1
|
Giacomini JJ, Torres-Morales J, Dewhirst FE, Borisy GG, Mark Welch JL. Spatial ecology of the Neisseriaceae family in the human oral cavity. Microbiol Spectr 2025; 13:e0327524. [PMID: 40197060 PMCID: PMC12054151 DOI: 10.1128/spectrum.03275-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/05/2025] [Indexed: 04/09/2025] Open
Abstract
The human oral microbiome is a diverse ecosystem in which bacterial species have evolved to occupy specific niches within the oral cavity. The Neisseriaceae family, which includes human oral species in the genera Neisseria, Eikenella, Kingella, and Simonsiella, plays a significant role in both commensal and pathogenic relationships. In this study, we investigate the distribution and functional adaptations of Neisseriaceae species across oral habitats, focusing on their site tropisms and ecological roles. We employed a metapangenomic approach in which a curated set of reference genomes representing Neisseriaceae diversity was used for competitive mapping of metagenomic reads. Our analysis revealed distinct habitat preferences among Neisseriaceae species, with Kingella oralis, Neisseria elongata, and Neisseria mucosa primarily found in dental plaque; Neisseria subflava on the tongue dorsum; and Neisseria cinerea in the keratinized gingiva. Functional enrichment analyses identified genes and pathways underpinning habitat-specific adaptations. Plaque specialists showed metabolic versatility, with adaptations in nitrogen metabolism, including nitrate reduction and denitrification, lysine degradation, and galactose metabolism. Tongue dorsum specialists exhibited adaptations including enhanced capabilities for amino acid biosynthesis, short-chain fatty acid and glycerol transport, as well as lipopolysaccharide glycosylation, which may aid in resisting antimicrobial peptides and maintaining membrane integrity. These findings provide insights into the ecological roles and adaptive strategies of Neisseriaceae species within the human oral microbiome and establish a foundation for exploring functional specialization and microbial interactions in these niches.IMPORTANCEUnraveling the distribution and functional adaptations of Neisseriaceae within the human oral microbiome is essential for understanding the roles of these abundant and prevalent commensals in both health and disease. Through a metapangenomic approach, we uncovered distinct habitat preferences of various Neisseriaceae taxa across the oral cavity and identified key genetic traits that may drive their habitat specialization and role in host-microbe interactions. These insights enhance our understanding of the microbial dynamics that shape oral microbial ecology, offering potential pathways for advancing oral health research.
Collapse
Affiliation(s)
| | | | - Floyd E. Dewhirst
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
- Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | | | - Jessica L. Mark Welch
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
- Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| |
Collapse
|
2
|
Taouk ML, Featherstone LA, Taiaroa G, Seemann T, Ingle DJ, Stinear TP, Wick RR. Exploring SNP filtering strategies: the influence of strict vs soft core. Microb Genom 2025; 11:001346. [PMID: 39812553 PMCID: PMC11734701 DOI: 10.1099/mgen.0.001346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
Phylogenetic analyses are crucial for understanding microbial evolution and infectious disease transmission. Bacterial phylogenies are often inferred from SNP alignments, with SNPs as the fundamental signal within these data. SNP alignments can be reduced to a 'strict core' by removing those sites that do not have data present in every sample. However, as sample size and genome diversity increase, a strict core can shrink markedly, discarding potentially informative data. Here, we propose and provide evidence to support the use of a 'soft core' that tolerates some missing data, preserving more information for phylogenetic analysis. Using large datasets of Neisseria gonorrhoeae and Salmonella enterica serovar Typhi, we assess different core thresholds. Our results show that strict cores can drastically reduce informative sites compared to soft cores. In a 10 000-genome alignment of Salmonella enterica serovar Typhi, a 95% soft core yielded ten times more informative sites than a 100% strict core. Similar patterns were observed in N. gonorrhoeae. We further evaluated the accuracy of phylogenies built from strict- and soft-core alignments using datasets with strong temporal signals. Soft-core alignments generally outperformed strict cores in producing trees displaying clock-like behaviour; for instance, the N. gonorrhoeae 95% soft-core phylogeny had a root-to-tip regression R 2 of 0.50 compared to 0.21 for the strict-core phylogeny. This study suggests that soft-core strategies are preferable for large, diverse microbial datasets. To facilitate this, we developed Core-SNP-filter (https://github.com/rrwick/Core-SNP-filter), an open-source software tool for generating soft-core alignments from whole-genome alignments based on user-defined thresholds.
Collapse
Affiliation(s)
- Mona L. Taouk
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Leo A. Featherstone
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Macroevolution and Macroecology Group, Research, School of Biology, Australian National University, Canberra, ACT, Australia
| | - George Taiaroa
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Torsten Seemann
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Centre for Pathogen Genomics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Danielle J. Ingle
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Centre for Pathogen Genomics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Centre for Pathogen Genomics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ryan R. Wick
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Centre for Pathogen Genomics, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Kayama S, Yahara K, Sugawara Y, Kawakami S, Kondo K, Zuo H, Kutsuno S, Kitamura N, Hirabayashi A, Kajihara T, Kurosu H, Yu L, Suzuki M, Hisatsune J, Sugai M. National genomic surveillance integrating standardized quantitative susceptibility testing clarifies antimicrobial resistance in Enterobacterales. Nat Commun 2023; 14:8046. [PMID: 38052776 PMCID: PMC10698200 DOI: 10.1038/s41467-023-43516-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 11/13/2023] [Indexed: 12/07/2023] Open
Abstract
Antimicrobial resistance is a global health concern; Enterobacterales resistant to third-generation cephalosporins (3GCs) and carbapenems are of the highest priority. Here, we conducted genome sequencing and standardized quantitative antimicrobial susceptibility testing of 4,195 isolates of Escherichia coli and Klebsiella pneumoniae resistant to 3GCs and Enterobacterales with reduced meropenem susceptibility collected across Japan. Our analyses provided a complete classification of 3GC resistance mechanisms. Analyses with complete reference plasmids revealed that among the blaCTX-M extended-spectrum β-lactamase genes, blaCTX-M-8 was typically encoded in highly similar plasmids. The two major AmpC β-lactamase genes were blaCMY-2 and blaDHA-1. Long-read sequencing of representative plasmids revealed that approximately 60% and 40% of blaCMY-2 and blaDHA-1 were encoded by such plasmids, respectively. Our analyses identified strains positive for carbapenemase genes but phenotypically susceptible to carbapenems and undetectable by standard antimicrobial susceptibility testing. Systematic long-read sequencing enabled reconstruction of 183 complete plasmid sequences encoding three major carbapenemase genes and elucidation of their geographical distribution stratified by replicon types and species carrying the plasmids and potential plasmid transfer events. Overall, we provide a blueprint for a national genomic surveillance study that integrates standardized quantitative antimicrobial susceptibility testing and characterizes resistance determinants.
Collapse
Affiliation(s)
- Shizuo Kayama
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan.
| | - Koji Yahara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan.
| | - Yo Sugawara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan.
| | - Sayoko Kawakami
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kohei Kondo
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hui Zuo
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shoko Kutsuno
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Norikazu Kitamura
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Aki Hirabayashi
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Toshiki Kajihara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hitomi Kurosu
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Liansheng Yu
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masato Suzuki
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Junzo Hisatsune
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Motoyuki Sugai
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan.
| |
Collapse
|
4
|
Phillips LT, Witney AA, Furegato M, Laing KG, Zhou L, Sadiq ST. Time Required for Nanopore Whole-Genome Sequencing of Neisseria gonorrhoeae for Identification of Phylogenetic Relationships. J Infect Dis 2023; 228:1179-1188. [PMID: 37216766 PMCID: PMC10629711 DOI: 10.1093/infdis/jiad170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/20/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) in Neisseria gonorrhoeae is a global health challenge. Limitations to AMR surveillance reporting, alongside reduction in culture-based susceptibility testing, has resulted in a need for rapid diagnostics and strain detection. We investigated Nanopore sequencing time, and depth, to accurately identify closely related N. gonorrhoeae isolates, compared to Illumina sequencing. METHODS N. gonorrhoeae strains collected from a London sexual health clinic were cultured and sequenced with MiSeq and MinION sequencing platforms. Accuracy was determined by comparing variant calls at 68 nucleotide positions (37 resistance-associated markers). Accuracy at varying MinION sequencing depths was determined through retrospective time-stamped read analysis. RESULTS Of 22 MinION-MiSeq pairs reaching sufficient sequencing depth, agreement of variant call positions passing quality control criteria was 185/185 (100%; 95% confidence interval [CI], 98.0%-100.0%), 502/503 (99.8%; 95% CI, 98.9%-99.9%), and 564/565 (99.8%; 95% CI, 99.0%-100.0%) at 10x, 30x, and 40x MinION depth, respectively. Isolates identified as closely related by MiSeq, within one yearly evolutionary distance of ≤5 single nucleotide polymorphisms, were accurately identified via MinION. CONCLUSIONS Nanopore sequencing shows utility as a rapid surveillance tool, identifying closely related N. gonorrhoeae strains, with just 10x sequencing depth, taking a median time of 29 minutes. This highlights its potential for tracking local transmission and AMR markers.
