jb.00354-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/15/2024] [Indexed: 02/07/2024] Open
Abstract
CsrA is an RNA-binding protein that regulates processes critical for growth and survival, including central carbon metabolism, motility, biofilm formation, stress responses, and expression of virulence factors in pathogens. Transcriptomics studies in Escherichia coli suggested that CsrA repressed genes involved in surviving extremely acidic conditions. Here, we examine the effects of disrupting CsrA-dependent regulation on the expression of genes and circuitry for acid stress survival and demonstrate CsrA-mediated repression at multiple levels. We show that this repression is critical for managing the trade-off between growth and survival; overexpression of acid stress genes caused by csrA disruption enhances survival under extreme acidity but is detrimental for growth under mildly acidic conditions. In vitro studies confirmed that CsrA binds specifically to mRNAs of structural and regulatory genes for acid stress survival, causing translational repression. We also found that translation of the top-tier acid stress regulator, evgA, is coupled to that of a small leader peptide, evgL, which is repressed by CsrA. Unlike dedicated acid stress response genes, csrA and its sRNA antagonists, csrB and csrC, did not exhibit a substantial response to acid shock. Furthermore, disruption of CsrA regulation of acid stress genes impacted host-microbe interactions in Caenorhabditis elegans, alleviating GABA deficiencies. This study expands the known regulon of CsrA to genes of the extreme acid stress response of E. coli and highlights a new facet of the global role played by CsrA in balancing the opposing physiological demands of stress resistance with the capacity for growth and modulating host interactions.IMPORTANCETo colonize/infect the mammalian intestinal tract, bacteria must survive exposure to the extreme acidity of the stomach. E. coli does this by expressing proteins that neutralize cytoplasmic acidity and cope with molecular damage caused by low pH. Because of the metabolic cost of these processes, genes for surviving acid stress are tightly regulated. Here, we show that CsrA negatively regulates the cascade of expression responsible for the acid stress response. Increased expression of acid response genes due to csrA disruption improved survival at extremely low pH but inhibited growth under mildly acidic conditions. Our findings define a new layer of regulation in the acid stress response of E. coli and a novel physiological function for CsrA.
Collapse
Affiliation(s)
- Mark G. Gorelik
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Helen Yakhnin
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Archana Pannuri
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Alyssa C. Walker
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Christine Pourciau
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Daniel Czyz
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Tony Romeo
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
4
|
Shimada T, Ogasawara H, Kobayashi I, Ishihama A. Genomic SELEX Screening of Regulatory Targets of Transcription Factors. Methods Mol Biol 2024; 2819:77-102. [PMID: 39028503 DOI: 10.1007/978-1-0716-3930-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The genome of Escherichia coli K-12 is transcribed by a single species of RNA polymerase. The selectivity of transcriptional targets is determined via interaction with one of seven species of the sigma subunit and a total of approximately 300 species of transcription factor (TFs). For comprehensive identification of the regulatory targets of these two groups of regulatory proteins on the genome, we developed an in vitro approach, "Genomic SELEX" (gSELEX) screening. Here we describe a detailed protocol of the gSELEX screening system, which uses purified regulatory proteins and fragments of genomic DNA from E. coli. Moreover, we describe methods and examples of results using cell-free synthetic proteins.
Collapse
Affiliation(s)
- Tomohiro Shimada
- Meiji University, School of Agriculture, Kawasaki, Kanagawa, Japan.
| | - Hiroshi Ogasawara
- Research Center for Advanced Science and technology, Division of Gene Research, Shinshu University, Ueda, Nagano, Japan
| | - Ikki Kobayashi
- Meiji University, School of Agriculture, Kawasaki, Kanagawa, Japan
| | - Akira Ishihama
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan
| |
Collapse
|
5
|
Browning DF, Hobman JL, Busby SJW. Laboratory strains of Escherichia coli K-12: things are seldom what they seem. Microb Genom 2023; 9:mgen000922. [PMID: 36745549 PMCID: PMC9997739 DOI: 10.1099/mgen.0.000922] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Escherichia coli K-12 was originally isolated 100 years ago and since then it has become an invaluable model organism and a cornerstone of molecular biology research. However, despite its pedigree, since its initial isolation E. coli K-12 has been repeatedly cultured, passaged and mutagenized, resulting in an organism that carries many genetic changes. To understand more about this important model organism, we have sequenced the genomes of two ancestral K-12 strains, WG1 and EMG2, considered to be the progenitors of many key laboratory strains. Our analysis confirms that these strains still carry genetic elements such as bacteriophage lambda (λ) and the F plasmid, but also indicates that they have undergone extensive laboratory-based evolution. Thus, scrutinizing the genomes of ancestral E. coli K-12 strains leads us to examine whether E. coli K-12 is a sufficiently robust model organism for 21st century microbiology.
Collapse
Affiliation(s)
- Douglas F Browning
- School of Biosciences, College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Jon L Hobman
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Loughborough LE12 5RD, UK
| | - Stephen J W Busby
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
6
|
Roth M, Goodall ECA, Pullela K, Jaquet V, François P, Henderson IR, Krause KH. Transposon-Directed Insertion-Site Sequencing Reveals Glycolysis Gene gpmA as Part of the H2O2 Defense Mechanisms in Escherichia coli. Antioxidants (Basel) 2022; 11:antiox11102053. [PMID: 36290776 PMCID: PMC9598634 DOI: 10.3390/antiox11102053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Hydrogen peroxide (H2O2) is a common effector of defense mechanisms against pathogenic infections. However, bacterial factors involved in H2O2 tolerance remain unclear. Here we used transposon-directed insertion-site sequencing (TraDIS), a technique allowing the screening of the whole genome, to identify genes implicated in H2O2 tolerance in Escherichia coli. Our TraDIS analysis identified 10 mutants with fitness defect upon H2O2 exposure, among which previously H2O2-associated genes (oxyR, dps, dksA, rpoS, hfq and polA) and other genes with no known association with H2O2 tolerance in E. coli (corA, rbsR, nhaA and gpmA). This is the first description of the impact of gpmA, a gene involved in glycolysis, on the susceptibility of E. coli to H2O2. Indeed, confirmatory experiments showed that the deletion of gpmA led to a specific hypersensitivity to H2O2 comparable to the deletion of the major H2O2 scavenger gene katG. This hypersensitivity was not due to an alteration of catalase function and was independent of the carbon source or the presence of oxygen. Transcription of gpmA was upregulated under H2O2 exposure, highlighting its role under oxidative stress. In summary, our TraDIS approach identified gpmA as a member of the oxidative stress defense mechanism in E. coli.
