1
|
White RT, Balm M, Burton M, Hutton S, Jeram J, Kelly M, Macartney-Coxson D, Sinha T, Sushames H, Winter DJ, Bloomfield MG. The rapid detection of a neonatal unit outbreak of a wild-type Klebsiella variicola using decentralized Oxford Nanopore sequencing. Antimicrob Resist Infect Control 2025; 14:6. [PMID: 39920743 PMCID: PMC11806699 DOI: 10.1186/s13756-025-01529-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/28/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Klebsiella variicola has been implicated in neonatal intensive care unit (NICU) outbreaks previously and can be misidentified as Klebsiella pneumoniae. An increased incidence of K. pneumoniae bacteremia on the NICU of our institution was notified to the infection prevention and control (IPC) team in May 2024. The four isolates involved displayed wild-type susceptibility, so had not been detected via multidrug-resistant organism surveillance. This triggered investigation with a nanopore-based decentralized whole-genome sequencing (dWGS) system in operation at our laboratory. METHODS Since early 2022, the hospital laboratory at Wellington Regional Hospital has been performing dWGS using the Oxford Nanopore MinION device. This allows for prospective genomic surveillance of certain hospital-associated organisms, but also rapid reactive investigation of possible outbreaks. Isolates are sequenced in the hospital laboratory and undergo multilocus sequence typing (MLST). If transmission events are suspected, sequence data are transferred to the reference laboratory, the Institute for Environmental Science and Research (ESR) for high-resolution bioinformatic analysis. RESULTS Within 48 h of notification isolates had been subcultured and sequenced. This showed that three of four isolates were in fact K. variicola, and two of these were sequence type (ST)6385. This sequence type had not been seen previously at our institution, so transmission was suspected. Environmental sampling revealed K. variicola ST6385 in two sink traps on the unit, and prospective sequencing of all K. pneumoniae isolates from NICU samples revealed two further infants with K. variicola ST6385. Subsequent phylogenetic analysis at ESR using original sequence data showed tight clustering of these isolates, confirming an outbreak. Sink traps were disinfected, environmental cleaning procedures were updated, and a strict focus on hand hygiene was reinforced on the ward. No further isolates were detected, and the outbreak was closed after two months. CONCLUSIONS Access to dWGS at the level of the local hospital laboratory permitted rapid identification of an outbreak of an organism displaying no unusual antimicrobial resistance features at a point where there were only two known cases. This in turn facilitated a rapid IPC response.
Collapse
Affiliation(s)
- Rhys T White
- Health Group, Institute of Environmental Science and Research, Porirua, 5022, New Zealand.
| | - Michelle Balm
- Department of Microbiology and Molecular Pathology, Awanui Labs Wellington, Wellington, 6021, New Zealand
- Infection Prevention and Control, Te Whatu Ora/Health New Zealand, Capital, Coast & Hutt Valley, Capital, Wellington, 6021, New Zealand
| | - Megan Burton
- Department of Microbiology and Molecular Pathology, Awanui Labs Wellington, Wellington, 6021, New Zealand
| | - Samantha Hutton
- Department of Microbiology and Molecular Pathology, Awanui Labs Wellington, Wellington, 6021, New Zealand
| | - Jamaal Jeram
- Department of Microbiology and Molecular Pathology, Awanui Labs Wellington, Wellington, 6021, New Zealand
| | - Matthew Kelly
- Infection Prevention and Control, Te Whatu Ora/Health New Zealand, Capital, Coast & Hutt Valley, Capital, Wellington, 6021, New Zealand
| | - Donia Macartney-Coxson
- Health Group, Institute of Environmental Science and Research, Porirua, 5022, New Zealand
| | - Tanya Sinha
- Department of Microbiology and Molecular Pathology, Awanui Labs Wellington, Wellington, 6021, New Zealand
| | - Henrietta Sushames
- Infection Prevention and Control, Te Whatu Ora/Health New Zealand, Capital, Coast & Hutt Valley, Capital, Wellington, 6021, New Zealand
| | - David J Winter
- Health Group, Institute of Environmental Science and Research, Porirua, 5022, New Zealand
| | - Maxim G Bloomfield
- Department of Microbiology and Molecular Pathology, Awanui Labs Wellington, Wellington, 6021, New Zealand
- Infection Prevention and Control, Te Whatu Ora/Health New Zealand, Capital, Coast & Hutt Valley, Capital, Wellington, 6021, New Zealand
| |
Collapse
|
2
|
Waller ME, Gutierrez A, Ticer TD, Glover JS, Baatz JE, Wagner CL, Engevik MA, Chetta KE. Profiling the response of individual gut microbes to free fatty acids (FFAs) found in human milk. J Funct Foods 2025; 125:106664. [PMID: 40051690 PMCID: PMC11884519 DOI: 10.1016/j.jff.2025.106664] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025] Open
Abstract