Collapse
Affiliation(s)
- Laura T Phillips
- Institute for Infection and Immunity, St George’s University of London, London, United Kingdom
| | - Adam A Witney
- Institute for Infection and Immunity, St George’s University of London, London, United Kingdom
| | - Martina Furegato
- Institute for Infection and Immunity, St George’s University of London, London, United Kingdom
| | - Ken G Laing
- Institute for Infection and Immunity, St George’s University of London, London, United Kingdom
| | - Liqing Zhou
- Institute for Infection and Immunity, St George’s University of London, London, United Kingdom
| | - S Tariq Sadiq
- Institute for Infection and Immunity, St George’s University of London, London, United Kingdom
- Infection Clinical Academic Group, St George's University Hospitals NHS Trust, London, United Kingdom
| |
Collapse
|
5
|
Shimuta K, Takahashi H, Akeda Y, Nakayama SI, Ohnishi M. Loop-Mediated Isothermal Amplification Assay for Identifying Neisseria gonorrhoeae Nonmosaic penA-Targeting Strains Potentially Eradicable by Cefixime. Microbiol Spectr 2022; 10:e0233522. [PMID: 36000906 PMCID: PMC9602674 DOI: 10.1128/spectrum.02335-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 01/04/2023] Open
Abstract
Treatment regimens for gonorrhea have limited efficacy worldwide due to the rapid spread of antimicrobial resistance. Cefixime (CFM) is currently not recommended as a first-line treatment for gonorrhea due to the increasing number of resistant strains worldwide. Nonetheless, Neisseria gonorrhoeae strains can be eradicated by CFM at a 400 mg/day dose, provided that the strains are CFM responsive (MIC ≤ 0.064 mg/L). To develop a nonculture test for predicting the CFM responsiveness of N. gonorrhoeae strains, we developed an assay to detect N. gonorrhoeae nonmosaic penA using loop-mediated isothermal amplification (LAMP). To avoid false-positive reactions with commensal Neisseria spp. penA, we amplified specific regions of the N. gonorrhoeae penA (NG-penA-LAMP1) and also the nonmosaic N. gonorrhoeae penA (NG-penA-LAMP3). This assay was validated using isolated N. gonorrhoeae (n = 204) and Neisseria spp. (n = 95) strains. Clinical specimens (n = 95) with confirmed positivity in both culture and real-time PCR were evaluated to validate the system. The combination of the previously described NG-penA-LAMP1 and our new NG-penA-LAMP3 assays had high sensitivity (100%) and specificity (100%) for identifying N. gonorrhoeae carrying the nonmosaic type. To determine whether CFM could be applicable for gonorrhea treatment without culture testing, we developed a LAMP assay that targets penA allele-specific nonmosaic types for use as one of the tools for point-of-care testing of antimicrobial resistance. IMPORTANCE Neisseria gonorrhoeae is among the hot topics of "resistance guided therapy," one of the top 5 urgent antimicrobial threats according to the Centers for Disease Control and Prevention (CDC). There is a need either to develop new agents or to make effective use of existing agents, with the current limited number of therapeutic agents available. Knowing the drug susceptibility information of the target microorganism prior to treating patients is very useful in selecting an effective antibiotic, especially in gonococcal infections where drug resistance is prominent, and is also important in preventing treatment failure. In this study, we developed a new method for obtaining drug susceptibility profiles of Neisseria gonorrhoeae using the loop-mediated isothermal amplification (LAMP) method. The LAMP assay does not require expensive devices. Therefore, this method is expected to be a tool for point-of-care testing of antimicrobial resistance for individualized treatment in the future.
Collapse
Affiliation(s)
- Ken Shimuta
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
- Antimicrobial Resistance Research Centre, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideyuki Takahashi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yukihiro Akeda
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shu-ichi Nakayama
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | | |
Collapse
|
6
|
Bharara T, Bhalla P. Study of gonococcal and chlamydial urethritis: Old culprits with a new story. J Family Med Prim Care 2022; 11:5551-5555. [PMID: 36505551 PMCID: PMC9731066 DOI: 10.4103/jfmpc.jfmpc_10_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 06/23/2021] [Accepted: 01/13/2022] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Neisseria gonorrhoeae and Chlamydia trachomatis are the primary pathogens causing urethritis. A cross-sectional study was carried out in the Department of Microbiology in conjunction with the Department of Dermatology and STD of our hospital. The aim of the study was to detect N. gonorrhoeae and C. trachomatis among men with urethritis and to determine the anti-microbial susceptibility of the N. gonorrhoeae isolates. MATERIAL AND METHODS All cases were subjected to direct Gram's smear examination and culture of urethral discharge (N. gonorrhoeae), real-time polymerase chain reaction and direct fluorescent antibody test (C. trachomatis). All N. gonorrhoeae isolates were subjected to anti-microbial susceptibility testing and were tested for ß-lactamase production by chromogenic cephalosporin test. STATISTICAL ANALYSIS USED Data were expressed as percentages. Fisher's exact test was used to evaluate statistical significance in the case of unpaired categorical data. Agreement between the methods was assessed by using kappa statistics. RESULTS Gonococcal infection was detected in 58.1% cases, and C. trachomatis was detected in 14% cases. However, both were detected in 12% cases. The sensitivity, specificity, positive predictive value, and negative predictive value of direct Gram's smear examination and culture of urethral discharge were found to be 100% when compared to culture for N. gonorrhoeae. Direct fluorescent antibody (DFA) test proved to be a valuable test aiding in the diagnosis of chlamydial urethritis with a majority of positive cases showing 20-30 elementary bodies. We detected our first gonococcal isolate with decreased susceptibility to third-generation cephalosporins, ceftriaxone, cefixime, and cefpodoxime (MIC for ceftriaxone = 0.19 mg/ml). CONCLUSIONS Optimal management of urethritis and strategies to prevent its transmission depend on accurate detection of infected persons. Our study demonstrates the utility and limitations of different laboratory tests including anti-microbial sensitivity testing for N. gonorrhoeae and C. trachomatis.
Collapse
Affiliation(s)
- Tanisha Bharara
- Department of Microbiology, Shree Gurugobind Singh Tricentenary University, Gurugram, Haryana, India
| | - Preena Bhalla
- Department of Microbiology, Hindu Rao Medical College and Hospital, Delhi, India
| |
Collapse
|
7
|
Manoharan-Basil SS, González N, Laumen JGE, Kenyon C. Horizontal Gene Transfer of Fluoroquinolone Resistance-Conferring Genes From Commensal Neisseria to Neisseria gonorrhoeae: A Global Phylogenetic Analysis of 20,047 Isolates. Front Microbiol 2022; 13:793612. [PMID: 35369513 PMCID: PMC8973304 DOI: 10.3389/fmicb.2022.793612] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/19/2022] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial resistance in Neisseria gonorrhoeae is an important global health concern. The genetically related commensal Neisseria act as a reservoir of resistance genes, and horizontal gene transfer (HGT) has been shown to play an important role in the genesis of resistance to cephalosporins and macrolides in N. gonorrhoeae. In this study, we evaluated if there was evidence of HGT in the genes gyrA/gyrB and parC/parE responsible for fluoroquinolone resistance. Even though the role of gyrB and parE in quinolone resistance is unclear, the subunits gyrB and parE were included as zoliflodacin, a promising new drug to treat N. gonorrhoeae targets the gyrB subunit. We analyzed a collection of 20,047 isolates; 18,800 N. gonorrhoeae, 1,238 commensal Neisseria spp., and nine Neisseria meningitidis. Comparative genomic analyses identified HGT events in genes, gyrA, gyrB, parC, and parE. Recombination events were predicted in N. gonorrhoeae and Neisseria commensals. Neisseria lactamica, Neisseria macacae, and Neisseria mucosa were identified as likely progenitors of the HGT events in gyrA, gyrB, and parE, respectively.
Collapse
Affiliation(s)
- Sheeba Santhini Manoharan-Basil
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
- *Correspondence: Sheeba Santhini Manoharan-Basil,
| | - Natalia González
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | | | - Chris Kenyon
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
8
|
Mourkas E, Yahara K, Bayliss SC, Calland JK, Johansson H, Mageiros L, Muñoz-Ramirez ZY, Futcher G, Méric G, Hitchings MD, Sandoval-Motta S, Torres J, Jolley KA, Maiden MCJ, Ellström P, Waldenström J, Pascoe B, Sheppard SK. Host ecology regulates interspecies recombination in bacteria of the genus Campylobacter. eLife 2022; 11:e73552. [PMID: 35191377 PMCID: PMC8912921 DOI: 10.7554/elife.73552] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/20/2022] [Indexed: 01/16/2023] Open
Abstract
Horizontal gene transfer (HGT) can allow traits that have evolved in one bacterial species to transfer to another. This has potential to rapidly promote new adaptive trajectories such as zoonotic transfer or antimicrobial resistance. However, for this to occur requires gaps to align in barriers to recombination within a given time frame. Chief among these barriers is the physical separation of species with distinct ecologies in separate niches. Within the genus Campylobacter, there are species with divergent ecologies, from rarely isolated single-host specialists to multihost generalist species that are among the most common global causes of human bacterial gastroenteritis. Here, by characterizing these contrasting ecologies, we can quantify HGT among sympatric and allopatric species in natural populations. Analyzing recipient and donor population ancestry among genomes from 30 Campylobacter species, we show that cohabitation in the same host can lead to a six-fold increase in HGT between species. This accounts for up to 30% of all SNPs within a given species and identifies highly recombinogenic genes with functions including host adaptation and antimicrobial resistance. As described in some animal and plant species, ecological factors are a major evolutionary force for speciation in bacteria and changes to the host landscape can promote partial convergence of distinct species through HGT.