Collapse
Affiliation(s)
- Myriam Roth
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Correspondence:
| | - Emily C. A. Goodall
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Karthik Pullela
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Vincent Jaquet
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- READS Unit, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Patrice François
- Genomic Research Laboratory, Infectious Diseases Service, University Hospitals of Geneva, University Medical Center, Michel-Servet 1, 1211 Geneva, Switzerland
| | - Ian R. Henderson
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
7
|
Vats P, Kaur UJ, Rishi P. Heavy metal-induced selection and proliferation of antibiotic resistance: A review. J Appl Microbiol 2022; 132:4058-4076. [PMID: 35170159 DOI: 10.1111/jam.15492] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/28/2021] [Accepted: 02/11/2022] [Indexed: 11/28/2022]
Abstract
Antibiotic resistance is recognized as a global threat to public health. The selection and evolution of antibiotic resistance in clinical pathogens was believed to be majorly driven by the imprudent use of antibiotics. However, concerns regarding the same, through selection pressure by a multitude of other antimicrobial agents, such as heavy metals, are also growing. Heavy metal contamination co-selects antibiotic and metal resistance through numerous mechanisms, such as co-resistance and cross-resistance. Here, we have reviewed the role of heavy metals as antimicrobial resistance driving agents and the underlying concept and mechanisms of co-selection, while also highlighting the scarcity in studies explicitly inspecting the process of co-selection in clinical settings. Prospective strategies to manage heavy metal-induced antibiotic resistance have also been deliberated, underlining the need to find specific inhibitors so that alternate medicinal combinations can be added to the existing therapeutic armamentarium.
Collapse
Affiliation(s)
- Prakriti Vats
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Ujjwal Jit Kaur
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Praveen Rishi
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
8
|
Xie S, Leung AWS, Zheng Z, Zhang D, Xiao C, Luo R, Luo M, Zhang S. Applications and potentials of nanopore sequencing in the (epi)genome and (epi)transcriptome era. Innovation (N Y) 2021; 2:100153. [PMID: 34901902 PMCID: PMC8640597 DOI: 10.1016/j.xinn.2021.100153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/09/2021] [Indexed: 02/08/2023] Open
Abstract
The Human Genome Project opened an era of (epi)genomic research, and also provided a platform for the development of new sequencing technologies. During and after the project, several sequencing technologies continue to dominate nucleic acid sequencing markets. Currently, Illumina (short-read), PacBio (long-read), and Oxford Nanopore (long-read) are the most popular sequencing technologies. Unlike PacBio or the popular short-read sequencers before it, which, as examples of the second or so-called Next-Generation Sequencing platforms, need to synthesize when sequencing, nanopore technology directly sequences native DNA and RNA molecules. Nanopore sequencing, therefore, avoids converting mRNA into cDNA molecules, which not only allows for the sequencing of extremely long native DNA and full-length RNA molecules but also document modifications that have been made to those native DNA or RNA bases. In this review on direct DNA sequencing and direct RNA sequencing using Oxford Nanopore technology, we focus on their development and application achievements, discussing their challenges and future perspective. We also address the problems researchers may encounter applying these approaches in their research topics, and how to resolve them.
Collapse
Affiliation(s)
- Shangqian Xie
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, College of Forestry, Hainan University, Haikou 570228, China
| | - Amy Wing-Sze Leung
- Department of Computer Science, The University of Hong Kong, Hong Kong 999077, China
| | - Zhenxian Zheng
- Department of Computer Science, The University of Hong Kong, Hong Kong 999077, China
| | - Dake Zhang
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Chuanle Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangzhou 510060, China
| | - Ruibang Luo
- Department of Computer Science, The University of Hong Kong, Hong Kong 999077, China
| | - Ming Luo
- Agriculture and Biotechnology Research Center, Guangdong Provincial Key Laboratory of Applied Botany, Center of Economic Botany, Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Shoudong Zhang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
| |
Collapse
|
9
|
Hwang SB, Chelliah R, Kang JE, Rubab M, Banan-MwineDaliri E, Elahi F, Oh DH. Role of Recent Therapeutic Applications and the Infection Strategies of Shiga Toxin-Producing Escherichia coli. Front Cell Infect Microbiol 2021; 11:614963. [PMID: 34268129 PMCID: PMC8276698 DOI: 10.3389/fcimb.2021.614963] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 05/07/2021] [Indexed: 12/17/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a global foodborne bacterial pathogen that is often accountable for colon disorder or distress. STEC commonly induces severe diarrhea in hosts but can cause critical illnesses due to the Shiga toxin virulence factors. To date, there have been a significant number of STEC serotypes have been evolved. STECs vary from nausea and hemorrhoid (HC) to possible lethal hemolytic-based uremic syndrome (HUS), thrombotic thrombocytopenic purpura (TTP). Inflammation-based STEC is usually a foodborne illness with Shiga toxins (Stx 1 and 2) thought to be pathogenesis. The STEC's pathogenicity depends significantly on developing one or more Shiga toxins, which can constrain host cell protein synthesis leading to cytotoxicity. In managing STEC infections, antimicrobial agents are generally avoided, as bacterial damage and discharge of accumulated toxins are thought the body. It has also been documented that certain antibiotics improve toxin production and the development of these species. Many different groups have attempted various therapies, including toxin-focused antibodies, toxin-based polymers, synbiotic agents, and secondary metabolites remedies. Besides, in recent years, antibiotics' efficacy in treating STEC infections has been reassessed with some encouraging methods. Nevertheless, the primary role of synbiotic effectiveness (probiotic and prebiotic) against pathogenic STEC and other enteropathogens is less recognized. Additional studies are required to understand the mechanisms of action of probiotic bacteria and yeast against STEC infection. Because of the consensus contraindication of antimicrobials for these bacterial pathogens, the examination was focused on alternative remedy strategies for STEC infections. The rise of novel STEC serotypes and approaches employed in its treatment are highlighted.
Collapse
Affiliation(s)
- Su-bin Hwang
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Ramachandran Chelliah
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Ji Eun Kang
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Momna Rubab
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | - Eric Banan-MwineDaliri
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Fazle Elahi
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
10
|
Shimada T, Ogasawara H, Kobayashi I, Kobayashi N, Ishihama A. Single-Target Regulators Constitute the Minority Group of Transcription Factors in Escherichia coli K-12. Front Microbiol 2021; 12:697803. [PMID: 34220787 PMCID: PMC8249747 DOI: 10.3389/fmicb.2021.697803] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/28/2021] [Indexed: 11/13/2022] Open
Abstract
The identification of regulatory targets of all transcription factors (TFs) is critical for understanding the entire network of genome regulation. A total of approximately 300 TFs exist in the model prokaryote Escherichia coli K-12, but the identification of whole sets of their direct targets is impossible with use of in vivo approaches. For this end, the most direct and quick approach is to identify the TF-binding sites in vitro on the genome. We then developed and utilized the gSELEX screening system in vitro for identification of more than 150 E. coli TF-binding sites along the E. coli genome. Based on the number of predicted regulatory targets, we classified E. coli K-12 TFs into four groups, altogether forming a hierarchy ranging from a single-target TF (ST-TF) to local TFs, global TFs, and nucleoid-associated TFs controlling as many as 1,000 targets. Using the collection of purified TFs and a library of genome DNA segments from a single and the same E. coli K-12, we identified here a total of 11 novel ST-TFs, CsqR, CusR, HprR, NorR, PepA, PutA, QseA, RspR, UvrY, ZraR, and YqhC. The regulation of single-target promoters was analyzed in details for the hitherto uncharacterized QseA and RspR. In most cases, the ST-TF gene and its regulatory target genes are adjacently located on the E. coli K-12 genome, implying their simultaneous transfer in the course of genome evolution. The newly identified 11 ST-TFs and the total of 13 hitherto identified altogether constitute the minority group of TFs in E. coli K-12.