Preterm infants have an immature intestinal environment featuring microbial dysbiosis. Human milk can improve the composition of the neonatal gut microbiome by supporting commensal species. Milk free fatty acids (FFAs) provide nutritional energy, participate in endogenous signaling, and exert antimicrobial effects. This study examined the growth of individual commensal and pathobiont microbes in response to unesterified unsaturated FFAs found in milk: oleic, linoleic, arachidonic, and docosahexaenoic acid. Select species of commensal and pathobiont genera (Bifidobacterium, Lactobacillus, Streptococcus, Staphylococcus, Enterococcus, Acinetobacter, Pseudomonas, Escherichia, and Klebsiella) were cultured with FFAs. The growth of all commensals, except for L. johnsonii, was significantly inhibited by the highest concentration (1 %) of all FFAs. L. johnsonii was only inhibited by arachidonic acid. In contrast, suppression of pathobionts in response to FFAs was less pronounced. Higher concentrations (0.1 %, 1 %) of docosahexaenoic acid significantly inhibited the growth of five of eight pathobionts. Meanwhile, for oleic, linoleic, and arachidonic acid, only two of eight pathobionts were significantly affected. Intriguingly, the effects for these FFAs were highly complex. For example, S. agalactiae growth was enhanced with 1 % oleic acid but suppressed at 0.01 %; however, the effects were directionally opposite for linoleic acid, i.e., suppressed at 1 % but enhanced at 0.01 %. Our genome analyses suggest that pathobiont survival may be related to the number of gene copies for fatty acid transporters. Overall, the effect of FFAs was dose-dependent and species-specific, where commensal growth was broadly inhibited while pathobionts were either unaffected or exhibited complex, bi-directional responses.
Collapse
Affiliation(s)
- Megan E. Waller
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, United States
- Department of Pediatrics, C.P. Darby Children’s Research Institute, Medical University of South Carolina, United States
| | - Alyssa Gutierrez
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, United States
| | - Taylor D. Ticer
- Department of Microbiology & Immunology, Medical University of South Carolina, United States
| | - Janiece S. Glover
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, United States
| | - John E. Baatz
- Department of Pediatrics, C.P. Darby Children’s Research Institute, Medical University of South Carolina, United States
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Medical University of South Carolina, Shawn Jenkins Children’s Hospital, 10 McClennan Banks Drive, MSC 915, Charleston, SC 29425, United States
| | - Carol L. Wagner
- Department of Pediatrics, C.P. Darby Children’s Research Institute, Medical University of South Carolina, United States
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Medical University of South Carolina, Shawn Jenkins Children’s Hospital, 10 McClennan Banks Drive, MSC 915, Charleston, SC 29425, United States
| | - Melinda A. Engevik
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, United States
- Department of Microbiology & Immunology, Medical University of South Carolina, United States
| | - Katherine E. Chetta
- Department of Pediatrics, C.P. Darby Children’s Research Institute, Medical University of South Carolina, United States
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Medical University of South Carolina, Shawn Jenkins Children’s Hospital, 10 McClennan Banks Drive, MSC 915, Charleston, SC 29425, United States
| |
Collapse
|
3
|
Song JM, Long HB, Ye M, Yang BR, Wu GJ, He HC, Wang JL, Li HW, Li XG, Deng DY, Li B, Yuan WL. Genomic characterization of a bla KPC-2-producing IncM2 plasmid harboring transposon ΔTn 6296 in Klebsiella michiganensis. Front Cell Infect Microbiol 2024; 14:1492700. [PMID: 39600872 PMCID: PMC11588702 DOI: 10.3389/fcimb.2024.1492700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/09/2024] [Indexed: 11/29/2024] Open
Abstract
Klebsiella michiganensis is an emerging hospital-acquired bacterial pathogen, particularly strains harboring plasmid-mediated carbapenemase genes. Here, we recovered and characterized a multidrug-resistant strain, bla KPC-2-producing Klebsiella michiganensis LS81, which was isolated from the abdominal drainage fluid of a clinical patient in China, and further characterized the co-harboring plasmid. K. michiganensis LS81 tested positive for the bla KPC-2 genes by PCR sequencing, with bla KPC-2 located on a plasmid as confirmed by S1 nuclease pulsed-field gel electrophoresis combined with Southern blotting. In the transconjugants, the bla KPC-2 genes were successfully transferred to the recipient strain E. coli EC600. Whole-genome sequencing and bioinformatics analysis confirmed that this strain belongs to sequence type 196 (ST196), with a complete genome comprising a 5,926,662bp circular chromosome and an 81,451bp IncM2 plasmid encoding bla KPC-2 (designated pLS81-KPC). The IncM2 plasmid carried multiple β-lactamase genes such as bla TEM-1B, bla CTX-M-3, and bla KPC-2 inserted in truncated Tn6296 with the distinctive core structure ISKpn27-bla KPC-2-ISKpn6. A comparison with 46 K. michiganensis genomes available in the NCBI database revealed that the closest phylogenetic relative of K. michiganensis LS81 is a clinical isolate from a wound swab in the United Kingdom. Ultimately, the pan-genomic analysis unveiled a substantial accessory genome within the strain, alongside significant genomic plasticity within the K. michiganensis species, emphasizing the necessity for continuous surveillance of this pathogen in clinical environments.