Collapse
Affiliation(s)
- Evangelos Mourkas
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of BathBathUnited Kingdom
| | - Koji Yahara
- Antimicrobial Resistance Research Center, National Institute of Infectious DiseasesTokyoJapan
| | - Sion C Bayliss
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of BathBathUnited Kingdom
| | - Jessica K Calland
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of BathBathUnited Kingdom
| | - Håkan Johansson
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus UniversityKalmarSweden
| | - Leonardos Mageiros
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of BathBathUnited Kingdom
| | - Zilia Y Muñoz-Ramirez
- Unidad de Investigacion en Enfermedades Infecciosas, UMAE Pediatria, Instituto Mexicano del Seguro SocialMexico CityMexico
| | - Grant Futcher
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of BathBathUnited Kingdom
| | - Guillaume Méric
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of BathBathUnited Kingdom
| | | | - Santiago Sandoval-Motta
- Unidad de Investigacion en Enfermedades Infecciosas, UMAE Pediatria, Instituto Mexicano del Seguro SocialMexico CityMexico
| | - Javier Torres
- Unidad de Investigacion en Enfermedades Infecciosas, UMAE Pediatria, Instituto Mexicano del Seguro SocialMexico CityMexico
| | - Keith A Jolley
- Department of Zoology, University of OxfordOxfordUnited Kingdom
| | | | - Patrik Ellström
- Department of Medical Sciences, Zoonosis Science Centre, Uppsala UniversityUppsalaSweden
| | - Jonas Waldenström
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus UniversityKalmarSweden
| | - Ben Pascoe
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of BathBathUnited Kingdom
- Faculty of Veterinary Medicine, Chiang Mai UniversityChiang MaiThailand
| | - Samuel K Sheppard
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of BathBathUnited Kingdom
- Department of Zoology, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
9
|
Hosaka Y, Yahara K, Clark A, Kitagawa H, Hisatsune J, Sugai M, Shibayama K, Stelling J. Surveillance of multidrug resistance phenotypes in Staphylococcus aureus in Japan and correlation with whole-genome sequence findings. J Hosp Infect 2022; 123:34-42. [PMID: 35202748 DOI: 10.1016/j.jhin.2022.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/25/2022] [Accepted: 02/10/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Antimicrobial resistance in Staphylococcus aureus imposes a high disease burden. Both phenotypic and genotypic monitoring are key to understanding and containing emerging resistant strains. AIM Phenotypic monitoring of emerging resistance in S. aureus and correlation of priority strain phenotypes with whole genome sequencing (WGS) findings. METHODS Antimicrobial susceptibility test results of >40,000 isolates from 213 participating hospitals from 2011 to 2019 were exported from the national Japan Nosocomial Infections Surveillance (JANIS) database. Longitudinal and geographic distribution and prevalence of distinct multidrug resistance phenotypes ('resistance profiles') of S. aureus were examined among hospitals and prefectures. We further conducted a genome sequence analysis of strains with specific resistance profiles of concern. FINDINGS The overall prevalence of meticillin-resistant S. aureus (MRSA) decreased from 40.3% to 35.1% from 2011 to 2019. However, among dozens of S. aureus resistance profiles, only one profile of a type of MRSA, exhibited a statistically significant increase in inpatient frequency, exceeding 10% during the nine years. This MRSA profile showed resistance to oxacillin, erythromycin, and levofloxacin. Analysis of WGS results of S. aureus isolates with this phenotype revealed that most belonged to clonal complex 8, and all carried SCCmec IV, typical of community-acquired MRSA. CONCLUSION Tracking distinct resistance profiles deepened our understanding of the overall decrease in MRSA and led to recognition of the emergence of a new resistance phenotype. This study provides a model for future epidemiological research on antimicrobial resistance correlating multidrug resistance phenotypes with selective genome sequencing, which can be applied to other bacterial species.
Collapse
Affiliation(s)
- Yumiko Hosaka
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan.
| | - Koji Yahara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan.
| | - Adam Clark
- WHO Collaborating Centre for Surveillance of Antimicrobial Resistance, Brigham and Women's Hospital, Boston, MA, USA
| | - Hiroki Kitagawa
- Department of Infectious Diseases, Hiroshima University Hospital, Hiroshima, Japan; Department of surgery, Hiroshima University Graduate School of Medicine, Hiroshima, Japan
| | - Junzo Hisatsune
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Motoyuki Sugai
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Keigo Shibayama
- Department of Bacteriology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - John Stelling
- WHO Collaborating Centre for Surveillance of Antimicrobial Resistance, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Hadad R, Golparian D, Velicko I, Ohlsson AK, Lindroth Y, Ericson EL, Fredlund H, Engstrand L, Unemo M. First National Genomic Epidemiological Study of Neisseria gonorrhoeae Strains Spreading Across Sweden in 2016. Front Microbiol 2022; 12:820998. [PMID: 35095823 PMCID: PMC8794790 DOI: 10.3389/fmicb.2021.820998] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/14/2021] [Indexed: 12/05/2022] Open
Abstract
The increasing transmission and antimicrobial resistance (AMR) in Neisseria gonorrhoeae is a global health concern with worrying trends of decreasing susceptibility to also the last-line extended-spectrum cephalosporin (ESC) ceftriaxone. A dramatic increase of reported gonorrhea cases has been observed in Sweden from 2016 and onward. The aim of the present study was to comprehensively investigate the genomic epidemiology of all cultured N. gonorrhoeae isolates in Sweden during 2016, in conjunction with phenotypic AMR and clinical and epidemiological data of patients. In total, 1279 isolates were examined. Etest and whole-genome sequencing (WGS) were performed, and epidemiological data obtained from the Public Health Agency of Sweden. Overall, 51.1%, 1.7%, and 1.3% resistance to ciprofloxacin, cefixime, and azithromycin, respectively, was found. No isolates were resistant to ceftriaxone, however, 9.3% of isolates showed a decreased susceptibility to ceftriaxone and 10.5% to cefixime. In total, 44 penA alleles were found of which six were mosaic (n = 92). Using the typing schemes of MLST, NG-MAST, and NG-STAR; 133, 422, and 280 sequence types, respectively, and 93 NG-STAR clonal complexes were found. The phylogenomic analysis revealed two main lineages (A and B) with lineage A divided into two main sublineages (A1 and A2). Resistance and decreased susceptibility to ESCs and azithromycin and associated AMR determinants, such as mosaic penA and mosaic mtrD, were predominantly found in sublineage A2. Resistance to cefixime and azithromycin was more prevalent among heterosexuals and MSM, respectively, and both were predominantly spread through domestic transmission. Continuous surveillance of the spread and evolution of N. gonorrhoeae, including phenotypic AMR testing and WGS, is essential for enhanced knowledge regarding the dynamic evolution of N. gonorrhoeae and gonorrhea epidemiology.
Collapse
Affiliation(s)
- Ronza Hadad
- World Health Organization Collaborating Centre for Gonorrhoea and Other Sexually Transmitted Infections, National Reference Laboratory for Sexually Transmitted Infections, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Daniel Golparian
- World Health Organization Collaborating Centre for Gonorrhoea and Other Sexually Transmitted Infections, National Reference Laboratory for Sexually Transmitted Infections, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | | | - Anna-Karin Ohlsson
- Department of Clinical Microbiology, Karolinska University Hospital, Huddinge, Sweden
| | - Ylva Lindroth
- Department of Laboratory Medicine, Medical Microbiology, Lund University, Skåne Laboratory Medicine, Lund, Sweden
| | - Eva-Lena Ericson
- Department of Clinical Microbiology, Karolinska University Hospital, Huddinge, Sweden
| | - Hans Fredlund
- World Health Organization Collaborating Centre for Gonorrhoea and Other Sexually Transmitted Infections, National Reference Laboratory for Sexually Transmitted Infections, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Lars Engstrand
- Center for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institutet, Solna, Sweden
| | - Magnus Unemo
- World Health Organization Collaborating Centre for Gonorrhoea and Other Sexually Transmitted Infections, National Reference Laboratory for Sexually Transmitted Infections, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
11
|
Manoharan-Basil SS, Laumen JGE, Van Dijck C, De Block T, De Baetselier I, Kenyon C. Evidence of Horizontal Gene Transfer of 50S Ribosomal Genes rplB, rplD, and rplY in Neisseria gonorrhoeae. Front Microbiol 2021; 12:683901. [PMID: 34177869 PMCID: PMC8222677 DOI: 10.3389/fmicb.2021.683901] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/27/2021] [Indexed: 11/25/2022] Open
Abstract
Horizontal gene transfer (HGT) in the penA and multidrug efflux pump genes has been shown to play a key role in the genesis of antimicrobial resistance in Neisseria gonorrhoeae. In this study, we evaluated if there was evidence of HGT in the genes coding for the ribosomal proteins in the Neisseria genus. We did this in a collection of 11,659 isolates of Neisseria, including N. gonorrhoeae and commensal Neisseria species (N. cinerea, N. elongata, N. flavescens, N. mucosa, N. polysaccharea, and N. subflava). Comparative genomic analyses identified HGT events in three genes: rplB, rplD, and rplY coding for ribosomal proteins L2, L4 and L25, respectively. Recombination events were predicted in N. gonorrhoeae and N. cinerea, N. subflava, and N. lactamica were identified as likely progenitors. In total, 2,337, 2,355, and 1,127 isolates possessed L2, L4, and L25 HGT events. Strong associations were found between HGT in L2/L4 and the C2597T 23S rRNA mutation that confers reduced susceptibility to macrolides. Whilst previous studies have found evidence of HGT of entire genes coding for ribosomal proteins in other bacterial species, this is the first study to find evidence of HGT-mediated chimerization of ribosomal proteins.