Collapse
Affiliation(s)
| | - Hiroshi Ogasawara
- Research Center for Supports to Advanced Science, Division of Gene Research, Shinshu University, Nagano, Japan.,Research Center for Fungal and Microbial Dynamism, Shinshu University, Nagano, Japan
| | - Ikki Kobayashi
- School of Agriculture, Meiji University, Kawasaki, Japan
| | - Naoki Kobayashi
- Department of Frontier Science, Hosei University, Koganei, Japan
| | - Akira Ishihama
- Department of Frontier Science, Hosei University, Koganei, Japan.,Micro-Nano Technology Research Center, Hosei University, Koganei, Japan
| |
Collapse
|
11
|
Coolen JPM, den Drijver EPM, Verweij JJ, Schildkraut JA, Neveling K, Melchers WJG, Kolwijck E, Wertheim HFL, Kluytmans JAJW, Huynen MA. Genome-wide analysis in Escherichia coli unravels a high level of genetic homoplasy associated with cefotaxime resistance. Microb Genom 2021; 7:000556. [PMID: 33843573 PMCID: PMC8208684 DOI: 10.1099/mgen.0.000556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 03/11/2021] [Indexed: 11/18/2022] Open
Abstract
Cefotaxime (CTX) is a third-generation cephalosporin (3GC) commonly used to treat infections caused by Escherichia coli. Two genetic mechanisms have been associated with 3GC resistance in E. coli. The first is the conjugative transfer of a plasmid harbouring antibiotic-resistance genes. The second is the introduction of mutations in the promoter region of the ampC β-lactamase gene that cause chromosome-encoded β-lactamase hyperproduction. A wide variety of promoter mutations related to AmpC hyperproduction have been described. However, their link to CTX resistance has not been reported. We recultured 172 cefoxitin-resistant E. coli isolates with known CTX minimum inhibitory concentrations and performed genome-wide analysis of homoplastic mutations associated with CTX resistance by comparing Illumina whole-genome sequencing data of all isolates to a PacBio sequenced reference chromosome. We mapped the mutations on the reference chromosome and determined their occurrence in the phylogeny, revealing extreme homoplasy at the -42 position of the ampC promoter. The 24 occurrences of a T at the -42 position rather than the wild-type C, resulted from 18 independent C>T mutations in five phylogroups. The -42 C>T mutation was only observed in E. coli lacking a plasmid-encoded ampC gene. The association of the -42 C>T mutation with CTX resistance was confirmed to be significant (false discovery rate <0.05). To conclude, genome-wide analysis of homoplasy in combination with CTX resistance identifies the -42 C>T mutation of the ampC promotor as significantly associated with CTX resistance and underlines the role of recurrent mutations in the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Jordy P. M. Coolen
- Department of Medical Microbiology and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Evert P. M. den Drijver
- Department of Infection Control, Amphia Ziekenhuis, Breda, The Netherlands
- Laboratory for Medical Microbiology and Immunology, Elisabeth-Tweesteden Hospital, Tilburg, The Netherlands
| | - Jaco J. Verweij
- Laboratory for Medical Microbiology and Immunology, Elisabeth-Tweesteden Hospital, Tilburg, The Netherlands
| | - Jodie A. Schildkraut
- Department of Medical Microbiology and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kornelia Neveling
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Willem J. G. Melchers
- Department of Medical Microbiology and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eva Kolwijck
- Department of Medical Microbiology and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Heiman F. L. Wertheim
- Department of Medical Microbiology and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan A. J. W. Kluytmans
- Department of Infection Control, Amphia Ziekenhuis, Breda, The Netherlands
- Laboratory for Microbiology, Microvida, Breda, The Netherlands
- Julius Center for Health Sciences and Primary Care, UMCU, Utrecht, The Netherlands
| | - Martijn A. Huynen
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
12
|
García A, Fox JG. A One Health Perspective for Defining and Deciphering Escherichia coli Pathogenic Potential in Multiple Hosts. Comp Med 2021; 71:3-45. [PMID: 33419487 PMCID: PMC7898170 DOI: 10.30802/aalas-cm-20-000054] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/17/2020] [Accepted: 09/19/2020] [Indexed: 11/05/2022]
Abstract
E. coli is one of the most common species of bacteria colonizing humans and animals. The singularity of E. coli 's genus and species underestimates its multifaceted nature, which is represented by different strains, each with different combinations of distinct virulence factors. In fact, several E. coli pathotypes, or hybrid strains, may be associated with both subclinical infection and a range of clinical conditions, including enteric, urinary, and systemic infections. E. coli may also express DNA-damaging toxins that could impact cancer development. This review summarizes the different E. coli pathotypes in the context of their history, hosts, clinical signs, epidemiology, and control. The pathotypic characterization of E. coli in the context of disease in different animals, including humans, provides comparative and One Health perspectives that will guide future clinical and research investigations of E. coli infections.
Collapse
Key Words
- aa, aggregative adherence
- a/e, attaching and effacing
- aepec, atypical epec
- afa, afimbrial adhesin
- aida-i, adhesin involved in diffuse adherence
- aiec, adherent invasive e. coli
- apec, avian pathogenic e. coli
- atcc, american type culture collection
- bfp, bundle-forming pilus
- cd, crohn disease
- cdt, cytolethal distending toxin gene
- clb, colibactin
- cnf, cytotoxic necrotizing factor
- cs, coli surface (antigens)
- daec, diffusely adhering e. coli
- db, dutch belted
- eae, e. coli attaching and effacing gene
- eaec, enteroaggregative e. coli
- eaf, epec adherence factor (plasmid)
- eahec, entero-aggregative-hemorrhagic e. coli
- east-1, enteroaggregative e. coli heat-stable enterotoxin
- e. coli, escherichia coli
- ed, edema disease
- ehec, enterohemorrhagic e. coli
- eiec, enteroinvasive e. coli
- epec, enteropathogenic e. coli
- esbl, extended-spectrum β-lactamase
- esp, e. coli secreted protein
- etec, enterotoxigenic e. coli
- expec, extraintestinal pathogenic e. coli
- fyua, yersiniabactin receptor gene
- gi, gastrointestinal
- hly, hemolysin
- hus, hemolytic uremic syndrome
- ibd, inflammatory bowel disease
- la, localized adherence
- lee, locus of enterocyte effacement
- lpf, long polar fimbriae
- lt, heat-labile (enterotoxin)
- mlst, multilocus sequence typing
- ndm, new delhi metallo-β-lactamase
- nzw, new zealand white
- pap, pyelonephritis-associated pilus
- pks, polyketide synthase
- sfa, s fimbrial adhesin
- slt, shiga-like toxin
- st, heat-stable (enterotoxin)
- stec, stx-producing e. coli
- stx, shiga toxin
- tepec, typical epec
- upec, uropathogenic e. coli
- uti, urinary tract infection
Collapse
Affiliation(s)
- Alexis García
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico; Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts; Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts;,
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
13
|
Abram K, Udaondo Z, Bleker C, Wanchai V, Wassenaar TM, Robeson MS, Ussery DW. Mash-based analyses of Escherichia coli genomes reveal 14 distinct phylogroups. Commun Biol 2021; 4:117. [PMID: 33500552 PMCID: PMC7838162 DOI: 10.1038/s42003-020-01626-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 12/21/2020] [Indexed: 01/30/2023] Open
Abstract
In this study, more than one hundred thousand Escherichia coli and Shigella genomes were examined and classified. This is, to our knowledge, the largest E. coli genome dataset analyzed to date. A Mash-based analysis of a cleaned set of 10,667 E. coli genomes from GenBank revealed 14 distinct phylogroups. A representative genome or medoid identified for each phylogroup was used as a proxy to classify 95,525 unassembled genomes from the Sequence Read Archive (SRA). We find that most of the sequenced E. coli genomes belong to four phylogroups (A, C, B1 and E2(O157)). Authenticity of the 14 phylogroups is supported by several different lines of evidence: phylogroup-specific core genes, a phylogenetic tree constructed with 2613 single copy core genes, and differences in the rates of gene gain/loss/duplication. The methodology used in this work is able to reproduce known phylogroups, as well as to identify previously uncharacterized phylogroups in E. coli species.