Collapse
Affiliation(s)
- Jian-Mei Song
- Department of Clinical Laboratory, The Affiliated Hospital of Yunnan University (The Second People’s Hospital of Yunnan Province), Kunming, Yunnan, China
- Department of Clinical Laboratory, Affiliated Qujing Hospital of Kunming Medical University (The First People’s Hospital of Qujing), Qujing, Yunnan, China
| | - Hu-Bo Long
- Department of Clinical Laboratory, The Affiliated Hospital of Yunnan University (The Second People’s Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Mei Ye
- Department of Clinical Laboratory, The Affiliated Hospital of Yunnan University (The Second People’s Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Bao-Rui Yang
- Department of Clinical Laboratory, The Affiliated Hospital of Yunnan University (The Second People’s Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Guang-Juan Wu
- Department of Clinical Laboratory, The Affiliated Hospital of Yunnan University (The Second People’s Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Hong-Chun He
- Department of General Surgery, The Affiliated Hospital of Yunnan University (The Second People’s Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Jun-Ling Wang
- Department of Clinical Laboratory, Affiliated Qujing Hospital of Kunming Medical University (The First People’s Hospital of Qujing), Qujing, Yunnan, China
| | - Hong-Wei Li
- Department of Clinical Laboratory, Affiliated Qujing Hospital of Kunming Medical University (The First People’s Hospital of Qujing), Qujing, Yunnan, China
| | - Xiao-Gang Li
- Department of General Surgery, The Affiliated Hospital of Yunnan University (The Second People’s Hospital of Yunnan Province), Kunming, Yunnan, China
| | - De-Yao Deng
- Department of Clinical Laboratory, The Affiliated Hospital of Yunnan University (The Second People’s Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Bo Li
- Department of General Surgery, The Affiliated Hospital of Yunnan University (The Second People’s Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Wen-Li Yuan
- Department of Clinical Laboratory, The Affiliated Hospital of Yunnan University (The Second People’s Hospital of Yunnan Province), Kunming, Yunnan, China
| |
Collapse
|
4
|
Xu P, Zhang D, Zhuo W, Zhou L, Du Y, Zhang P, Ma L, Wang Y. Characterization of a Highly Virulent Klebsiella michiganensis Strain Isolated from a Preterm Infant with Sepsis. Infect Drug Resist 2024; 17:4973-4983. [PMID: 39539743 PMCID: PMC11559207 DOI: 10.2147/idr.s481750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Purpose Klebsiella michiganensis is an opportunistic pathogen that causes an increasing number of serious infections. This study aimed to investigate the etiology of the severe clinical symptoms of sepsis in preterm infants and the characterization of K. michiganensis isolates. Patients and Methods Whole-genome sequencing (WGS) was performed on three strains isolated from an infected preterm infant. Additionally, the genomic sequences of 534 K. michiganensis strains were obtained from the NCBI database. To gain deeper insights into these strains, we utilized the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Clusters of Orthologous Groups (COG), and Pathogen Host Interactions (PHI) database annotation tools for comprehensive gene function analyses. Moreover, the multilocus sequence typing (MLST), EasyCGtree, and virulence factor database (VFDB) were employed to determine the sequence types (STs), construct phylogenetic trees, and identify potential virulence factors. Results Sequence analysis found that the three isolated strains had identical sequence characteristics and did not correspond to any of the known ST types. Virulence factor analysis revealed that the three strains harbored mrkABCDFHIJ, fimABCDEFGHIK, entABCDEFS, fepABCD, and capsule genes. These virulence factors are likely to play crucial roles in enhancing adhesion and metabolic capabilities, resisting phagocytosis (inducing immune cell damage), and ultimately contributing to prolonged bacteremia. The phylogenetic tree and comparative genomics of virulence factors showed the genetic and virulence factor diversity of the currently reported K. michiganensis strains. Conclusion We identified a novel strain of K. michiganensis that exhibits high virulence and leads to severe septicemia phenotypes in preterm infants. Furthermore, comparative genomic analysis of previously reported K. michiganensis strains revealed the existence of three clades. This comprehensive analysis provides novel insights into the genetic relationships and virulence factor profiles of diverse strains of K. michiganensis. In future, it will be necessary to investigate the concept of the high virulence of K. michiganensis to determine the treatment method.