Collapse
Affiliation(s)
| | - Jolein Gyonne Elise Laumen
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Christophe Van Dijck
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Tessa De Block
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Irith De Baetselier
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Chris Kenyon
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
12
|
Kenyon C, Laumen J, Manoharan-Basil S. Choosing New Therapies for Gonorrhoea: We Need to Consider the Impact on the Pan- Neisseria Genome. A Viewpoint. Antibiotics (Basel) 2021; 10:515. [PMID: 34062856 PMCID: PMC8147325 DOI: 10.3390/antibiotics10050515] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022] Open
Abstract
The development of new gonorrhoea treatment guidelines typically considers the resistance-inducing effect of the treatment only on Neisseria gonorrhoeae. Antimicrobial resistance in N. gonorrhoeae has, however, frequently first emerged in commensal Neisseria species and then been passed on to N. gonorrhoeae via transformation. This creates the rationale for considering the effect of gonococcal therapies on resistance in commensal Neisseria. We illustrate the benefits of this pan-Neisseria strategy by evaluating three contemporary treatment options for N. gonorrhoeae-ceftriaxone plus azithromycin, monotherapy with ceftriaxone and zoliflodacin.
Collapse
Affiliation(s)
- Chris Kenyon
- HIV/STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (J.L.); (S.M.-B.)
- Division of Infectious Diseases and HIV Medicine, University of Cape Town, Anzio Road, Observatory, Cape Town 7701, South Africa
- STI Reference Center, Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | - Jolein Laumen
- HIV/STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (J.L.); (S.M.-B.)
| | - Sheeba Manoharan-Basil
- HIV/STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (J.L.); (S.M.-B.)
| |
Collapse
|
13
|
Sánchez-Busó L, Yeats CA, Taylor B, Goater RJ, Underwood A, Abudahab K, Argimón S, Ma KC, Mortimer TD, Golparian D, Cole MJ, Grad YH, Martin I, Raphael BH, Shafer WM, Town K, Wi T, Harris SR, Unemo M, Aanensen DM. A community-driven resource for genomic epidemiology and antimicrobial resistance prediction of Neisseria gonorrhoeae at Pathogenwatch. Genome Med 2021; 13:61. [PMID: 33875000 PMCID: PMC8054416 DOI: 10.1186/s13073-021-00858-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 02/22/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Antimicrobial-resistant (AMR) Neisseria gonorrhoeae is an urgent threat to public health, as strains resistant to at least one of the two last-line antibiotics used in empiric therapy of gonorrhoea, ceftriaxone and azithromycin, have spread internationally. Whole genome sequencing (WGS) data can be used to identify new AMR clones and transmission networks and inform the development of point-of-care tests for antimicrobial susceptibility, novel antimicrobials and vaccines. Community-driven tools that provide an easy access to and analysis of genomic and epidemiological data is the way forward for public health surveillance. METHODS Here we present a public health-focussed scheme for genomic epidemiology of N. gonorrhoeae at Pathogenwatch ( https://pathogen.watch/ngonorrhoeae ). An international advisory group of experts in epidemiology, public health, genetics and genomics of N. gonorrhoeae was convened to inform on the utility of current and future analytics in the platform. We implement backwards compatibility with MLST, NG-MAST and NG-STAR typing schemes as well as an exhaustive library of genetic AMR determinants linked to a genotypic prediction of resistance to eight antibiotics. A collection of over 12,000 N. gonorrhoeae genome sequences from public archives has been quality-checked, assembled and made public together with available metadata for contextualization. RESULTS AMR prediction from genome data revealed specificity values over 99% for azithromycin, ciprofloxacin and ceftriaxone and sensitivity values around 99% for benzylpenicillin and tetracycline. A case study using the Pathogenwatch collection of N. gonorrhoeae public genomes showed the global expansion of an azithromycin-resistant lineage carrying a mosaic mtr over at least the last 10 years, emphasising the power of Pathogenwatch to explore and evaluate genomic epidemiology questions of public health concern. CONCLUSIONS The N. gonorrhoeae scheme in Pathogenwatch provides customised bioinformatic pipelines guided by expert opinion that can be adapted to public health agencies and departments with little expertise in bioinformatics and lower-resourced settings with internet connection but limited computational infrastructure. The advisory group will assess and identify ongoing public health needs in the field of gonorrhoea, particularly regarding gonococcal AMR, in order to further enhance utility with modified or new analytic methods.
Collapse
Affiliation(s)
- Leonor Sánchez-Busó
- Centre for Genomic Pathogen Surveillance, Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK.
- Genomics and Health Area, Foundation for the Promotion of Health and Biomedical Research in the Valencian Community (FISABIO-Public Health), Valencia, Spain.
| | - Corin A Yeats
- Centre for Genomic Pathogen Surveillance, Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK
| | - Benjamin Taylor
- Centre for Genomic Pathogen Surveillance, Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Cambridgeshire, UK
| | - Richard J Goater
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Cambridgeshire, UK
- European Molecular Biology Lab, Heidelberg, Baden-Wuerttemberg, Germany
| | - Anthony Underwood
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Cambridgeshire, UK
| | - Khalil Abudahab
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Cambridgeshire, UK
| | - Silvia Argimón
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Cambridgeshire, UK
| | - Kevin C Ma
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Tatum D Mortimer
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Daniel Golparian
- World Health Organization Collaborating Centre for Gonorrhoea and Other STIs, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Michelle J Cole
- National Infection Service, Public Health England, London, UK
| | - Yonatan H Grad
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Irene Martin
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Brian H Raphael
- Division of STD prevention, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - William M Shafer
- Department of Microbiology and Immunology and Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA
- Laboratories of Bacterial Pathogenesis, Veterans Affairs Medical Center, Decatur, GA, USA
| | - Katy Town
- Division of STD prevention, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Teodora Wi
- Department of the Global HIV, Hepatitis and STI Programmes, World Health Organization, Geneva, Switzerland
| | - Simon R Harris
- Microbiotica, Biodata Innovation Centre, Cambridge, Cambridgeshire, UK
| | - Magnus Unemo
- World Health Organization Collaborating Centre for Gonorrhoea and Other STIs, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - David M Aanensen
- Centre for Genomic Pathogen Surveillance, Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK.
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Cambridgeshire, UK.
| |
Collapse
|
14
|
Typing of Neisseria Gonorrhoeae isolates in Shenzhen, China from 2014-2018 reveals the shift of genotypes associated with antimicrobial resistance. Antimicrob Agents Chemother 2021; 65:AAC.02311-20. [PMID: 33593843 PMCID: PMC8092899 DOI: 10.1128/aac.02311-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The growing antimicrobial resistance (AMR) in Neisseria gonorrhoeae is a serious global threat to gonococcal therapy. Molecular typing is an ideal tool to reveal the association between specific genotype and resistance phenotype that provides effective data for tracking the transmission of resistant clones of N. gonorrhoeae In our study, we aimed to describe the molecular epidemiology of AMR and the distribution of resistance-associated genotypes in Shenzhen during 2014-2018. In total, 909 isolates were collected from Shenzhen from 2014-2018. Two typing schemes, multilocus sequence typing (MLST) and N. gonorrhoeae Sequence Typing for Antimicrobial Resistance (NG-STAR), were performed for all isolates. The distribution of resistance-associated genotypes was described using goeBURST analysis combined with data of logistic regression. Among 909 isolates, ST8123, ST7363, ST1901, ST7365, and ST7360 were most the common MLST sequence types (STs), and ST348, ST2473, ST497, and ST199 were the most prevalent NG-STAR STs. The logistic regression analysis showed that NG-STARST497, MLSTST7365, and MLSTST7360 were typically associated with decreased susceptibility to ceftriaxone. Furthermore, the internationally spreading ESC-resistant clone MLSTST1901 has been prevalent at least in 2014 in Shenzhen and showed a significant increase during 2014-2018. Additionally, MLSTST7363 owns the potential to become the next internationally spreading ceftriaxone-resistant ST. In conclusions, we performed a comprehensive epidemiological study to explore the correlation between AMR and specific STs, which provided important data for future studies of the molecular epidemiology of AMR in N. gonorrhoeae Besides, these findings provide insight for adjusting surveillance strategies and therapy management in Shenzhen.
Collapse
|
15
|
Osnes MN, van Dorp L, Brynildsrud OB, Alfsnes K, Schneiders T, Templeton KE, Yahara K, Balloux F, Caugant DA, Eldholm V. Antibiotic Treatment Regimes as a Driver of the Global Population Dynamics of a Major Gonorrhea Lineage. Mol Biol Evol 2021; 38:1249-1261. [PMID: 33432328 PMCID: PMC8042733 DOI: 10.1093/molbev/msaa282] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Neisseria gonorrhoeae multilocus sequence type (ST) 1901 is among the lineages most commonly associated with treatment failure. Here, we analyze a global collection of ST-1901 genomes to shed light on the emergence and spread of alleles associated with reduced susceptibility to extended-spectrum cephalosporins (ESCs). The genetic diversity of ST-1901 falls into a minor and a major clade, both of which were inferred to have originated in East Asia. The dispersal of the major clade from Asia happened in two separate waves expanding from ∼1987 and 1996, respectively. Both waves first reached North America, and from there spread to Europe and Oceania, with multiple secondary reintroductions to Asia. The ancestor of the second wave acquired the penA 34.001 allele, which significantly reduces susceptibility to ESCs. Our results suggest that the acquisition of this allele granted the second wave a fitness advantage at a time when ESCs became the key drug class used to treat gonorrhea. Following its establishment globally, the lineage has served as a reservoir for the repeated emergence of clones fully resistant to the ESC ceftriaxone, an essential drug for effective treatment of gonorrhea. We infer that the effective population sizes of both clades went into decline as treatment schemes shifted from fluoroquinolones via ESC monotherapy to dual therapy with ceftriaxone and azithromycin in Europe and the United States. Despite the inferred recent population size decline, the short evolutionary path from the penA 34.001 allele to alleles providing full ceftriaxone resistance is a cause of concern.