Collapse
Affiliation(s)
- Kaleb Abram
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
| | - Zulema Udaondo
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
| | - Carissa Bleker
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee, 37996, USA
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Visanu Wanchai
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
| | - Trudy M Wassenaar
- Molecular Microbiology and Genomics Consultants, 55576, Zotzenheim, Germany
| | - Michael S Robeson
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
| | - David W Ussery
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA.
| |
Collapse
|
14
|
Genome-Scale Metabolic Modeling of Escherichia coli and Its Chassis Design for Synthetic Biology Applications. Methods Mol Biol 2021; 2189:217-229. [PMID: 33180304 DOI: 10.1007/978-1-0716-0822-7_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Genome-scale metabolic modeling is and will continue to play a central role in computational systems metabolic engineering and synthetic biology applications for the productions of chemicals and antibiotics. To that end, a survey and workflows of methods used for the development of high-quality genome-scale metabolic models (GEMs) and chassis design for synthetic biology are described here. The chapter consists of two parts (a) the methods of development of GEMs (Escherichia coli as a case study) and (b) E. coli chassis design for synthetic production of 1,4-butanediol (BDO). The methods described here can guide existing and future development of GEMs coupled with host chassis design for synthetic productions of novel antibiotics.
Collapse
|
15
|
Abdelwahab R, Yasir M, Godfrey RE, Christie GS, Element SJ, Saville F, Hassan EA, Ahmed EH, Abu-Faddan NH, Daef EA, Busby SJW, Browning DF. Antimicrobial resistance and gene regulation in Enteroaggregative Escherichia coli from Egyptian children with diarrhoea: Similarities and differences. Virulence 2020; 12:57-74. [PMID: 33372849 PMCID: PMC7781526 DOI: 10.1080/21505594.2020.1859852] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) is a common diarrhoeagenic human pathogen, isolated from patients in both developing and industrialized countries, that is becoming increasingly resistant to many frontline antibiotics. In this study, we screened 50 E. coli strains from children presenting with diarrhea at the outpatients clinic of Assiut University Children’s Hospital, Egypt. We show that all of these isolates were resistant to multiple classes of antibiotics and identified two as being typical EAEC strains. Using whole genome sequencing, we determined that both isolates carried, amongst others, blaCTX-M and blaTEM antibiotic resistance genes, as well as many classical EAEC virulence determinants, including the transcriptional regulator, AggR. We demonstrate that the expression of these virulence determinants is dependent on AggR, including aar, which encodes for a repressor of AggR, Aar. Since biofilm formation is the hallmark of EAEC infection, we examined the effect of Aar overexpression on both biofilm formation and AggR-dependent gene expression. We show that whilst Aar has a minimal effect on AggR-dependent transcription it is able to completely disrupt biofilm formation, suggesting that Aar affects these two processes differently. Taken together, our results suggest a model for the induction of virulence gene expression in EAEC that may explain the ubiquity of EAEC in both sick and healthy individuals.
Collapse
Affiliation(s)
- Radwa Abdelwahab
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham , Birmingham, UK.,Faculty of Medicine, Assiut University , Assiut, Egypt
| | - Muhammad Yasir
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham , Birmingham, UK.,Quadram Institute Bioscience, Norwich Research Park , Norwich, UK
| | - Rita E Godfrey
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham , Birmingham, UK
| | - Gabrielle S Christie
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham , Birmingham, UK
| | - Sarah J Element
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham , Birmingham, UK
| | - Faye Saville
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham , Birmingham, UK
| | | | | | | | - Enas A Daef
- Faculty of Medicine, Assiut University , Assiut, Egypt
| | - Stephen J W Busby
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham , Birmingham, UK
| | - Douglas F Browning
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham , Birmingham, UK
| |
Collapse
|
16
|
Escherichia coli Sequence Type 457 Is an Emerging Extended-Spectrum-β-Lactam-Resistant Lineage with Reservoirs in Wildlife and Food-Producing Animals. Antimicrob Agents Chemother 2020; 65:AAC.01118-20. [PMID: 33020161 DOI: 10.1128/aac.01118-20] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/18/2020] [Indexed: 01/16/2023] Open
Abstract
Silver gulls carry phylogenetically diverse Escherichia coli, including globally dominant extraintestinal pathogenic E. coli (ExPEC) sequence types and pandemic ExPEC-ST131 clades; however, our large-scale study (504 samples) on silver gulls nesting off the coast of New South Wales identified E. coli ST457 as the most prevalent. A phylogenetic analysis of whole-genome sequences (WGS) of 138 ST457 samples comprising 42 from gulls, 2 from humans (Australia), and 14 from poultry farmed in Paraguay were compared with 80 WGS deposited in public databases from diverse sources and countries. E. coli ST457 strains are phylogenetic group F, carry fimH145, and partition into five main clades in accordance to predominant flagella H-antigen carriage. Although we identified considerable phylogenetic diversity among the 138 ST457 strains, closely related subclades (<100 SNPs) suggested zoonotic or zooanthroponosis transmission between humans, wild birds, and food-producing animals. Australian human clinical and gull strains in two of the clades were closely related (≤80 SNPs). Regarding plasmid content, country, or country/source, specific connections were observed, including I1/ST23, I1/ST314, and I1/ST315 disseminating bla CMY-2 in Australia, I1/ST113 carrying bla CTX-M-8 and mcr-5 in Paraguayan poultry, and F2:A-:B1 plasmids of Dutch origin being detected across multiple ST457 clades. We identified a high prevalence of nearly identical I1/ST23 plasmids carrying bla CMY-2 among Australian gull and clinical human strains. In summary, ST457 is a broad host range, geographically diverse E. coli lineage that can cause human extraintestinal disease, including urinary tract infection, and displays a remarkable ability to capture mobile elements that carry and transmit genes encoding resistance to critically important antibiotics.
