1
|
Adame-Soto PJ, Aréchiga-Carvajal ET, González-Herrera SM, Moreno-Jiménez MR, Rutiaga-Quiñones OM. Characterization of mating type on aroma production and metabolic properties wild Kluyveromyces marxianus yeasts. World J Microbiol Biotechnol 2023; 39:216. [PMID: 37269405 DOI: 10.1007/s11274-023-03659-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/22/2023] [Indexed: 06/05/2023]
Abstract
Kluyveromyces marxianus yeasts represent a valuable industry alternative due to their biotechnological potential to produce aromatic compounds. 2-phenylethanol and 2-phenylethylacetate are significant aromatic compounds widely used in food and cosmetics due to their pleasant odor. Natural obtention of these compounds increases their value, and because of this, bioprocesses such as de novo synthesis has become of great significance. However, the relationship between aromatic compound production and yeast's genetic diversity has yet to be studied. In the present study, the analysis of the genetic diversity in K. marxianus isolated from the natural fermentation of Agave duranguensis for Mezcal elaboration is presented. The results of strains in a haploid and diploid state added to the direct relationship between the mating type locus MAT with metabolic characteristics are studied. Growth rate, assimilate carbohydrates (glucose, lactose, and chicory inulin), and the production of aromatic compounds such as ethyl acetate, isoamyl acetate, isoamyl alcohol, 2-phenylethyl butyrate and phenylethyl propionate and the diversity in terms of the output of 2-phenylethanol and 2-phenylethylacetate by de novo synthesis were determinate, obtaining maximum concentrations of 51.30 and 60.39 mg/L by ITD0049 and ITD 0136 yeasts respectively.
Collapse
Affiliation(s)
- P J Adame-Soto
- Department of Chemical and Biochemical Engineering, National Technological Institute of Mexico, Technological Institute of Durango, Felipe Pescador 1803 Ote, Colonia Nueva Vizcaya, 34080, Durango, Dgo, Mexico
| | - E T Aréchiga-Carvajal
- Genetic Manipulation Unit of the Mycology and Phytopathology Laboratory, Department of Microbiology, and Immunology, Faculty of Biological Sciences, Unit C Ciudad Universitaria, Autonomous University of Nuevo León, 66451, San Nicolás de Los Garza, Nuevo León, Mexico
| | - S M González-Herrera
- Department of Chemical and Biochemical Engineering, National Technological Institute of Mexico, Technological Institute of Durango, Felipe Pescador 1803 Ote, Colonia Nueva Vizcaya, 34080, Durango, Dgo, Mexico
| | - M R Moreno-Jiménez
- Department of Chemical and Biochemical Engineering, National Technological Institute of Mexico, Technological Institute of Durango, Felipe Pescador 1803 Ote, Colonia Nueva Vizcaya, 34080, Durango, Dgo, Mexico
| | - O M Rutiaga-Quiñones
- Department of Chemical and Biochemical Engineering, National Technological Institute of Mexico, Technological Institute of Durango, Felipe Pescador 1803 Ote, Colonia Nueva Vizcaya, 34080, Durango, Dgo, Mexico.
| |
Collapse
|
2
|
Raw goat's milk fermented Anbaris from Lebanon: insights into the microbial dynamics and chemical changes occurring during artisanal production, with a focus on yeasts. J DAIRY RES 2022; 89:440-448. [PMID: 36416070 DOI: 10.1017/s002202992200067x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Anbaris is a raw goat milk product naturally fermented in terracotta jars. The aim of this research paper was to follow the dynamics underlying an artisanal production to understand the concomitant evolution of the microbial populations in relation to the chemical changes occurring within the product, make sure of the sanitary conditions prevailing during the production and uncover for the first time its culturable yeast populations. Throughout the fermentation process, Anbaris was endowed with high acidity and included high microbial populations counts of LAB and yeasts that were rapidly installed within the product and maintained as regular new milk additions were made, contributing to lipolytic and proteolytic activities. Salt content varied according to the arbitrary salt additions made during the process but was high in the end product while protein and fat contents varied inversely to moisture. Frequent additions of Enterobacteriaceae and Coliforms contaminated milk samples seemingly fueled a contamination of the product during its manufacturing and in the final fresh Anbaris. Seven species of culturable yeasts, Pichia kudriavzevii, Kluyveromyces marxianus, Rhodotorula mucilaginosa, Saccharomyces cerevisiae, Debaryomyces hansenii, Candida parapsilosis and Kazachstania exigua were found during the production. The first two dominated the process in terms of frequency of occurrence and abundance at the different stages and might be signature species of the product. The same lineage of K. marxianus isolates was maintained throughout the fermentation and sample specific patterns were observed. Strains of this species exhibited low diversity within our product, and more globally in the Lebanese dairy products we studied.