Collapse
Affiliation(s)
- Magnus N Osnes
- Division of Infectious Disease Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Biostatistics, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Lucy van Dorp
- UCL Genetics Institute, University College London, London, United Kingdom
| | - Ola B Brynildsrud
- Division of Infectious Disease Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Kristian Alfsnes
- Division of Infectious Disease Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Thamarai Schneiders
- Division of Infection Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Kate E Templeton
- Department of Laboratory Medicine, Royal Infirmary of Edinburgh, NHS Lothian, Edinburgh, United Kingdom
| | - Koji Yahara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Francois Balloux
- UCL Genetics Institute, University College London, London, United Kingdom
| | - Dominique A Caugant
- Division of Infectious Disease Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Vegard Eldholm
- Division of Infectious Disease Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
16
|
Yahara K, Ma KC, Mortimer TD, Shimuta K, Nakayama SI, Hirabayashi A, Suzuki M, Jinnai M, Ohya H, Kuroki T, Watanabe Y, Yasuda M, Deguchi T, Eldholm V, Harrison OB, Maiden MCJ, Grad YH, Ohnishi M. Emergence and evolution of antimicrobial resistance genes and mutations in Neisseria gonorrhoeae. Genome Med 2021; 13:51. [PMID: 33785063 PMCID: PMC8008663 DOI: 10.1186/s13073-021-00860-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/24/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Antimicrobial resistance in Neisseria gonorrhoeae is a global health concern. Strains from two internationally circulating sequence types, ST-7363 and ST-1901, have acquired resistance to third-generation cephalosporins, mainly due to mosaic penA alleles. These two STs were first detected in Japan; however, the timeline, mechanism, and process of emergence and spread of these mosaic penA alleles to other countries remain unknown. METHODS We studied the evolution of penA alleles by obtaining the complete genomes from three Japanese ST-1901 clinical isolates harboring mosaic penA allele 34 (penA-34) dating from 2005 and generating a phylogenetic representation of 1075 strains sampled from 35 countries. We also sequenced the genomes of 103 Japanese ST-7363 N. gonorrhoeae isolates from 1996 to 2005 and reconstructed a phylogeny including 88 previously sequenced genomes. RESULTS Based on an estimate of the time-of-emergence of ST-1901 (harboring mosaic penA-34) and ST-7363 (harboring mosaic penA-10), and > 300 additional genome sequences of Japanese strains representing multiple STs isolated in 1996-2015, we suggest that penA-34 in ST-1901 was generated from penA-10 via recombination with another Neisseria species, followed by recombination with a gonococcal strain harboring wildtype penA-1. Following the acquisition of penA-10 in ST-7363, a dominant sub-lineage rapidly acquired fluoroquinolone resistance mutations at GyrA 95 and ParC 87-88, by independent mutations rather than horizontal gene transfer. Data in the literature suggest that the emergence of these resistance determinants may reflect selection from the standard treatment regimens in Japan at that time. CONCLUSIONS Our findings highlight how antibiotic use and recombination across and within Neisseria species intersect in driving the emergence and spread of drug-resistant gonorrhea.
Collapse
Affiliation(s)
- Koji Yahara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan.
| | - Kevin C Ma
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Tatum D Mortimer
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Ken Shimuta
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shu-Ichi Nakayama
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Aki Hirabayashi
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masato Suzuki
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Michio Jinnai
- Department of Microbiology, Kanagawa Prefectural Institute of Public Health, Chigasaki, Kanagawa, Japan
| | - Hitomi Ohya
- Department of Microbiology, Kanagawa Prefectural Institute of Public Health, Chigasaki, Kanagawa, Japan
| | - Toshiro Kuroki
- Department of Microbiology, Kanagawa Prefectural Institute of Public Health, Chigasaki, Kanagawa, Japan
- Present address: Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime, 794-8555, Japan
| | - Yuko Watanabe
- Department of Microbiology, Kanagawa Prefectural Institute of Public Health, Chigasaki, Kanagawa, Japan
| | - Mitsuru Yasuda
- Center for Nutrition Support and Infection Control, Gifu University Hospital, Gifu, Japan
| | - Takashi Deguchi
- Department of Urology, Kizawa Memorial Hospital, Gifu, Japan
| | - Vegard Eldholm
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | | | | | - Yonatan H Grad
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan.
| |
Collapse
|
17
|
Pinto M, Borges V, Isidro J, Rodrigues JC, Vieira L, Borrego MJ, Gomes JP. Neisseria gonorrhoeae clustering to reveal major European whole-genome-sequencing-based genogroups in association with antimicrobial resistance. Microb Genom 2021; 7:000481. [PMID: 33245688 PMCID: PMC8208699 DOI: 10.1099/mgen.0.000481] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/04/2020] [Indexed: 12/21/2022] Open
Abstract
Neisseria gonorrhoeae, the bacterium responsible for the sexually transmitted disease gonorrhoea, has shown an extraordinary ability to develop antimicrobial resistance (AMR) to multiple classes of antimicrobials. With no available vaccine, managing N. gonorrhoeae infections demands effective preventive measures, antibiotic treatment and epidemiological surveillance. The latter two are progressively being supported by the generation of whole-genome sequencing (WGS) data on behalf of national and international surveillance programmes. In this context, this study aims to perform N. gonorrhoeae clustering into genogroups based on WGS data, for enhanced prospective laboratory surveillance. Particularly, it aims to identify the major circulating WGS-genogroups in Europe and to establish a relationship between these and AMR. Ultimately, it enriches public databases by contributing with WGS data from Portuguese isolates spanning 15 years of surveillance. A total of 3791 carefully inspected N. gonorrhoeae genomes from isolates collected across Europe were analysed using a gene-by-gene approach (i.e. using cgMLST). Analysis of cluster composition and stability allowed the classification of isolates into a two-step hierarchical genogroup level determined by two allelic distance thresholds revealing cluster stability. Genogroup clustering in general agreed with available N. gonorrhoeae typing methods [i.e. MLST (multilocus sequence typing), NG-MAST (N. gonorrhoeae multi-antigen sequence typing) and PubMLST core-genome groups], highlighting the predominant genogroups circulating in Europe, and revealed that the vast majority of the genogroups present a dominant AMR profile. Additionally, a non-static gene-by-gene approach combined with a more discriminatory threshold for potential epidemiological linkage enabled us to match data with previous reports on outbreaks or transmission chains. In conclusion, this genogroup assignment allows a comprehensive analysis of N. gonorrhoeae genetic diversity and the identification of the WGS-based genogroups circulating in Europe, while facilitating the assessment (and continuous monitoring) of their frequency, geographical dispersion and potential association with specific AMR signatures. This strategy may benefit public-health actions through the prioritization of genogroups to be controlled, the identification of emerging resistance carriage, and the potential facilitation of data sharing and communication.
Collapse
Affiliation(s)
- Miguel Pinto
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, 1649-016 Lisbon, Portugal
| | - Vítor Borges
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, 1649-016 Lisbon, Portugal
| | - Joana Isidro
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, 1649-016 Lisbon, Portugal
| | - João Carlos Rodrigues
- Laboratory of Microbiology, Department of Infectious Diseases, National Institute of Health, 1649-016 Lisbon, Portugal
| | - Luís Vieira
- Technology and Innovation Unit, Department of Human Genetics, National Institute of Health, Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, Nova Medical School/Faculty of Medical Sciences, New University of Lisbon, Lisbon, Portugal
| | - Maria José Borrego
- Reference Laboratory of Bacterial Sexually Transmitted Infections, Department of Infectious Diseases, National Institute of Health, 1649-016 Lisbon, Portugal
| | - João Paulo Gomes
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, 1649-016 Lisbon, Portugal
| |
Collapse
|
18
|
Osnes MN, Didelot X, de Korne-Elenbaas J, Alfsnes K, Brynildsrud OB, Syversen G, Nilsen ØJ, De Blasio BF, Caugant DA, Eldholm V. Sudden emergence of a Neisseria gonorrhoeae clade with reduced susceptibility to extended-spectrum cephalosporins, Norway. Microb Genom 2020; 6:mgen000480. [PMID: 33200978 PMCID: PMC8116678 DOI: 10.1099/mgen.0.000480] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 11/02/2020] [Indexed: 01/01/2023] Open
Abstract
Neisseria gonorrhoeae multilocus sequence type (ST)-7827 emerged in a dramatic fashion in Norway in the period 2016-2018. Here, we aim to shed light on the provenance and expansion of this ST. ST-7827 was found to be polyphyletic, but the majority of members belonged to a monophyletic clade we termed PopPUNK cluster 7827 (PC-7827). In Norway, both PC-7827 and ST-7827 isolates were almost exclusively isolated from men. Phylogeographical analyses demonstrated an Asian origin of the genogroup, with multiple inferred exports to Europe and the USA. The genogroup was uniformly resistant to fluoroquinolones, and associated with reduced susceptibility to both azithromycin and the extended-spectrum cephalosporins (ESCs) cefixime and ceftriaxone. From a genetic background including the penA allele 13.001, associated with reduced ESC susceptibility, we identified repeated events of acquisition of porB alleles associated with further reduction in ceftriaxone susceptibility. Transmission of the strain was significantly reduced in Norway in 2019, but our results indicate the existence of a recently established global reservoir. The worrisome drug-resistance profile and rapid emergence of PC-7827 calls for close monitoring of the situation.