Collapse
|
17
|
Dorman MJ, Thomson NR. 'Community evolution' - laboratory strains and pedigrees in the age of genomics. MICROBIOLOGY-SGM 2020; 166:233-238. [PMID: 31958052 PMCID: PMC7376263 DOI: 10.1099/mic.0.000869] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Molecular microbiologists depend heavily on laboratory strains of bacteria, which are ubiquitous across the community of research groups working on a common organism. However, this presumes that strains present in different laboratories are in fact identical. Work on a culture of Vibrio cholerae preserved from 1916 provoked us to consider recent studies, which have used both classical genetics and next-generation sequencing to study the heterogeneity of laboratory strains. Here, we review and discuss mutations and phenotypic variation in supposedlyisogenic reference strains of V. cholerae and Escherichia coli, and we propose that by virtue of the dissemination of laboratory strains across the world, a large ‘community evolution’ experiment is currently ongoing.
Collapse
Affiliation(s)
- Matthew J Dorman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Nicholas R Thomson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK.,London School of Hygiene and Tropical Medicine, Keppel St, Bloomsbury, London WC1E 7HT, UK
| |
Collapse
|
18
|
Kinosita Y, Ishida T, Yoshida M, Ito R, Morimoto YV, Goto K, Berry RM, Nishizaka T, Sowa Y. Distinct chemotactic behavior in the original Escherichia coli K-12 depending on forward-and-backward swimming, not on run-tumble movements. Sci Rep 2020; 10:15887. [PMID: 32985511 PMCID: PMC7522084 DOI: 10.1038/s41598-020-72429-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/27/2020] [Indexed: 11/21/2022] Open
Abstract
Most motile bacteria are propelled by rigid, helical, flagellar filaments and display distinct swimming patterns to explore their favorable environments. Escherichia coli cells have a reversible rotary motor at the base of each filament. They exhibit a run-tumble swimming pattern, driven by switching of the rotational direction, which causes polymorphic flagellar transformation. Here we report a novel swimming mode in E. coli ATCC10798, which is one of the original K-12 clones. High-speed tracking of single ATCC10798 cells showed forward and backward swimming with an average turning angle of 150°. The flagellar helicity remained right-handed with a 1.3 μm pitch and 0.14 μm helix radius, which is consistent with the feature of a curly type, regardless of motor switching; the flagella of ATCC10798 did not show polymorphic transformation. The torque and rotational switching of the motor was almost identical to the E. coli W3110 strain, which is a derivative of K-12 and a wild-type for chemotaxis. The single point mutation of N87K in FliC, one of the filament subunits, is critical to the change in flagellar morphology and swimming pattern, and lack of flagellar polymorphism. E. coli cells expressing FliC(N87K) sensed ascending a chemotactic gradient in liquid but did not spread on a semi-solid surface. Based on these results, we concluded that a flagellar polymorphism is essential for spreading in structured environments.
Collapse
Affiliation(s)
- Yoshiaki Kinosita
- Department of Physics, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, 171-8588, Japan.
- Department of Physics, University of Oxford, Park load, Oxford, OX1 3PU, UK.
- Molecular Physiology Laboratory, RIKEN, Wako, Japan.
| | - Tsubasa Ishida
- Department of Frontier Bioscience and Research Center for Micro-Nano Technology, Hosei University, Tokyo, 184-8584, Japan
| | - Myu Yoshida
- Department of Frontier Bioscience and Research Center for Micro-Nano Technology, Hosei University, Tokyo, 184-8584, Japan
| | - Rie Ito
- Department of Frontier Bioscience and Research Center for Micro-Nano Technology, Hosei University, Tokyo, 184-8584, Japan
| | - Yusuke V Morimoto
- Department of Physics and Information Technology, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka, Japan
| | - Kazuki Goto
- Department of Physics, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, 171-8588, Japan
| | - Richard M Berry
- Department of Physics, University of Oxford, Park load, Oxford, OX1 3PU, UK
| | - Takayuki Nishizaka
- Department of Physics, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, 171-8588, Japan
| | - Yoshiyuki Sowa
- Department of Frontier Bioscience and Research Center for Micro-Nano Technology, Hosei University, Tokyo, 184-8584, Japan.
| |
Collapse
|
19
|
Li D, Cheng J, Zhu Z, Catalfamo M, Goerlitz D, Lawless OJ, Tallon L, Sadzewicz L, Calderone R, Bellanti JA. Treg-inducing capacity of genomic DNA of Bifidobacterium longum subsp. infantis. Allergy Asthma Proc 2020; 41:372-385. [PMID: 32867892 PMCID: PMC8242987 DOI: 10.2500/aap.2020.41.200064] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background: Allergic and autoimmune diseases comprise a group of inflammatory disorders caused by aberrant immune responses in which CD25+ forkhead box P3-positive regulatory T cells (Treg) cells that normally suppress inflammatory events are often poorly functioning. This has stimulated an intensive investigative effort to find ways of increasing Tregs as a method of therapy for these conditions. Commensal microbiota known to have health benefits in humans include the lactic acid-producing, probiotic bacteria B. longum subsp. infantis and Lactobacillus rhamnosus. Mechanistically, several mechanisms have been proposed to explain how probiotics may favorably affect host immunity, including the induction of Tregs. Analysis of emerging data from several laboratories, including our own, suggest that DNA methylation may be an important determinant of immune reactivity responsible for Treg induction. Although methylated CpG moieties in normal mammalian DNA are both noninflammatory and lack immunogenicity, unmethylated CpGs, found largely in microbial DNA, are immunostimulatory and display proinflammatory properties. Objective: We hypothesize that microbiota with more DNA methylation may potentiate Treg induction to a greater degree than microbiota with a lower content of methylation. The purpose of the present study was to test this hypothesis by studying the methylation status of whole genomic DNA (gDNA) and the Treg-inducing capacity of purified gDNA in each of the probiotic bacteria B. longum subsp. infantis and L. rhamnosus, and a pathogenic Escherichia coli strain B. Results: We showed that gDNA from B. longum subsp. infantis is a potent Treg inducer that displays a dose-dependent response pattern at a dose threshold of 20 µg of gDNA. No similar Treg-inducing responses were observed with the gDNA from L. rhamnosus or E. coli. We identified a unique CpG methylated motif in the gDNA sequencing of B. longum subsp. infantis which was not found in L. rhamnosus or E. coli strain B. Conclusion: Although the literature indicates that both B. longum subsp. infantis and L. rhamnosus strains contribute to health, our data suggest that they do so by different mechanisms. Further, because of its small molecular size, low cost, ease of synthesis, and unique Treg-inducing feature, this methylated CpG oligodeoxynucleotide (ODN) from B. longum would offer many attractive features for an ideal novel therapeutic vaccine candidate for the treatment of immunologic diseases, such as the allergic and autoimmune disorders, in which Treg populations are diminished.