Collapse
Affiliation(s)
- Panpan Xu
- Children’s Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Di Zhang
- Department of Neonatology, Children’s Hospital, Capital Institute of Pediatrics, Beijing, People’s Republic of China
| | - Wanqing Zhuo
- School of Life Sciences, Peking University, Beijing, People’s Republic of China
| | - Lin Zhou
- Department of Clinical Laboratory, Children’s Hospital Affiliated to Capital Institute of Pediatrics, Beijing, People’s Republic of China
| | - Yue Du
- Department of Neonatology, Children’s Hospital, Capital Institute of Pediatrics, Beijing, People’s Republic of China
| | - Peipei Zhang
- Children’s Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Lijuan Ma
- Department of Clinical Laboratory, Children’s Hospital Affiliated to Capital Institute of Pediatrics, Beijing, People’s Republic of China
| | - Yajuan Wang
- Department of Neonatology, Children’s Hospital, Capital Institute of Pediatrics, Beijing, People’s Republic of China
| |
Collapse
|
5
|
Shutt-McCabe J, Shaik KB, Hoyles L, McVicker G. The plasmid-borne hipBA operon of Klebsiella michiganensis encodes a potent plasmid stabilization system. J Appl Microbiol 2024; 135:lxae246. [PMID: 39304528 PMCID: PMC11487325 DOI: 10.1093/jambio/lxae246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024]
Abstract
AIMS Klebsiella michiganensis is a medically important bacterium that has been subject to relatively little attention in the literature. Interrogation of sequence data from K. michiganensis strains in our collection has revealed the presence of multiple large plasmids encoding type II toxin-antitoxin (TA) systems. Such TA systems are responsible for mediating a range of phenotypes, including plasmid stability ('addiction') and antibiotic persistence. In this work, we characterize the hipBA TA locus found within the Klebsiella oxytoca species complex (KoSC). METHODS AND RESULTS The HipBA TA system is encoded on a plasmid carried by K. michiganensis PS_Koxy4, isolated from an infection outbreak. Employing viability and plasmid stability assays, we demonstrate that PS_Koxy4 HipA is a potent antibacterial toxin and that HipBA is a functional TA module contributing substantially to plasmid maintenance. Further, we provide in silico data comparing HipBA modules across the entire KoSC. CONCLUSIONS We provide the first evidence of the role of a plasmid-encoded HipBA system in stability of mobile genetic elements and analyse the presence of HipBA across the KoSC. These results expand our knowledge of both a common enterobacterial TA system and a highly medically relevant group of bacteria.
Collapse
Affiliation(s)
- Jordan Shutt-McCabe
- Department of Biosciences, Nottingham Trent University, Clifton, Nottingham NG11 8NS, United Kingdom
| | - Karimunnisa Begum Shaik
- Department of Biosciences, Nottingham Trent University, Clifton, Nottingham NG11 8NS, United Kingdom
| | - Lesley Hoyles
- Department of Biosciences, Nottingham Trent University, Clifton, Nottingham NG11 8NS, United Kingdom
| | - Gareth McVicker
- Department of Biosciences, Nottingham Trent University, Clifton, Nottingham NG11 8NS, United Kingdom
| |
Collapse
|
6
|
Sun Y, Xing Z, Liang S, Miao Z, Zhuo LB, Jiang W, Zhao H, Gao H, Xie Y, Zhou Y, Yue L, Cai X, Chen YM, Zheng JS, Guo T. metaExpertPro: A Computational Workflow for Metaproteomics Spectral Library Construction and Data-Independent Acquisition Mass Spectrometry Data Analysis. Mol Cell Proteomics 2024; 23:100840. [PMID: 39278598 PMCID: PMC11795700 DOI: 10.1016/j.mcpro.2024.100840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/04/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024] Open
Abstract
Analysis of large-scale data-independent acquisition mass spectrometry metaproteomics data remains a computational challenge. Here, we present a computational pipeline called metaExpertPro for metaproteomics data analysis. This pipeline encompasses spectral library generation using data-dependent acquisition MS, protein identification and quantification using data-independent acquisition mass spectrometry, functional and taxonomic annotation, as well as quantitative matrix generation for both microbiota and hosts. By integrating FragPipe and DIA-NN, metaExpertPro offers compatibility with both Orbitrap and timsTOF MS instruments. To evaluate the depth and accuracy of identification and quantification, we conducted extensive assessments using human fecal samples and benchmark tests. Performance tests conducted on human fecal samples indicated that metaExpertPro quantified an average of 45,000 peptides in a 60-min diaPASEF injection. Notably, metaExpertPro outperformed three existing software tools by characterizing a higher number of peptides and proteins. Importantly, metaExpertPro maintained a low factual false discovery rate of approximately 5% for protein groups across four benchmark tests. Applying a filter of five peptides per genus, metaExpertPro achieved relatively high accuracy (F-score = 0.67-0.90) in genus diversity and showed a high correlation (rSpearman = 0.73-0.82) between the measured and true genus relative abundance in benchmark tests. Additionally, the quantitative results at the protein, taxonomy, and function levels exhibited high reproducibility and consistency across the commonly adopted public human gut microbial protein databases IGC and UHGP. In a metaproteomic analysis of dyslipidemia patients, metaExpertPro revealed characteristic alterations in microbial functions and potential interactions between the microbiota and the host.