Collapse
Affiliation(s)
- Magnus N. Osnes
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Xavier Didelot
- School of Life Sciences and Department of Statistics, University of Warwick, Coventry, UK
| | | | - Kristian Alfsnes
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ola B. Brynildsrud
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Gaute Syversen
- Department of Microbiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Øivind Jul Nilsen
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Birgitte Freiesleben De Blasio
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Oslo Centre for Biostatistics and Epidemiology, Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Dominique A. Caugant
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Community Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- AMR Centre, Norwegian Institute of Public Health, Oslo, Norway
| | - Vegard Eldholm
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- AMR Centre, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
19
|
Harrison OB, Cehovin A, Skett J, Jolley KA, Massari P, Genco CA, Tang CM, Maiden MCJ. Neisseria gonorrhoeae Population Genomics: Use of the Gonococcal Core Genome to Improve Surveillance of Antimicrobial Resistance. J Infect Dis 2020; 222:1816-1825. [PMID: 32163580 PMCID: PMC7653085 DOI: 10.1093/infdis/jiaa002] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/07/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Gonorrhea, caused by the bacterium Neisseria gonorrhoeae, is a globally prevalent sexually transmitted infection. The dynamics of gonococcal population biology have been poorly defined due to a lack of resolution in strain typing methods. METHODS In this study, we assess how the core genome can be used to improve our understanding of gonococcal population structure compared with current typing schemes. RESULTS A total of 1668 loci were identified as core to the gonococcal genome. These were organized into a core genome multilocus sequence typing scheme (N gonorrhoeae cgMLST v1.0). A clustering algorithm using a threshold of 400 allelic differences between isolates resolved gonococci into discrete and stable core genome groups, some of which persisted for multiple decades. These groups were associated with antimicrobial genotypes and non-overlapping NG-STAR and NG-MAST sequence types. The MLST-STs were more widely distributed among core genome groups. CONCLUSIONS Clustering with cgMLST identified globally distributed, persistent, gonococcal lineages improving understanding of the population biology of gonococci and revealing its population structure. These findings have implications for the emergence of antimicrobial resistance in gonococci and how this is associated with lineages, some of which are more predisposed to developing antimicrobial resistance than others.
Collapse
Affiliation(s)
- Odile B Harrison
- Department of Zoology, The Peter Medawar Building for Pathogen Research, South Parks Road, University of Oxford, Oxford, United Kingdom
| | - Ana Cehovin
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Jessica Skett
- Department of Zoology, The Peter Medawar Building for Pathogen Research, South Parks Road, University of Oxford, Oxford, United Kingdom
| | - Keith A Jolley
- Department of Zoology, The Peter Medawar Building for Pathogen Research, South Parks Road, University of Oxford, Oxford, United Kingdom
| | - Paola Massari
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Caroline Attardo Genco
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Christoph M Tang
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Martin C J Maiden
- Department of Zoology, The Peter Medawar Building for Pathogen Research, South Parks Road, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
20
|
Dong Y, Yang Y, Wang Y, Martin I, Demczuk W, Gu W. Shanghai Neisseria gonorrhoeae Isolates Exhibit Resistance to Extended-Spectrum Cephalosporins and Clonal Distribution. Front Microbiol 2020; 11:580399. [PMID: 33123111 PMCID: PMC7573285 DOI: 10.3389/fmicb.2020.580399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022] Open
Abstract
The emergence of Neisseria gonorrhoeae strains with resistance (R) to extended-spectrum cephalosporins (ESCsR) represents a public health threat of untreatable gonococcal infections. This study was designed to determine the prevalence and molecular mechanisms of ESCR of Shanghai N. gonorrhoeae isolates. A total of 366 N. gonorrhoeae isolates were collected in 2017 in Shanghai. Susceptibility to ceftriaxone (CRO), cefixime (CFM), azithromycin (AZM), ciprofloxacin (CIP), spectinomycin, penicillin, and tetracycline was determined using the agar dilution method. A subset of 124 isolates was subjected to phylogenetic analysis for nine antimicrobial resistance-associated genes, i.e., penA, porB, ponA, mtrR, 23S rRNA, gyrA, parC, 16S rRNA, and rpsE. Approximately 20.0% of the isolates exhibited CFMR [minimum inhibitory concentration (MIC) >0.125 mg/L], and 5.5% were CROR (MIC > 0.125 mg/L). In total, 72.7% of ESCR isolates were clonal and associated with mosaic penA 10 and 60 alleles. Non-mosaic penA 18 allele and substitutions of PenA A501T, G542S, and PorB1b G213S/Y were observed in non-clonal ESCR. Approximately 6.8% of the isolates showed AZM MIC above the epidemiological cutoff (ECOFF, 1 mg/L), were associated with 23S rRNA A2059G mutation, and did not exhibit clonal distribution. Almost all isolates were CIPR (resistance to ciprofloxacin) and associated with GyrA-91/92 and ParC-85/86/87/88/89/91 alterations. Isolates with ParC S88P substitution were clustered into the ESCR clade. The Shanghai isolates exhibited a high level of ESCR and distinct resistant patterns.
Collapse
Affiliation(s)
- Yuan Dong
- Shanghai Skin Disease Hospital, Shanghai, China.,Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Yang Yang
- Shanghai Skin Disease Hospital, Shanghai, China
| | - Ying Wang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Irene Martin
- Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, MB, Canada
| | - Walter Demczuk
- Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, MB, Canada
| | - Weiming Gu
- Shanghai Skin Disease Hospital, Shanghai, China
| |
Collapse
|
21
|
Ma KC, Mortimer TD, Duckett MA, Hicks AL, Wheeler NE, Sánchez-Busó L, Grad YH. Increased power from conditional bacterial genome-wide association identifies macrolide resistance mutations in Neisseria gonorrhoeae. Nat Commun 2020; 11:5374. [PMID: 33097713 PMCID: PMC7584619 DOI: 10.1038/s41467-020-19250-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 10/02/2020] [Indexed: 12/21/2022] Open
Abstract
The emergence of resistance to azithromycin complicates treatment of Neisseria gonorrhoeae, the etiologic agent of gonorrhea. Substantial azithromycin resistance remains unexplained after accounting for known resistance mutations. Bacterial genome-wide association studies (GWAS) can identify novel resistance genes but must control for genetic confounders while maintaining power. Here, we show that compared to single-locus GWAS, conducting GWAS conditioned on known resistance mutations reduces the number of false positives and identifies a G70D mutation in the RplD 50S ribosomal protein L4 as significantly associated with increased azithromycin resistance (p-value = 1.08 × 10-11). We experimentally confirm our GWAS results and demonstrate that RplD G70D and other macrolide binding site mutations are prevalent (present in 5.42% of 4850 isolates) and widespread (identified in 21/65 countries across two decades). Overall, our findings demonstrate the utility of conditional associations for improving the performance of microbial GWAS and advance our understanding of the genetic basis of macrolide resistance.
Collapse
Affiliation(s)
- Kevin C Ma
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Tatum D Mortimer
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Marissa A Duckett
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Allison L Hicks
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Nicole E Wheeler
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Leonor Sánchez-Busó
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Yonatan H Grad
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Division of Infectious Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
22
|
Ma KC, Mortimer TD, Hicks AL, Wheeler NE, Sánchez-Busó L, Golparian D, Taiaroa G, Rubin DHF, Wang Y, Williamson DA, Unemo M, Harris SR, Grad YH. Adaptation to the cervical environment is associated with increased antibiotic susceptibility in Neisseria gonorrhoeae. Nat Commun 2020; 11:4126. [PMID: 32807804 PMCID: PMC7431566 DOI: 10.1038/s41467-020-17980-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 07/24/2020] [Indexed: 01/01/2023] Open
Abstract
Neisseria gonorrhoeae is an urgent public health threat due to rapidly increasing incidence and antibiotic resistance. In contrast with the trend of increasing resistance, clinical isolates that have reverted to susceptibility regularly appear, prompting questions about which pressures compete with antibiotics to shape gonococcal evolution. Here, we used genome-wide association to identify loss-of-function (LOF) mutations in the efflux pump mtrCDE operon as a mechanism of increased antibiotic susceptibility and demonstrate that these mutations are overrepresented in cervical relative to urethral isolates. This enrichment holds true for LOF mutations in another efflux pump, farAB, and in urogenitally-adapted versus typical N. meningitidis, providing evidence for a model in which expression of these pumps in the female urogenital tract incurs a fitness cost for pathogenic Neisseria. Overall, our findings highlight the impact of integrating microbial population genomics with host metadata and demonstrate how host environmental pressures can lead to increased antibiotic susceptibility.