Collapse
|
3
|
Perpetuini G, Tittarelli F, Perla C, Tofalo R. Influence of Different Aggregation States on Volatile Organic Compounds Released by Dairy Kluyveromyces marxianus Strains. Foods 2022; 11:foods11182910. [PMID: 36141037 PMCID: PMC9498923 DOI: 10.3390/foods11182910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Kluyveromyces marxianus has the ability to contribute to the aroma profile of foods and beverages since it is able to produce several volatile organic compounds (VOCs). In this study, 8 dairy K. marxianus strains, previously selected for their adhesion properties, were tested for VOCs production when grown in different conditions: planktonic, biofilm-detached, and MATS forming-cells. It was shown that biofilm-detached cells were mainly able to produce higher alcohols (64.57 mg/L), while esters were mainly produced by planktonic and MATS forming-cells (117.86 and 94.90 mg/L, respectively). Moreover, K. marxianus biofilm-detached cells were able to produce VOCs with flavor and odor impacts, such as ketons, phenols, and terpenes, which were not produced by planktonic cells. In addition, specific unique compounds were associated to the different conditions tested. Biofilm-detached cells were characterized by the production of 9 unique compounds, while planktonic and MATS forming-cells by 7 and 12, respectively. The obtained results should be exploited to modulate the volatilome of foods and beverages and improve the production of certain compounds at the industrial level. Further studies will be carried out to better understand the genetic mechanisms underlying the metabolic pathways activated under different conditions.
Collapse
Affiliation(s)
- Giorgia Perpetuini
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Fabrizia Tittarelli
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Carlo Perla
- Dalton Biotecnologie s.r.l., 65010 Spoltore, Italy
| | - Rosanna Tofalo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
- Correspondence: ; Tel.: +39-0861266943
| |
Collapse
|
4
|
Solieri L, Cassanelli S, Huff F, Barroso L, Branduardi P, Louis EJ, Morrissey JP. Insights on life cycle and cell identity regulatory circuits for unlocking genetic improvement in Zygosaccharomyces and Kluyveromyces yeasts. FEMS Yeast Res 2021; 21:foab058. [PMID: 34791177 PMCID: PMC8673824 DOI: 10.1093/femsyr/foab058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/14/2021] [Indexed: 11/14/2022] Open
Abstract
Evolution has provided a vast diversity of yeasts that play fundamental roles in nature and society. This diversity is not limited to genotypically homogeneous species with natural interspecies hybrids and allodiploids that blur species boundaries frequently isolated. Thus, life cycle and the nature of breeding systems have profound effects on genome variation, shaping heterozygosity, genotype diversity and ploidy level. The apparent enrichment of hybrids in industry-related environments suggests that hybridization provides an adaptive route against stressors and creates interest in developing new hybrids for biotechnological uses. For example, in the Saccharomyces genus where regulatory circuits controlling cell identity, mating competence and meiosis commitment have been extensively studied, this body of knowledge is being used to combine interesting traits into synthetic F1 hybrids, to bypass F1 hybrid sterility and to dissect complex phenotypes by bulk segregant analysis. Although these aspects are less known in other industrially promising yeasts, advances in whole-genome sequencing and analysis are changing this and new insights are being gained, especially in the food-associated genera Zygosaccharomyces and Kluyveromyces. We discuss this new knowledge and highlight how deciphering cell identity circuits in these lineages will contribute significantly to identify the genetic determinants underpinning complex phenotypes and open new avenues for breeding programmes.