Collapse
Affiliation(s)
- Dongmei Li
- From the Department of Microbiology-Immunology, Georgetown University Medical Center, Washington, D.C
| | - Jie Cheng
- From the Department of Microbiology-Immunology, Georgetown University Medical Center, Washington, D.C
| | - Ziang Zhu
- From the Department of Microbiology-Immunology, Georgetown University Medical Center, Washington, D.C
| | - Marta Catalfamo
- From the Department of Microbiology-Immunology, Georgetown University Medical Center, Washington, D.C
| | - David Goerlitz
- Genomics and Epigenomics Shared Resource, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C
| | - Oliver J. Lawless
- Department of Pediatrics, Georgetown University Medical Center, Washington, D.C.; and
| | - Luke Tallon
- Genomic Resource Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Lisa Sadzewicz
- Genomic Resource Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Richard Calderone
- From the Department of Microbiology-Immunology, Georgetown University Medical Center, Washington, D.C
| | - Joseph A. Bellanti
- From the Department of Microbiology-Immunology, Georgetown University Medical Center, Washington, D.C
- Department of Pediatrics, Georgetown University Medical Center, Washington, D.C.; and
| |
Collapse
|
20
|
Shimada T, Yokoyama Y, Anzai T, Yamamoto K, Ishihama A. Regulatory Role of PlaR (YiaJ) for Plant Utilization in Escherichia coli K-12. Sci Rep 2019; 9:20415. [PMID: 31892694 PMCID: PMC6958661 DOI: 10.1038/s41598-019-56886-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 12/18/2019] [Indexed: 12/13/2022] Open
Abstract
Outside a warm-blooded animal host, the enterobacterium Escherichia coli K-12 is also able to grow and survive in stressful nature. The major organic substance in nature is plant, but the genetic system of E. coli how to utilize plant-derived materials as nutrients is poorly understood. Here we describe the set of regulatory targets for uncharacterized IclR-family transcription factor YiaJ on the E. coli genome, using gSELEX screening system. Among a total of 18 high-affinity binding targets of YiaJ, the major regulatory target was identified to be the yiaLMNOPQRS operon for utilization of ascorbate from fruits and galacturonate from plant pectin. The targets of YiaJ also include the genes involved in the utilization for other plant-derived materials as nutrients such as fructose, sorbitol, glycerol and fructoselysine. Detailed in vitro and in vivo analyses suggest that L-ascorbate and α-D-galacturonate are the effector ligands for regulation of YiaJ function. These findings altogether indicate that YiaJ plays a major regulatory role in expression of a set of the genes for the utilization of plant-derived materials as nutrients for survival. PlaR was also suggested to play protecting roles of E. coli under stressful environments in nature, including the formation of biofilm. We then propose renaming YiaJ to PlaR (regulator of plant utilization). The natural hosts of enterobacterium Escherichia coli are warm-blooded animals, but even outside hosts, E. coli can survive even under stressful environments. On earth, the most common organic materials to be used as nutrients by E. coli are plant-derived components, but up to the present time, the genetic system of E. coli for plant utilization is poorly understand. In the course of gSELEX screening of the regulatory targets for hitherto uncharacterized TFs, we identified in this study the involvement of the IclR-family YiaJ in the regulation of about 20 genes or operons, of which the majority are related to the catabolism of plant-derived materials such as ascorbate, galacturonate, sorbitol, fructose and fructoselysine. Therefore, we propose to rename YiaJ to PlaR (regulator of plant utilization).
Collapse
Affiliation(s)
- Tomohiro Shimada
- Meiji University, School of Agriculture, Kawasaki, Kanagawa, 214-8571, Japan. .,Hosei University, Research Institute of Micro-Nano Technology, Koganei, Tokyo, 184-0003, Japan.
| | - Yui Yokoyama
- Hosei University, Department of Frontier Bioscience, Koganei, Tokyo, 184-8584, Japan
| | - Takumi Anzai
- Meiji University, School of Agriculture, Kawasaki, Kanagawa, 214-8571, Japan
| | - Kaneyoshi Yamamoto
- Hosei University, Department of Frontier Bioscience, Koganei, Tokyo, 184-8584, Japan
| | - Akira Ishihama
- Hosei University, Research Institute of Micro-Nano Technology, Koganei, Tokyo, 184-0003, Japan. .,Hosei University, Department of Frontier Bioscience, Koganei, Tokyo, 184-8584, Japan.
| |
Collapse
|
21
|
Dawson EM, Dunne KA, Richardson EJ, Praszkier J, Alfawaz D, Woelfel S, De Paoli A, Chaudhry H, Henderson IR, Ferrero RL, Rossiter AE. Complete genome sequence of Helicobacter pylori B128 7.13 and a single-step method for the generation of unmarked mutations. Helicobacter 2019; 24:e12587. [PMID: 31062466 PMCID: PMC6618122 DOI: 10.1111/hel.12587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/14/2019] [Accepted: 02/16/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Helicobacter pylori represents an interesting model of bacterial pathogenesis given that most infections are asymptomatic, while a minority of infections cause severe gastric disease. H pylori strain B128 7.13 is used extensively to understand H pylori pathophysiology. Due to extensive restriction-modification systems, the fact that only some H pylori strains are naturally transformable, the inability of common plasmid and transposon vectors to replicate in this bacterium, as well as the limited number of antibiotic cassettes that are functional in H pylori, there are relatively few genetic tools for the mutagenesis of this bacterium. MATERIALS AND METHODS Here, we use PacBio and Illumina sequencing to reveal the complete genome sequence of H pylori B128 7.13. Furthermore, we describe a system to generate markerless and scarless mutations on the H pylori chromosome using the counter-selection marker, galactokinase from Escherichia coli. RESULTS We show that this mutagenesis strategy can be used to generate in-frame insertions, gene deletions, and multiple independent mutations in B128 7.13. Using the closed genome as a reference, we also report the absence of second site chromosomal mutations and/or rearrangements in our mutagenized strains. We compare the genome sequence of H pylori B128 7.13 with a closely related strain, H pylori B8, and reveal one notable region of difference, which is a 1430 bp insertion encoding a H pylori-specific DUF874 family protein of unknown function. CONCLUSIONS This article reports the closed genome of the important H pylori B128 7.13 strain and a mutagenesis method that can be adopted by researchers as an alternative strategy to generate isogenic mutants of H pylori in order to further our understanding of this bacterium.
Collapse
Affiliation(s)
- Emma M. Dawson
- Institute of Microbiology and Infection College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Karl A. Dunne
- Institute of Microbiology and Infection College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Emily J. Richardson
- Institute of Microbiology and Infection College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Judyta Praszkier
- Hudson Institute for Medical Research, MonashMelbourneVictoriaAustralia
| | - Dana Alfawaz
- Institute of Microbiology and Infection College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Simon Woelfel
- Institute of Microbiology and Infection College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Amanda De Paoli
- Hudson Institute for Medical Research, MonashMelbourneVictoriaAustralia
| | - Hassan Chaudhry
- Hudson Institute for Medical Research, MonashMelbourneVictoriaAustralia
| | - Ian R. Henderson
- Institute of Microbiology and Infection College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Richard L. Ferrero
- Hudson Institute for Medical Research, MonashMelbourneVictoriaAustralia
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourneVictoriaAustralia
| | - Amanda E. Rossiter
- Institute of Microbiology and Infection College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| |
Collapse
|
22
|
Shimada T, Ogasawara H, Ishihama A. Single-target regulators form a minor group of transcription factors in Escherichia coli K-12. Nucleic Acids Res 2019. [PMID: 29529243 PMCID: PMC5934670 DOI: 10.1093/nar/gky138] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The identification of regulatory targets of all TFs is critical for understanding the entire network of the genome regulation. The lac regulon of Escherichia coli K-12 W3110 is composed of the lacZYA operon and its repressor lacI gene, and has long been recognized as the seminal model of transcription regulation in bacteria with only one highly preferred target. After the Genomic SELEX screening in vitro of more than 200 transcription factors (TFs) from E. coli K-12, however, we found that most TFs regulate multiple target genes. With respect to the number of regulatory targets, a total of these 200 E. coli TFs form a hierarchy ranging from a single target to as many as 1000 targets. Here we focus a total of 13 single-target TFs, 9 known TFs (BetI, KdpE, LacI, MarR, NanR, RpiR, TorR, UlaR and UxuR) and 4 uncharacterized TFs (YagI, YbaO, YbiH and YeaM), altogether forming only a minor group of TFs in E. coli. These single-target TFs were classified into three groups based on their functional regulation.