Collapse
Affiliation(s)
- Kevin C Ma
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Tatum D Mortimer
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Allison L Hicks
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Nicole E Wheeler
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Leonor Sánchez-Busó
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Daniel Golparian
- WHO Collaborating Centre for Gonorrhoea and other STIs, Swedish Reference Laboratory for STIs, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - George Taiaroa
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Daniel H F Rubin
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yi Wang
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Deborah A Williamson
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Magnus Unemo
- WHO Collaborating Centre for Gonorrhoea and other STIs, Swedish Reference Laboratory for STIs, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Simon R Harris
- Microbiotica Ltd, Biodata Innovation Centre, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Yonatan H Grad
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Division of Infectious Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
23
|
Eyre DW, Town K, Street T, Barker L, Sanderson N, Cole MJ, Mohammed H, Pitt R, Gobin M, Irish C, Gardiner D, Sedgwick J, Beck C, Saunders J, Turbitt D, Cook C, Phin N, Nathan B, Horner P, Fifer H. Detection in the United Kingdom of the Neisseria gonorrhoeae FC428 clone, with ceftriaxone resistance and intermediate resistance to azithromycin, October to December 2018. ACTA ACUST UNITED AC 2020; 24. [PMID: 30862336 PMCID: PMC6415501 DOI: 10.2807/1560-7917.es.2019.24.10.1900147] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We describe detection in the United Kingdom (UK) of the drug-resistant Neisseria gonorrhoeae FC428 clone, with ceftriaxone resistance and intermediate azithromycin resistance. Two female patients developed infection following contact with UK-resident men from the same sexual network linked to travel to Ibiza, Spain. One case failed treatment with ceftriaxone, and azithromycin and gentamicin, before successful treatment with ertapenem. Both isolates had indistinguishable whole-genome sequences. Urgent action is essential to contain this drug-resistant strain.
Collapse
Affiliation(s)
- David W Eyre
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,Big Data Institute, University of Oxford, Oxford, United Kingdom
| | - Katy Town
- National Incident Management Team, Public Health England, London, United Kingdom
| | - Teresa Street
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Leanne Barker
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicholas Sanderson
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Michelle J Cole
- National Incident Management Team, Public Health England, London, United Kingdom
| | - Hamish Mohammed
- National Incident Management Team, Public Health England, London, United Kingdom
| | - Rachel Pitt
- National Incident Management Team, Public Health England, London, United Kingdom
| | - Maya Gobin
- National Incident Management Team, Public Health England, London, United Kingdom
| | - Charles Irish
- National Incident Management Team, Public Health England, London, United Kingdom
| | - Daniel Gardiner
- National Incident Management Team, Public Health England, London, United Kingdom
| | - James Sedgwick
- National Incident Management Team, Public Health England, London, United Kingdom
| | - Charles Beck
- National Incident Management Team, Public Health England, London, United Kingdom
| | - John Saunders
- National Incident Management Team, Public Health England, London, United Kingdom
| | - Deborah Turbitt
- National Incident Management Team, Public Health England, London, United Kingdom
| | - Clare Cook
- National Incident Management Team, Public Health England, London, United Kingdom
| | - Nick Phin
- National Incident Management Team, Public Health England, London, United Kingdom
| | - Bavithra Nathan
- These authors contributed equally to this work.,National Incident Management Team, Public Health England, London, United Kingdom
| | - Paddy Horner
- These authors contributed equally to this work.,Population Health Sciences, University of Bristol, Bristol, United Kingdom.,National Incident Management Team, Public Health England, London, United Kingdom
| | - Helen Fifer
- These authors contributed equally to this work.,National Incident Management Team, Public Health England, London, United Kingdom
| |
Collapse
|
24
|
Hicks AL, Kissler SM, Mortimer TD, Ma KC, Taiaroa G, Ashcroft M, Williamson DA, Lipsitch M, Grad YH. Targeted surveillance strategies for efficient detection of novel antibiotic resistance variants. eLife 2020; 9:e56367. [PMID: 32602459 PMCID: PMC7326491 DOI: 10.7554/elife.56367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/17/2020] [Indexed: 12/14/2022] Open
Abstract
Genotype-based diagnostics for antibiotic resistance represent a promising alternative to empiric therapy, reducing inappropriate antibiotic use. However, because such assays infer resistance based on known genetic markers, their utility will wane with the emergence of novel resistance. Maintenance of these diagnostics will therefore require surveillance to ensure early detection of novel resistance variants, but efficient strategies to do so remain undefined. We evaluate the efficiency of targeted sampling approaches informed by patient and pathogen characteristics in detecting antibiotic resistance and diagnostic escape variants in Neisseria gonorrhoeae, a pathogen associated with a high burden of disease and antibiotic resistance and the development of genotype-based diagnostics. We show that patient characteristic-informed sampling is not a reliable strategy for efficient variant detection. In contrast, sampling informed by pathogen characteristics, such as genomic diversity and genomic background, is significantly more efficient than random sampling in identifying genetic variants associated with resistance and diagnostic escape.
Collapse
Affiliation(s)
- Allison L Hicks
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public HealthBostonUnited States
| | - Stephen M Kissler
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public HealthBostonUnited States
| | - Tatum D Mortimer
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public HealthBostonUnited States
| | - Kevin C Ma
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public HealthBostonUnited States
| | - George Taiaroa
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
| | - Melinda Ashcroft
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
| | - Deborah A Williamson
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
| | - Marc Lipsitch
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public HealthBostonUnited States
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public HealthBostonUnited States
| | - Yonatan H Grad
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public HealthBostonUnited States
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
25
|
Lan PT, Golparian D, Ringlander J, Van Hung L, Van Thuong N, Unemo M. Genomic analysis and antimicrobial resistance of Neisseria gonorrhoeae isolates from Vietnam in 2011 and 2015-16. J Antimicrob Chemother 2020; 75:1432-1438. [PMID: 32068837 PMCID: PMC7382555 DOI: 10.1093/jac/dkaa040] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 01/13/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Antimicrobial resistance (AMR) in Neisseria gonorrhoeae, compromising gonorrhoea treatment, is a threat to reproductive health globally. South-East and East Asia have been major sources of emergence and subsequent international spread of AMR gonococcal strains during recent decades. We investigated gonococcal isolates from 2011 and 2015-16 in Vietnam using AMR testing, WGS and detection of AMR determinants. METHODS Two hundred and twenty-nine gonococcal isolates cultured in 2015-16 (n = 121) and 2011 (n = 108) in Vietnam were examined. AMR testing was performed using Etest and WGS with Illumina MiSeq. RESULTS Resistance among the 2015-16 isolates was as follows: ciprofloxacin, 100%; tetracycline, 79%; benzylpenicillin, 50%; cefixime, 15%; ceftriaxone, 1%; spectinomycin, 0%; and 5% were non-WT to azithromycin. Eighteen (15%) isolates were MDR. The MIC range for gentamicin was 2-8 mg/L. Among the 2015-16 isolates, 27% (n = 33) contained a mosaic penA allele, while no isolates had a mosaic penA allele in 2011. Phylogenomic analysis revealed introduction after 2011 of two mosaic penA-containing clones (penA-10.001 and penA-34.001), which were related to cefixime-resistant strains spreading in Japan and Europe, and a minor clade (eight isolates) relatively similar to the XDR strain WHO Q. CONCLUSIONS From 2011 to 2015-16, resistance in gonococci from Vietnam increased to all currently and previously used antimicrobials except ceftriaxone, spectinomycin and tetracycline. Two mosaic penA-containing clones were introduced after 2011, explaining the increased cefixime resistance. Significantly increased AMR surveillance, antimicrobial stewardship and use of WGS for molecular epidemiology and AMR prediction for gonococcal isolates in Vietnam and other Asian countries are crucial.
Collapse
Affiliation(s)
- Pham Thi Lan
- Hanoi Medical University, National Hospital of Dermatology and Venereology, Hanoi, Vietnam
| | - Daniel Golparian
- WHO Collaborating Centre for Gonorrhoea and Other Sexually Transmitted Infections, Swedish Reference Laboratory for STIs, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Johan Ringlander
- WHO Collaborating Centre for Gonorrhoea and Other Sexually Transmitted Infections, Swedish Reference Laboratory for STIs, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Infectious Diseases at Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Le Van Hung
- Hanoi Medical University, National Hospital of Dermatology and Venereology, Hanoi, Vietnam
| | - Nguyen Van Thuong
- Hanoi Medical University, National Hospital of Dermatology and Venereology, Hanoi, Vietnam
| | - Magnus Unemo
- WHO Collaborating Centre for Gonorrhoea and Other Sexually Transmitted Infections, Swedish Reference Laboratory for STIs, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
26
|
Alfsnes K, Eldholm V, Olsen AO, Brynildsrud OB, Bohlin J, Steinbakk M, Caugant DA. Genomic epidemiology and population structure of Neisseria gonorrhoeae in Norway, 2016-2017. Microb Genom 2020; 6:e000359. [PMID: 32213251 PMCID: PMC7276708 DOI: 10.1099/mgen.0.000359] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/09/2020] [Indexed: 12/17/2022] Open
Abstract
This study presents the nationwide epidemiology of Neisseria gonorrhoeae, using whole-genome sequencing of all culture-positive cases, which comprise roughly 40 % of all cases of gonorrhea reported in Norway from 2016 to 2017. Isolates were assigned to sequence types and Bayesian analysis clusters and variation in genes coding for antibiotic resistance was linked to phenotypic resistance data. The study also included isolates taken from the same patients from different anatomical sites at one or more time points. Comparing these isolates allows for observation of patterns of infections, i.e. multiple reinfections of genetically related clones vs. reinfections of genetically distant clones, and quantification of the genomic variation of closely related isolates from samples taken from a patient within the same day. Demographically, the patients in the study could be split into two groups; one group of patients from the capital with a high proportion of men who have sex with men (MSM), and another consisting of young adults with transmission primarily between males and females from outside the capital. Some clusters of N. gonorrhoeae were restricted to one of these two demographic groups. Pairwise comparison of multiple isolates from the same patients revealed that most were reinfected with different clones. Observations of frequent reinfections in patients is a concern and should be taken into account in the development of improved information and treatment guidelines.