Collapse
Affiliation(s)
- Lisa Solieri
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Stefano Cassanelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Franziska Huff
- School of Microbiology, APC Microbiome Ireland, Environmental Research Institute, University College Cork, Cork T12 K8AF, Ireland
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Liliane Barroso
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Piazza della Scienza, 2-20126 Milano, Italy
| | - Paola Branduardi
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Piazza della Scienza, 2-20126 Milano, Italy
| | - Edward J Louis
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - John P Morrissey
- School of Microbiology, APC Microbiome Ireland, Environmental Research Institute, University College Cork, Cork T12 K8AF, Ireland
| |
Collapse
|
5
|
Lo SC, Yang CY, Mathew DC, Huang CC. Growth and autolysis of the kefir yeast Kluyveromyces marxianus in lactate culture. Sci Rep 2021; 11:14552. [PMID: 34267270 PMCID: PMC8282799 DOI: 10.1038/s41598-021-94101-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 07/06/2021] [Indexed: 11/18/2022] Open
Abstract
Kluyveromyces marxianus is a yeast that could be identified from kefir and can use a broad range of substrates, such as glucose and lactate, as carbon sources. The lactate produced in kefir culture can be a substrate for K. marxianus. However, the complexity of the kefir microbiota makes the traits of K. marxianus difficult to study. In this research, we focused on K. marxianus cultured with lactate as the sole carbon source. The optimal growth and released protein in lactate culture were determined under different pH conditions, and the LC–MS/MS-identified proteins were associated with the tricarboxylic acid cycle, glycolysis pathway, and cellular stress responses in cells, indicating that autolysis of K. marxianus had occurred under the culture conditions. The abundant glyceraldehyde-3-phosphate dehydrogenase 1 (GAP1) was cocrystallized with other proteins in the cell-free fraction, and the low transcription level of the GAP1 gene indicated that the protein abundance under autolysis conditions was dependent on protein stability. These results suggest that lactate induces the growth and autolysis of K. marxianus, releasing proteins and peptides. These findings can be fundamental for K. marxianus probiotic and kefir studies in the future.
Collapse
Affiliation(s)
- Shou-Chen Lo
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan.
| | - Chia-Yin Yang
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan
| | | | - Chieh-Chen Huang
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan. .,Program in Microbial Genomics, National Chung Hsing University, Taichung, 402, Taiwan. .,Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, 402, Taiwan.
| |
Collapse
|
6
|
Geronikou A, Srimahaeak T, Rantsiou K, Triantafillidis G, Larsen N, Jespersen L. Occurrence of Yeasts in White-Brined Cheeses: Methodologies for Identification, Spoilage Potential and Good Manufacturing Practices. Front Microbiol 2020; 11:582778. [PMID: 33178163 PMCID: PMC7593773 DOI: 10.3389/fmicb.2020.582778] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/14/2020] [Indexed: 01/30/2023] Open
Abstract
Yeasts are generally recognized as contaminants in the production of white-brined cheeses, such as Feta and Feta-type cheeses. The most predominant yeasts species are Debaryomyces hansenii, Geotrichum candidum, Kluyveromyces marxianus, Kluyveromyces lactis, Rhodotorula mucilaginosa, and Trichosporon spp. Although their spoilage potential varies at both species and strain levels, yeasts will, in case of excessive growth, present a microbiological hazard, effecting cheese quality. To evaluate the hazard and trace routes of contamination, the exact taxonomic classification of yeasts is required. Today, identification of dairy yeasts is mainly based on DNA sequencing, various genotyping techniques, and, to some extent, advanced phenotypic identification technologies. Even though these technologies are state of the art at the scientific level, they are only hardly implemented at the industrial level. Quality defects, caused by yeasts in white-brined cheese, are mainly linked to enzymatic activities and metabolism of fermentable carbohydrates, leading to production of metabolites (CO2, fatty acids, volatile compounds, amino acids, sulfur compounds, etc.) and resulting in off-flavors, texture softening, discoloration, and swelling of cheese packages. The proliferation of spoilage yeast depends on maturation and storage conditions at each specific dairy, product characteristics, nutrients availability, and interactions with the co-existing microorganisms. To prevent and control yeast contamination, different strategies based on the principles of HACCP and Good Manufacturing Practice (GMP) have been introduced in white-brined cheese production. These strategies include milk pasteurization, refrigeration, hygienic sanitation, air filtration, as well as aseptic and modified atmosphere packaging. Though a lot of research has been dedicated to yeasts in dairy products, the role of yeast contaminants, specifically in white-brined cheeses, is still insufficiently understood. This review aims to summarize the current knowledge on the identification of contaminant yeasts in white-brined cheeses, their occurrence and spoilage potential related to different varieties of white-brined cheeses, their interactions with other microorganisms, as well as guidelines used by dairies to prevent cheese contamination.