Collapse
Affiliation(s)
- Tomohiro Shimada
- Meiji University, School of Agriculture, Kawasaki, Kanagawa 214-8571, Japan
| | - Hiroshi Ogasawara
- Shinshu University, Research Center for Supports to Advanced Science, Division of Gene Research, Ueda, Nagano 386-8567, Japan.,Shinshu University, Research Center for Fungal and Microbial Dynamism, Kamiina, Nagano 399-4598, Japan
| | - Akira Ishihama
- Hosei University, Micro-Nano Technology Research Center, Koganei, Tokyo 184-8584, Japan
| |
Collapse
|
23
|
Pascoe B, Williams LK, Calland JK, Meric G, Hitchings MD, Dyer M, Ryder J, Shaw S, Lopes BS, Chintoan-Uta C, Allan E, Vidal A, Fearnley C, Everest P, Pachebat JA, Cogan TA, Stevens MP, Humphrey TJ, Wilkinson TS, Cody AJ, Colles FM, Jolley KA, Maiden MCJ, Strachan N, Pearson BM, Linton D, Wren BW, Parkhill J, Kelly DJ, van Vliet AHM, Forbes KJ, Sheppard SK. Domestication of Campylobacter jejuni NCTC 11168. Microb Genom 2019; 5:e000279. [PMID: 31310201 PMCID: PMC6700657 DOI: 10.1099/mgen.0.000279] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/03/2019] [Indexed: 12/19/2022] Open
Abstract
Reference and type strains of well-known bacteria have been a cornerstone of microbiology research for decades. The sharing of well-characterized isolates among laboratories has run in parallel with research efforts and enhanced the reproducibility of experiments, leading to a wealth of knowledge about trait variation in different species and the underlying genetics. Campylobacter jejuni strain NCTC 11168, deposited at the National Collection of Type Cultures in 1977, has been adopted widely as a reference strain by researchers worldwide and was the first Campylobacter for which the complete genome was published (in 2000). In this study, we collected 23 C. jejuni NCTC 11168 reference isolates from laboratories across the UK and compared variation in simple laboratory phenotypes with genetic variation in sequenced genomes. Putatively identical isolates, identified previously to have aberrant phenotypes, varied by up to 281 SNPs (in 15 genes) compared to the most recent reference strain. Isolates also display considerable phenotype variation in motility, morphology, growth at 37 °C, invasion of chicken and human cell lines, and susceptibility to ampicillin. This study provides evidence of ongoing evolutionary change among C. jejuni isolates as they are cultured in different laboratories and highlights the need for careful consideration of genetic variation within laboratory reference strains. This article contains data hosted by Microreact.
Collapse
Affiliation(s)
- Ben Pascoe
- The Milner Centre for Evolution, University of Bath, Claverton Down, Bath, UK
- MRC CLIMB Consortium, Bath, UK
| | - Lisa K. Williams
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, UK
| | - Jessica K. Calland
- The Milner Centre for Evolution, University of Bath, Claverton Down, Bath, UK
| | - Guillaume Meric
- The Milner Centre for Evolution, University of Bath, Claverton Down, Bath, UK
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, 75 Commercial Rd, Melbourne 3004, Victoria, Australia
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Matthew D. Hitchings
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, UK
| | - Myles Dyer
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, UK
| | - Joseph Ryder
- The Milner Centre for Evolution, University of Bath, Claverton Down, Bath, UK
| | | | | | | | - Elaine Allan
- UCL Eastman Dental Institute, University College of London, London, UK
| | - Ana Vidal
- Animal and Plant Health Agency, Weybridge, Surrey, UK
- Present address: Antimicrobial Resistance Policy and Surveillance Team, Veterinary Medicines Directorate, Department for Environment, Food and Rural Affairs (Defra), Surrey, UK
| | | | | | | | | | | | - Thomas J. Humphrey
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, UK
| | - Thomas S. Wilkinson
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, UK
| | | | | | | | - Martin C. J. Maiden
- Department of Zoology, University of Oxford, Oxford, UK
- NIHR Health Protections Research Unit in Gastrointestinal Infections, University of Oxford, Oxford, UK
| | | | | | | | - Brendan W. Wren
- Quadram Institute Bioscience, Norwich, UK
- London School of Hygiene and Tropical Medicine, London, UK
| | - Julian Parkhill
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - David J. Kelly
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, UK
| | | | | | - Samuel K. Sheppard
- The Milner Centre for Evolution, University of Bath, Claverton Down, Bath, UK
- MRC CLIMB Consortium, Bath, UK
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, UK
- Department of Zoology, University of Oxford, Oxford, UK
| |
Collapse
|
24
|
Coordinated Hibernation of Transcriptional and Translational Apparatus during Growth Transition of Escherichia coli to Stationary Phase. mSystems 2018; 3:mSystems00057-18. [PMID: 30225374 PMCID: PMC6134199 DOI: 10.1128/msystems.00057-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/06/2018] [Indexed: 12/14/2022] Open
Abstract
During the growth transition of E. coli from exponential phase to stationary, the genome expression pattern is altered markedly. For this alteration, the transcription apparatus is altered by binding of anti-sigma factor Rsd to the RpoD sigma factor for sigma factor replacement, while the translation machinery is modulated by binding of RMF to 70S ribosome to form inactive ribosome dimer. Using the PS-TF screening system, a number of TFs were found to bind to both the rsd and rmf promoters, of which the regulatory roles of 5 representative TFs (one repressor ArcA and the four activators McbR, RcdA, SdiA, and SlyA) were analyzed in detail. The results altogether indicated the involvement of a common set of TFs, each sensing a specific environmental condition, in coordinated hibernation of the transcriptional and translational apparatus for adaptation and survival under stress conditions. In the process of Escherichia coli K-12 growth from exponential phase to stationary, marked alteration takes place in the pattern of overall genome expression through modulation of both parts of the transcriptional and translational apparatus. In transcription, the sigma subunit with promoter recognition properties is replaced from the growth-related factor RpoD by the stationary-phase-specific factor RpoS. The unused RpoD is stored by binding with the anti-sigma factor Rsd. In translation, the functional 70S ribosome is converted to inactive 100S dimers through binding with the ribosome modulation factor (RMF). Up to the present time, the regulatory mechanisms of expression of these two critical proteins, Rsd and RMF, have remained totally unsolved. In this study, attempts were made to identify the whole set of transcription factors involved in transcription regulation of the rsd and rmf genes using the newly developed promoter-specific transcription factor (PS-TF) screening system. In the first screening, 74 candidate TFs with binding activity to both of the rsd and rmf promoters were selected from a total of 194 purified TFs. After 6 cycles of screening, we selected 5 stress response TFs, ArcA, McbR, RcdA, SdiA, and SlyA, for detailed analysis in vitro and in vivo of their regulatory roles. Results indicated that both rsd and rmf promoters are repressed by ArcA and activated by McbR, RcdA, SdiA, and SlyA. We propose the involvement of a number of TFs in simultaneous and coordinated regulation of the transcriptional and translational apparatus. By using genomic SELEX (gSELEX) screening, each of the five TFs was found to regulate not only the rsd and rmf genes but also a variety of genes for growth and survival. IMPORTANCE During the growth transition of E. coli from exponential phase to stationary, the genome expression pattern is altered markedly. For this alteration, the transcription apparatus is altered by binding of anti-sigma factor Rsd to the RpoD sigma factor for sigma factor replacement, while the translation machinery is modulated by binding of RMF to 70S ribosome to form inactive ribosome dimer. Using the PS-TF screening system, a number of TFs were found to bind to both the rsd and rmf promoters, of which the regulatory roles of 5 representative TFs (one repressor ArcA and the four activators McbR, RcdA, SdiA, and SlyA) were analyzed in detail. The results altogether indicated the involvement of a common set of TFs, each sensing a specific environmental condition, in coordinated hibernation of the transcriptional and translational apparatus for adaptation and survival under stress conditions.