Collapse
Affiliation(s)
- Kristian Alfsnes
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Vegard Eldholm
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Anne Olaug Olsen
- National Advisory Unit for Sexually Transmitted Infections, Oslo, Norway
- Institute for Health and Society, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ola Brønstad Brynildsrud
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Jon Bohlin
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Martin Steinbakk
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Østfold Hospital Trust, Center for Laboratory Medicine, Grålum, Norway
| | - Dominique A. Caugant
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Institute for Health and Society, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
27
|
Dong HV, Pham LQ, Nguyen HT, Nguyen MXB, Nguyen TV, May F, Le GM, Klausner JD. Decreased Cephalosporin Susceptibility of Oropharyngeal Neisseria Species in Antibiotic-using Men Who Have Sex With Men in Hanoi, Vietnam. Clin Infect Dis 2020; 70:1169-1175. [PMID: 31049592 PMCID: PMC7319061 DOI: 10.1093/cid/ciz365] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 04/30/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Neisseria gonorrhoeae (NG) infections are a global health burden. NG resistance to cephalosporins, which is increasingly reported, is an imminent threat to public health. Many hypothesize that commensal Neisseria species are an important reservoir for genetic material conferring antimicrobial resistance in NG; however, clinical data are lacking. METHODS Men who have sex with men (MSM) in Hanoi, Vietnam, completed a questionnaire regarding antibiotic use. We collected pharyngeal specimens, cultured Neisseria species, and measured minimum inhibitory concentrations (MICs) to ciprofloxacin, cefixime, ceftriaxone, and cefpodoxime. Using MIC criteria for antimicrobial susceptibility in NG, we categorized the Neisseria species and compared mean MIC levels between different antibiotic user groups. RESULTS Of 207 participants, 38% used at least 1 antibiotic in the past 6 months; 52% without a prescription. A median of 1 Neisseria species was cultured from each participant (range, 1-4) with 10 different Neisseria species identified overall. The proportion of Neisseria with reduced susceptibility to ciprofloxacin was 93%, cefpodoxime 84%, cefixime 31%, and ceftriaxone 28%. Antibiotic use within the past month was strongly associated with Neisseria species having increased MICs to cefixime, ceftriaxone, and cefpodoxime (mean MIC ratios of 6.27, 4.11, and 7.70, respectively), compared with those who used antibiotics between 1 and 6 months prior (P < .05, all comparisons). CONCLUSIONS MSM in our study often used antibiotics without a prescription. At least 1 commensal Neisseria species colonized all men. Recent use of any antibiotics may select for oropharyngeal Neisseria species with antimicrobial resistance. The normal flora of the oropharynx may be an important source of antimicrobial resistance in Neisseria gonorrhoeae.
Collapse
Affiliation(s)
- Huan V Dong
- Charles R. Drew University of Medicine and Sciences
- Department of Medicine, David Geffen School of Medicine
| | - Loc Q Pham
- Fielding School of Public Health, University of California, Los Angeles
- Center for Research and Training on Substance Abuse–HIV, Hanoi Medical University
| | - Hoa T Nguyen
- Department of Microbiology, National Hospital for Tropical Diseases, Hanoi, Vietnam
| | - Minh X B Nguyen
- Center for Research and Training on Substance Abuse–HIV, Hanoi Medical University
- Department of Health Behavior, University of North Carolina at Chapel Hill
| | - Trung V Nguyen
- Department of Microbiology, National Hospital for Tropical Diseases, Hanoi, Vietnam
- Department of Microbiology, Hanoi Medical University, Vietnam
| | - Folasade May
- Department of Medicine, David Geffen School of Medicine
| | - Giang M Le
- Center for Research and Training on Substance Abuse–HIV, Hanoi Medical University
| | - Jeffrey D Klausner
- Department of Medicine, David Geffen School of Medicine
- Fielding School of Public Health, University of California, Los Angeles
| |
Collapse
|
28
|
Goig GA, Blanco S, Garcia-Basteiro AL, Comas I. Contaminant DNA in bacterial sequencing experiments is a major source of false genetic variability. BMC Biol 2020; 18:24. [PMID: 32122347 PMCID: PMC7053099 DOI: 10.1186/s12915-020-0748-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 02/11/2020] [Indexed: 12/16/2022] Open
Abstract
Background Contaminant DNA is a well-known confounding factor in molecular biology and in genomic repositories. Strikingly, analysis workflows for whole-genome sequencing (WGS) data commonly do not account for errors potentially introduced by contamination, which could lead to the wrong assessment of allele frequency both in basic and clinical research. Results We used a taxonomic filter to remove contaminant reads from more than 4000 bacterial samples from 20 different studies and performed a comprehensive evaluation of the extent and impact of contaminant DNA in WGS. We found that contamination is pervasive and can introduce large biases in variant analysis. We showed that these biases can result in hundreds of false positive and negative SNPs, even for samples with slight contamination. Studies investigating complex biological traits from sequencing data can be completely biased if contamination is neglected during the bioinformatic analysis, and we demonstrate that removing contaminant reads with a taxonomic classifier permits more accurate variant calling. We used both real and simulated data to evaluate and implement reliable, contamination-aware analysis pipelines. Conclusion As sequencing technologies consolidate as precision tools that are increasingly adopted in the research and clinical context, our results urge for the implementation of contamination-aware analysis pipelines. Taxonomic classifiers are a powerful tool to implement such pipelines.
Collapse
Affiliation(s)
- Galo A Goig
- Institute of Biomedicine of Valencia, IBV-CSIC, St. Jaume Roig 11, 46010, Valencia, Spain.
| | - Silvia Blanco
- Centro de Investigaçao em Saúde de Manhiça (CISM), Bairro Cambeve, Rua 12, Distrito da Manhiça, 1929, Maputo, Mozambique
| | - Alberto L Garcia-Basteiro
- Centro de Investigaçao em Saúde de Manhiça (CISM), Bairro Cambeve, Rua 12, Distrito da Manhiça, 1929, Maputo, Mozambique.,ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Iñaki Comas
- Institute of Biomedicine of Valencia, IBV-CSIC, St. Jaume Roig 11, 46010, Valencia, Spain.,CIBER in Epidemiology and Public Health, Madrid, Spain
| |
Collapse
|
29
|
Shimuta K, Nakayama SI, Takahashi H, Ohnishi M. A Loop-Mediated Isothermal Amplification Assay Targeting Neisseria gonorrhoeae penA-60.001. Antimicrob Agents Chemother 2019; 64:e01663-19. [PMID: 31658968 PMCID: PMC7187580 DOI: 10.1128/aac.01663-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/19/2019] [Indexed: 11/20/2022] Open
Abstract
Ceftriaxone (CRO) is widely used as the first-line treatment for gonococcal infections. However, CRO-resistant Neisseria gonorrhoeae strains carrying mosaic penA-60.001 have emerged recently and disseminated worldwide. To meet the urgent need to detect these strains, we report here a loop-mediated isothermal amplification (LAMP) assay system that targets N. gonorrhoeaepenA-60.001. This assay system can differentiate N. gonorrhoeae strains carrying mosaic penA-60.001 from strains carrying other penA alleles.
Collapse
Affiliation(s)
- Ken Shimuta
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shu-Ichi Nakayama
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideyuki Takahashi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
30
|
Hicks AL, Wheeler N, Sánchez-Busó L, Rakeman JL, Harris SR, Grad YH. Evaluation of parameters affecting performance and reliability of machine learning-based antibiotic susceptibility testing from whole genome sequencing data. PLoS Comput Biol 2019; 15:e1007349. [PMID: 31479500 PMCID: PMC6743791 DOI: 10.1371/journal.pcbi.1007349] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 09/13/2019] [Accepted: 08/21/2019] [Indexed: 12/20/2022] Open
Abstract
Prediction of antibiotic resistance phenotypes from whole genome sequencing data by machine learning methods has been proposed as a promising platform for the development of sequence-based diagnostics. However, there has been no systematic evaluation of factors that may influence performance of such models, how they might apply to and vary across clinical populations, and what the implications might be in the clinical setting. Here, we performed a meta-analysis of seven large Neisseria gonorrhoeae datasets, as well as Klebsiella pneumoniae and Acinetobacter baumannii datasets, with whole genome sequence data and antibiotic susceptibility phenotypes using set covering machine classification, random forest classification, and random forest regression models to predict resistance phenotypes from genotype. We demonstrate how model performance varies by drug, dataset, resistance metric, and species, reflecting the complexities of generating clinically relevant conclusions from machine learning-derived models. Our findings underscore the importance of incorporating relevant biological and epidemiological knowledge into model design and assessment and suggest that doing so can inform tailored modeling for individual drugs, pathogens, and clinical populations. We further suggest that continued comprehensive sampling and incorporation of up-to-date whole genome sequence data, resistance phenotypes, and treatment outcome data into model training will be crucial to the clinical utility and sustainability of machine learning-based molecular diagnostics.
Collapse
Affiliation(s)
- Allison L. Hicks
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
- * E-mail: (ALH); (YHG)
| | - Nicole Wheeler
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Leonor Sánchez-Busó
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jennifer L. Rakeman
- Public Health Laboratory, Division of Disease Control, New York City Department of Health and Mental Hygiene, New York, New York, United States of America
| | - Simon R. Harris
- Microbiotica Ltd, Biodata Innovation Centre, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Yonatan H. Grad
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (ALH); (YHG)
| |
Collapse
|