Collapse
Affiliation(s)
- Athina Geronikou
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Thanyaporn Srimahaeak
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Kalliopi Rantsiou
- Department of Agricultural, Forestry and Food Sciences, University of Turin, Turin, Italy
| | | | - Nadja Larsen
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Lene Jespersen
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
7
|
Saubin M, Devillers H, Proust L, Brier C, Grondin C, Pradal M, Legras JL, Neuvéglise C. Investigation of Genetic Relationships Between Hanseniaspora Species Found in Grape Musts Revealed Interspecific Hybrids With Dynamic Genome Structures. Front Microbiol 2020; 10:2960. [PMID: 32010076 PMCID: PMC6974558 DOI: 10.3389/fmicb.2019.02960] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/09/2019] [Indexed: 01/11/2023] Open
Abstract
Hanseniaspora, a predominant yeast genus of grape musts, includes sister species recently reported as fast evolving. The aim of this study was to investigate the genetic relationships between the four most closely related species, at the population level. A multi-locus sequence typing strategy based on five markers was applied on 107 strains, confirming the clear delineation of species H. uvarum, H. opuntiae, H. guilliermondii, and H. pseudoguilliermondii. Huge variations were observed in the level of intraspecific nucleotide diversity, and differences in heterozygosity between species indicate different life styles. No clear population structure was detected based on geographical or substrate origins. Instead, H. guilliermondii strains clustered into two distinct groups, which may reflect a recent step toward speciation. Interspecific hybrids were detected between H. opuntiae and H. pseudoguilliermondii. Their characterization using flow cytometry, karyotypes and genome sequencing showed different genome structures in different ploidy contexts: allodiploids, allotriploids, and allotetraploids. Subculturing of an allotriploid strain revealed chromosome loss equivalent to one chromosome set, followed by an auto-diploidization event, whereas another auto-diploidized tetraploid showed a segmental duplication. Altogether, these results suggest that Hanseniaspora genomes are not only fast evolving but also highly dynamic.
Collapse
Affiliation(s)
- Méline Saubin
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Hugo Devillers
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Lucas Proust
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Cathy Brier
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Cécile Grondin
- Micalis Institute, INRA, AgroParisTech, CIRM-Levures, Université Paris-Saclay, Jouy-en-Josas, France
| | - Martine Pradal
- SPO, Univ Montpellier, INRA, Montpellier SupAgro, Montpellier, France
| | - Jean-Luc Legras
- SPO, Univ Montpellier, INRA, Montpellier SupAgro, Montpellier, France
| | - Cécile Neuvéglise
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
8
|
Perpetuini G, Tittarelli F, Suzzi G, Tofalo R. Cell Wall Surface Properties of Kluyveromyces marxianus Strains From Dairy-Products. Front Microbiol 2019; 10:79. [PMID: 30766524 PMCID: PMC6366010 DOI: 10.3389/fmicb.2019.00079] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/15/2019] [Indexed: 01/30/2023] Open
Abstract
Thirty-three Kluyveromyces marxianus strains were tested for the ability to form biofilm and mat structures in YPD and whey and for cell surface hydrophobicity. To identify genes potentially involved in adhesion properties, a RT-qPCR analysis was performed. Eight strains were able to adhere on polystyrene plates in both media and formed a mature mat structure. These strains showed a different level of hydrophobicity ranging from 55 to 66% in YPD and from 69 to 81% in whey. Four K. marxianus orthologs genes (FLO11, STE12, TPK3, and WSC4), known from studies in other yeast to be involved in biofilm formation, have been studied. FLO11 and STE12 showed the highest fold changes in all conditions tested and especially in whey: 15.05 and 11.21, respectively. TPK3 was upregulated only in a strain, and WSC4 in 3 strains. In YPD, fold changes were lower than in whey with STE12 and FLO11 genes showing the highest fold changes. In mat structures FLO11 and STE12 fold changes ranged from 3.6-1.3 to 2-1.17, respectively. Further studies are necessary to better understand the role of these genes in K. marxianus adhesion ability.