Collapse
Affiliation(s)
- Yingying Sun
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Ziyuan Xing
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Shuang Liang
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China; State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zelei Miao
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Lai-Bao Zhuo
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wenhao Jiang
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Hui Zhao
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Huanhuan Gao
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Yuting Xie
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Yan Zhou
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Liang Yue
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Xue Cai
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Yu-Ming Chen
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Ju-Sheng Zheng
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
| | - Tiannan Guo
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Waller ME, Eichhorn CJ, Gutierrez A, Baatz JE, Wagner CL, Chetta KE, Engevik MA. Analyzing the Responses of Enteric Bacteria to Neonatal Intensive Care Supplements. Int J Microbiol 2024; 2024:3840327. [PMID: 39220439 PMCID: PMC11364479 DOI: 10.1155/2024/3840327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
In the neonatal intensive care unit, adequate nutrition requires various enteral products, including human milk and formula. Human milk is typically fortified to meet increased calorie goals, and infants commonly receive vitamin mixes, iron supplements, and less frequently, thickening agents. We examined the growth of 16 commensal microbes and 10 pathobionts found in the premature infant gut and found that formula, freshly pasteurized milk, and donated banked milk generally increased bacterial growth. Fortification of human milk significantly elevated the growth of all microbes. Supplementation with thickeners or NaCl in general did not stimulate additional growth. Vitamin mix promoted the growth of several commensals, while iron promoted growth of pathobionts. These data indicate that pathobionts in the preterm gut have significant growth advantage with preterm formula, fortified donor milk, and supplemented iron and suggest that the choice of milk and supplements may impact the infant gut microbiota.
Collapse
Affiliation(s)
- Megan E. Waller
- Department of Regenerative Medicine and Cell BiologyMedical University of South Carolina, Charleston, USA
| | - Caroline J. Eichhorn
- Department of Regenerative Medicine and Cell BiologyMedical University of South Carolina, Charleston, USA
| | - Alyssa Gutierrez
- Department of Regenerative Medicine and Cell BiologyMedical University of South Carolina, Charleston, USA
| | - John E. Baatz
- Department of PediatricsC.P. Darby Children's Research InstituteMedical University of South Carolina, Charleston, USA
- Department of PediatricsDivision of Neonatal-Perinatal MedicineMedical University of South CarolinaShawn Jenkins Children's Hospital, 10 McClennan Banks Drive, MSC 915, Charleston, SC 29425, USA
| | - Carol L. Wagner
- Department of PediatricsC.P. Darby Children's Research InstituteMedical University of South Carolina, Charleston, USA
- Department of PediatricsDivision of Neonatal-Perinatal MedicineMedical University of South CarolinaShawn Jenkins Children's Hospital, 10 McClennan Banks Drive, MSC 915, Charleston, SC 29425, USA
| | - Katherine E. Chetta
- Department of PediatricsC.P. Darby Children's Research InstituteMedical University of South Carolina, Charleston, USA
- Department of PediatricsDivision of Neonatal-Perinatal MedicineMedical University of South CarolinaShawn Jenkins Children's Hospital, 10 McClennan Banks Drive, MSC 915, Charleston, SC 29425, USA
| | - Melinda A. Engevik
- Department of Regenerative Medicine and Cell BiologyMedical University of South Carolina, Charleston, USA
- Department of Microbiology and ImmunologyMedical University of South Carolina, Charleston, USA
| |
Collapse
|
8
|
Gu H, Tao E, Fan Y, Long G, Jia X, Yuan T, Chen L, Shu X, Zheng W, Jiang M. Effect of β-lactam antibiotics on the gut microbiota of term neonates. Ann Clin Microbiol Antimicrob 2024; 23:69. [PMID: 39113137 PMCID: PMC11308410 DOI: 10.1186/s12941-024-00730-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