Collapse
|
25
|
In vivo screening platform for shiga toxin-producing Escherichia coli (STEC) using Caenorhabditis elegans as a model. PLoS One 2018; 13:e0193277. [PMID: 29489863 PMCID: PMC5831388 DOI: 10.1371/journal.pone.0193277] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 02/07/2018] [Indexed: 01/02/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) strains are the main cause of bacillary dysentery, although STEC strains generally induce milder disease symptoms compared to Shigella species. This study aimed to determine the virulence of STEC using the nematode Caenorhabditis elegans as a model host. Worm killing, fertility and bacterial colonisation assays were performed to examine the potential difference in the virulence of STEC strains compared to that of the control E. coli OP50 strains on which worms were fed. A statistically significant difference in the survival rates of C. elegans was observed in that the STEC strains caused death in 8–10 days and the E. coli OP50 strains caused death in 15 days. STEC strains severely reduced the fertility of the worms. The intestinal load of bacteria in the adult stage nematodes harbouring the E. coli OP50 strains was found to be 3.5 log CFU mL-1. In contrast, the STEC strains E15, E18 and E22 harboured 4.1, 4.2 and 4.7 log CFU ml−1 per nematode, respectively. The heat-killed STEC strains significantly increased the longevity of the worms compared to the non-heated STEC strains. In addition, PCR-based genomic profiling of shiga toxin genes, viz., stx1 and stx2, identified in selected STEC strains revealed that these toxins may be associated with the virulence of the STEC strains. This study demonstrated that C. elegans is an effective model to examine and compare the pathogenicity and virulence variation of STEC strains to that of E. coli OP50 strains.
Collapse
|
26
|
The Odyssey of the Ancestral Escherich Strain through Culture Collections: an Example of Allopatric Diversification. mSphere 2018; 3:mSphere00553-17. [PMID: 29404421 PMCID: PMC5793043 DOI: 10.1128/msphere.00553-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/05/2018] [Indexed: 01/19/2023] Open
Abstract
More than a century ago, Theodor Escherich isolated the bacterium that was to become Escherichia coli, one of the most studied organisms. Not long after, the strain began an odyssey and landed in many laboratories across the world. As laboratory culture conditions could be responsible for major changes in bacterial strains, we conducted a genome analysis of isolates of this emblematic strain from different culture collections (England, France, the United States, Germany). Strikingly, many discrepancies between the isolates were observed, as revealed by multilocus sequence typing (MLST), the presence of virulence-associated genes, core genome MLST, and single nucleotide polymorphism/indel analyses. These differences are correlated with the phylogeographic history of the strain and were due to an unprecedented number of mutations in coding DNA repair functions such as mismatch repair (MutL) and oxidized guanine nucleotide pool cleaning (MutT), conferring a specific mutational spectrum and leading to a mutator phenotype. The mutator phenotype was probably acquired during subculturing and corresponded to second-order selection. Furthermore, all of the isolates exhibited hypersusceptibility to antibiotics due to mutations in efflux pump- and porin-encoding genes, as well as a specific mutation in the sigma factor-encoding gene rpoS. These defects reflect a self-preservation and nutritional competence tradeoff allowing survival under the starvation conditions imposed by storage. From a clinical point of view, dealing with such mutator strains can lead microbiologists to draw false conclusions about isolate relatedness and may impact therapeutic effectiveness. IMPORTANCE Mutator phenotypes have been described in laboratory-evolved bacteria, as well as in natural isolates. Several genes can be impacted, each of them being associated with a typical mutational spectrum. By studying one of the oldest strains available, the ancestral Escherich strain, we were able to identify its mutator status leading to tremendous genetic diversity among the isolates from various collections and allowing us to reconstruct the phylogeographic history of the strain. This mutator phenotype was probably acquired during the storage of the strain, promoting adaptation to a specific environment. Other mutations in rpoS and efflux pump- and porin-encoding genes highlight the acclimatization of the strain through self-preservation and nutritional competence regulation. This strain history can be viewed as unintentional experimental evolution in culture collections all over the word since 1885, mimicking the long-term experimental evolution of E. coli of Lenski et al. (O. Tenaillon, J. E. Barrick, N. Ribeck, D. E. Deatherage, J. L. Blanchard, A. Dasgupta, G. C. Wu, S. Wielgoss, S. Cruveiller, C. Médigue, D. Schneider, and R. E. Lenski, Nature 536:165-170, 2016, https://doi.org/10.1038/nature18959) that shares numerous molecular features.
Collapse
|
27
|
Abstract
The genome of Escherichia coli K-12 is transcribed by a single species of RNA polymerase. The selectivity of its transcriptional targets is modulated via two-steps of protein-protein interaction: at the first step, seven species of the sigma subunit are involved, at the second step, a total of approximately 300 species of transcription factor (TFs). For the identification of the regulatory targets of these two groups of regulatory proteins, we developed two in vitro approaches, "Genomic SELEX" (currently designated as gSELEX) and "PS (promoter-specific)-TF" screenings. Here, we describe a detailed protocol of the genomic SELEX screening system which uses purified regulatory proteins and fragments of genomic DNA from E. coli.
Collapse
|
28
|
Abstract
Antibiotic resistance is recognised as a major global threat to public health by the World Health Organization. Currently, several hundred thousand deaths yearly can be attributed to infections with antibiotic-resistant bacteria. The major driver for the development of antibiotic resistance is considered to be the use, misuse and overuse of antibiotics in humans and animals. Nonantibiotic compounds, such as antibacterial biocides and metals, may also contribute to the promotion of antibiotic resistance through co-selection. This may occur when resistance genes to both antibiotics and metals/biocides are co-located together in the same cell (co-resistance), or a single resistance mechanism (e.g. an efflux pump) confers resistance to both antibiotics and biocides/metals (cross-resistance), leading to co-selection of bacterial strains, or mobile genetic elements that they carry. Here, we review antimicrobial metal resistance in the context of the antibiotic resistance problem, discuss co-selection, and highlight critical knowledge gaps in our understanding.
Collapse
|