Collapse
Affiliation(s)
| | | | | | - Rosanna Tofalo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
9
|
Varela JA, Puricelli M, Montini N, Morrissey JP. Expansion and Diversification of MFS Transporters in Kluyveromyces marxianus. Front Microbiol 2019; 9:3330. [PMID: 30687296 PMCID: PMC6335341 DOI: 10.3389/fmicb.2018.03330] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/21/2018] [Indexed: 11/24/2022] Open
Abstract
In yeasts, proteins of the Major Superfamily Transporter selectively bind and allow the uptake of sugars to permit growth on varied substrates. The genome of brewer’s yeast, Saccharomyces cerevisiae, encodes multiple hexose transporters (Hxt) to transport glucose and other MFS proteins for maltose, galactose, and other monomers. For sugar uptake, the dairy yeast, Kluyveromyces lactis, uses Rag1p for glucose, Hgt1 for glucose and galactose, and Lac12 for lactose. In the related industrial species Kluyveromyces marxianus, there are four genes encoding Lac12-like proteins but only one of them, Lac12, can transport lactose. In this study, which initiated with efforts to investigate possible functions encoded by the additional LAC12 genes in K. marxianus, a genome-wide survey of putative MFS sugar transporters was performed. Unexpectedly, it was found that the KHT and the HGT genes are present as tandem arrays of five to six copies, with the precise number varying between isolates. Heterologous expression of individual genes in S. cerevisiae and mutagenesis of single and multiple genes in K. marxianus was performed to establish possible substrates for these transporters. The focus was on the sugar galactose since it was already reported in K. lactis that this hexose was a substrate for both Lac12 and Hgt1. It emerged that three of the four copies of Lac12, four Hgt-like proteins and one Kht-like protein have some capacity to transport galactose when expressed in S. cerevisiae and inactivation of all eight genes was required to completely abolish galactose uptake in K. marxianus. Analysis of the amino acid sequence of all known yeast galactose transporters failed to identify common residues that explain the selectivity for galactose. Instead, the capacity to transport galactose has arisen three different times in K. marxianus via polymorphisms in proteins that are probably ancestral glucose transporters. Although, this is analogous to S. cerevisiae, in which Gal2 is related to glucose transporters, there are not conserved amino acid changes, either with Gal2, or among the K. marxianus galactose transporters. The data highlight how gene duplication and functional diversification has provided K. marxianus with versatile capacity to utilise sugars for growth.
Collapse
Affiliation(s)
- Javier A Varela
- School of Microbiology, Centre for Synthetic Biology and Biotechnology, Environmental Research Institute, APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Martina Puricelli
- School of Microbiology, Centre for Synthetic Biology and Biotechnology, Environmental Research Institute, APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Noemi Montini
- School of Microbiology, Centre for Synthetic Biology and Biotechnology, Environmental Research Institute, APC Microbiome Institute, University College Cork, Cork, Ireland
| | - John P Morrissey
- School of Microbiology, Centre for Synthetic Biology and Biotechnology, Environmental Research Institute, APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
10
|
Ortiz-Merino RA, Varela JA, Coughlan AY, Hoshida H, da Silveira WB, Wilde C, Kuijpers NGA, Geertman JM, Wolfe KH, Morrissey JP. Ploidy Variation in Kluyveromyces marxianus Separates Dairy and Non-dairy Isolates. Front Genet 2018; 9:94. [PMID: 29619042 PMCID: PMC5871668 DOI: 10.3389/fgene.2018.00094] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 03/05/2018] [Indexed: 11/20/2022] Open
Abstract
Kluyveromyces marxianus is traditionally associated with fermented dairy products, but can also be isolated from diverse non-dairy environments. Because of thermotolerance, rapid growth and other traits, many different strains are being developed for food and industrial applications but there is, as yet, little understanding of the genetic diversity or population genetics of this species. K. marxianus shows a high level of phenotypic variation but the only phenotype that has been clearly linked to a genetic polymorphism is lactose utilisation, which is controlled by variation in the LAC12 gene. The genomes of several strains have been sequenced in recent years and, in this study, we sequenced a further nine strains from different origins. Analysis of the Single Nucleotide Polymorphisms (SNPs) in 14 strains was carried out to examine genome structure and genetic diversity. SNP diversity in K. marxianus is relatively high, with up to 3% DNA sequence divergence between alleles. It was found that the isolates include haploid, diploid, and triploid strains, as shown by both SNP analysis and flow cytometry. Diploids and triploids contain long genomic tracts showing loss of heterozygosity (LOH). All six isolates from dairy environments were diploid or triploid, whereas 6 out 7 isolates from non-dairy environment were haploid. This also correlated with the presence of functional LAC12 alleles only in dairy haplotypes. The diploids were hybrids between a non-dairy and a dairy haplotype, whereas triploids included three copies of a dairy haplotype.
Collapse
Affiliation(s)
- Raúl A Ortiz-Merino
- School of Medicine, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Javier A Varela
- School of Microbiology, Centre for Synthetic Biology and Biotechnology, Environmental Research Institute, APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Aisling Y Coughlan
- School of Medicine, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Hisashi Hoshida
- Department of Applied Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | | | | | | | | | - Kenneth H Wolfe
- School of Medicine, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - John P Morrissey
- School of Microbiology, Centre for Synthetic Biology and Biotechnology, Environmental Research Institute, APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|