β-Lactam antibiotics are a class of antibiotics commonly used to treat bacterial infections. However, the effects of β-lactam antibiotics on term neonatal intestinal flora have not been fully elucidated. Hospitalized full-term newborns receiving β-lactam antibiotics formed the antibiotic group (n = 67), while those without antibiotic treatment comprised the non-antibiotic group (n = 47). A healthy group included healthy full-term newborns (n = 16). Stool samples were collected for 16 S rDNA sequencing to analyze gut microbiota variations. Further investigation was carried out within the β-lactam antibiotic group, exploring the effects of antibiotic use on the newborns' gut microbiota in relation to the duration and type of antibiotic administration, delivery method, and feeding practices. The antibiotic group exhibited significant difference of microbial community composition compared to the other groups. Genera like Klebsiella, Enterococcus, Streptococcus, Alistipes, and Aeromonas were enriched, while Escherichia-Shigella, Clostridium sensu stricto 1, Bifidobacterium, and Parabacteroides were reduced. Klebsiella negatively correlated with Escherichia-Shigella, positively with Enterobacter, while Escherichia-Shigella negatively correlated with Enterococcus and Streptococcus. Regardless of neonatal age, β-lactam antibiotics induced an elevated abundance of Klebsiella and Enterococcus. The impact on gut microbiota varied with the duration and type of antibiotic (cefotaxime or ampicillin/sulbactam). Compared to vaginal delivery, cesarean delivery after β-lactam treatment heightened the abundance of Klebsiella, Enterobacteriaceae_Unclassified, Lactobacillales_Unclassified, and Pectobacterium. Feeding patterns minimally influenced β-lactam-induced alterations. In conclusion, β-lactam antibiotic treatment for neonatal pneumonia and sepsis markedly disrupted intestinal microbiota, favoring Klebsiella, Enterococcus, Streptococcus, Alistipes, and Aeromonas. The impact of β-lactam varied by duration, type, and delivery method, emphasizing heightened disruptions post-cesarean delivery.
Collapse
Affiliation(s)
- Hongdan Gu
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
- Department of Pediatrics, Wenling Maternal and Child Health Care Hospital, Wenling, Zhejiang, 317500, China
| | - Enfu Tao
- Department of Neonatology and NICU, Wenling Maternal and Child Health Care Hospital, Wenling, Zhejiang, 317500, China
| | - Yijia Fan
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Gao Long
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Xinyi Jia
- Department of Gastroenterology and Pediatric Endoscopy Center, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Road, Hangzhou, Zhejiang, 310052, China
| | - Tianming Yuan
- Department of Neonatology, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310052, China
| | - Lihua Chen
- Department of Neonatology, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310052, China
| | - Xiaoli Shu
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Wei Zheng
- Department of Gastroenterology and Pediatric Endoscopy Center, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Road, Hangzhou, Zhejiang, 310052, China
| | - Mizu Jiang
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
- Department of Gastroenterology and Pediatric Endoscopy Center, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Road, Hangzhou, Zhejiang, 310052, China.
| |
Collapse
|
9
|
Cui J, Zhang Y, Li X, Ding Z, Kong Y, Yu Z, Li Z, Tong J, Liu Z, Yuan J. Antimicrobial resistance profiles and genome characteristics of Klebsiella isolated from the faeces of neonates in the neonatal intensive care unit. J Med Microbiol 2024; 73. [PMID: 39150452 PMCID: PMC11329266 DOI: 10.1099/jmm.0.001862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024] Open
Abstract
Introduction. Klebsiella spp. are important bacteria that colonize the human intestine, especially in preterm infants; they can induce local and systemic disease under specific circumstances, including inflammatory bowel disease, necrotizing enterocolitis and colorectal cancer.Hypothesis. Klebsiella spp. colonized in the intestine of the neonates in the neonatal intensive care unit (NICU) may be associated with disease and antibiotic resistance, which will be hazardous to the children.Aim. Our aim was to know about the prevalence, antimicrobial resistance and genome characteristics of Klebsiella spp. in neonate carriers.Methodology. Genome sequencing and analysis, and antimicrobial susceptibility testing were mainly performed in this study.Results. The isolation rates of Klebsiella spp. strains were 3.7% (16/436) in 2014 and 4.3% (18/420) in 2021. Cases with intestinal-colonized Klebsiella spp. were mainly infants with low birth weights or those with pneumonia or hyperbilirubinemia. According to the core-pan genomic analysis, 34 stains showed gene polymorphism and a sequence type (ST) of an emerging high-risk clone (ST11). Eight strains (23.5%) were found to be resistant to 2 or more antibiotics, and 46 genes/gene families along with nine plasmids were identified that conferred resistance to antibiotics. In particular, the two strains were multidrug-resistant. Strain A1256 that is related to Klebsiella quasipneumoniae subsp. similipneumoniae was uncommon, carrying two plasmids similar to IncFII and IncX3 that included five antibiotic resistance genes.Conclusion. The prevention and control of neonatal Klebsiella spp. colonization in the NICU should be strengthened by paying increased attention to preventing antimicrobial resistance in neonates.
Collapse
Affiliation(s)
- Jinghua Cui
- Capital Institute of Pediatrics, Beijing 100020, PR China
| | - Yanan Zhang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University & Beijing Maternal and Child Health Care Hospital, Beijing 100026, PR China
| | - Xiaoran Li
- 155th Hospital of Kaifeng, Kaifeng, Henan Province, 475003, PR China
| | - Zanbo Ding
- Capital Institute of Pediatrics, Beijing 100020, PR China
| | - Yiming Kong
- Capital Institute of Pediatrics, Beijing 100020, PR China
| | - Zihui Yu
- Capital Institute of Pediatrics, Beijing 100020, PR China
| | - Zhaona Li
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University & Beijing Maternal and Child Health Care Hospital, Beijing 100026, PR China
| | - Jingjing Tong
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University & Beijing Maternal and Child Health Care Hospital, Beijing 100026, PR China
| | - Zunjie Liu
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University & Beijing Maternal and Child Health Care Hospital, Beijing 100026, PR China
| | - Jing Yuan
- Capital Institute of Pediatrics, Beijing 100020, PR China
| |
Collapse
|
10
|
Osbelt L, Almási ÉDH, Wende M, Kienesberger S, Voltz A, Lesker TR, Muthukumarasamy U, Knischewski N, Nordmann E, Bielecka AA, Giralt-Zúñiga M, Kaganovitch E, Kühne C, Baier C, Pietsch M, Müsken M, Greweling-Pils MC, Breinbauer R, Flieger A, Schlüter D, Müller R, Erhardt M, Zechner EL, Strowig T. Klebsiella oxytoca inhibits Salmonella infection through multiple microbiota-context-dependent mechanisms. Nat Microbiol 2024; 9:1792-1811. [PMID: 38862602 PMCID: PMC11222139 DOI: 10.1038/s41564-024-01710-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 04/22/2024] [Indexed: 06/13/2024]
Abstract
The Klebsiella oxytoca species complex is part of the human microbiome, especially during infancy and childhood. K. oxytoca species complex strains can produce enterotoxins, namely, tilimycin and tilivalline, while also contributing to colonization resistance (CR). The relationship between these seemingly contradictory roles is not well understood. Here, by coupling ex vivo assays with CRISPR-mutagenesis and various mouse models, we show that K. oxytoca provides CR against Salmonella Typhimurium. In vitro, the antimicrobial activity against various Salmonella strains depended on tilimycin production and was induced by various simple carbohydrates. In vivo, CR against Salmonella depended on toxin production in germ-free mice, while it was largely toxin-independent in mice with residual microbiota. This was linked to the relative levels of toxin-inducing carbohydrates in vivo. Finally, dulcitol utilization was essential for toxin-independent CR in gnotobiotic mice. Together, this demonstrates that nutrient availability is key to both toxin-dependent and substrate-driven competition between K. oxytoca and Salmonella.
Collapse
Affiliation(s)
- Lisa Osbelt
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
- ESF International Graduate School on Analysis, Imaging and Modelling of Neuronal and Inflammatory Processes, Otto-von-Guericke University, Magdeburg, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Éva D H Almási
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Marie Wende
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
- ESF International Graduate School on Analysis, Imaging and Modelling of Neuronal and Inflammatory Processes, Otto-von-Guericke University, Magdeburg, Germany
| | - Sabine Kienesberger
- Institute of Molecular Biosciences, University of Graz, BioTechMed-Graz, Graz, Austria
| | - Alexander Voltz
- Department Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Till R Lesker
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
| | | | - Nele Knischewski
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Elke Nordmann
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Agata A Bielecka
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - María Giralt-Zúñiga
- Institute for Biology-Molecular Microbiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Eugen Kaganovitch
- Institute for Biology-Molecular Microbiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Caroline Kühne
- Institute for Biology-Molecular Microbiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Claas Baier
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Michael Pietsch
- Division of Enteropathogenic Bacteria and Legionella (FG11)/National Reference Centre for Salmonella and other Bacterial Enteric Pathogens, Robert Koch Institute, Wernigerode, Germany
| | - Mathias Müsken
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Rolf Breinbauer
- BioTechMed-Graz, Institute of Organic Chemistry, Graz University of Technology, Graz, Austria
| | - Antje Flieger
- Division of Enteropathogenic Bacteria and Legionella (FG11)/National Reference Centre for Salmonella and other Bacterial Enteric Pathogens, Robert Koch Institute, Wernigerode, Germany
| | - Dirk Schlüter
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF),Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Rolf Müller
- Department Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
- German Center for Infection Research (DZIF),Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Marc Erhardt
- Institute for Biology-Molecular Microbiology, Humboldt-Universität zu Berlin, Berlin, Germany
- Max Planck Unit for the Science of Pathogens, Berlin, Germany
| | - Ellen L Zechner
- Institute of Molecular Biosciences, University of Graz, BioTechMed-Graz, Graz, Austria
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany.
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.
- German Center for Infection Research (DZIF),Partner Site Hannover-Braunschweig, Braunschweig, Germany.
- Center for Individualized Infection Medicine, Hannover, Germany.
| |
Collapse
|
11
|
Chen W, Guo K, Huang X, Zhang X, Li X, Chen Z, Wang Y, Wang Z, Liu R, Qiu H, Wang M, Zeng S. The Association of Neonatal Gut Microbiota Community State Types with Birth Weight. CHILDREN (BASEL, SWITZERLAND) 2024; 11:770. [PMID: 39062221 PMCID: PMC11276374 DOI: 10.3390/children11070770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND while most gut microbiota research has focused on term infants, the health outcomes of preterm infants are equally important. Very-low-birth-weight (VLBW) or extremely-low-birth-weight (ELBW) preterm infants have a unique gut microbiota structure, and probiotics have been reported to somewhat accelerate the maturation of the gut microbiota and reduce intestinal inflammation in very-low preterm infants, thereby improving their long-term outcomes. The aim of this study was to investigate the structure of gut microbiota in ELBW neonates to facilitate the early identification of different types of low-birth-weight (LBW) preterm infants. METHODS a total of 98 fecal samples from 39 low-birth-weight preterm infants were included in this study. Three groups were categorized according to different birth weights: ELBW (n = 39), VLBW (n = 39), and LBW (n = 20). The gut microbiota structure of neonates was obtained by 16S rRNA gene sequencing, and microbiome analysis was conducted. The community state type (CST) of the microbiota was predicted, and correlation analysis was conducted with clinical indicators. Differences in the gut microbiota composition among ELBW, VLBW, and LBW were compared. The value of gut microbiota composition in the diagnosis of extremely low birth weight was assessed via a random forest-machine learning approach. RESULTS we briefly analyzed the structure of the gut microbiota of preterm infants with low birth weight and found that the ELBW, VLBW, and LBW groups exhibited gut microbiota with heterogeneous compositions. Low-birth-weight preterm infants showed five CSTs dominated by Enterococcus, Staphylococcus, Klebsiella, Streptococcus, Pseudescherichia, and Acinetobacter. The birth weight and clinical indicators related to prematurity were associated with the CST. We found the composition of the gut microbiota was specific to the different types of low-birth-weight premature infants, namely, ELBW, VLBW, and LBW. The ELBW group exhibited significantly more of the potentially harmful intestinal bacteria Acinetobacter relative to the VLBW and LBW groups, as well as a significantly lower abundance of the intestinal probiotic Bifidobacterium. Based on the gut microbiota's composition and its correlation with low weight, we constructed random forest model classifiers to distinguish ELBW and VLBW/LBW infants. The area under the curve of the classifiers constructed with Enterococcus, Klebsiella, and Acinetobacter was found to reach 0.836 by machine learning evaluation, suggesting that gut microbiota composition may be a potential biomarker for ELBW preterm infants. CONCLUSIONS the gut bacteria of preterm infants showed a CST with Enterococcus, Klebsiella, and Acinetobacter as the dominant genera. ELBW preterm infants exhibit an increase in the abundance of potentially harmful bacteria in the gut and a decrease in beneficial bacteria. These potentially harmful bacteria may be potential biomarkers for ELBW preterm infants.
Collapse
Affiliation(s)
- Wanling Chen
- Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen 518116, China
- Microbiome Therapy Center, South China Hospital, Medical School, Shenzhen University, Shenzhen 518111, China
| | - Kaiping Guo
- Division of Pediatrics, Longgang District Central Hospital of Shenzhen, Shenzhen 518116, China
| | - Xunbin Huang
- Division of Neonatology, Longgang District Central Hospital of Shenzhen, Shenzhen 518116, China
| | - Xueli Zhang
- Division of Neonatology, Shenzhen Longhua People’s Hospital, Shenzhen 518109, China
| | - Xiaoxia Li
- Division of Neonatology, Shenzhen Longhua People’s Hospital, Shenzhen 518109, China
| | - Zimiao Chen
- Department of Burn Plastic Surgery, South China Hospital, Shenzhen University, Shenzhen 518111, China
| | - Yanli Wang
- Department of Pediatrics, South China Hospital, Shenzhen University, Shenzhen 518111, China
| | - Zhangxing Wang
- Division of Neonatology, Shenzhen Longhua People’s Hospital, Shenzhen 518109, China
| | - Rongtian Liu
- Department of Pediatrics, Shenzhen Second People’s Hospital, Shenzhen 518035, China
| | - Huixian Qiu
- Division of Neonatology, Longgang District Central Hospital of Shenzhen, Shenzhen 518116, China
| | - Mingbang Wang
- Microbiome Therapy Center, South China Hospital, Medical School, Shenzhen University, Shenzhen 518111, China
- Department of Neonatology, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen 518172, China
| | - Shujuan Zeng
- Division of Neonatology, Longgang District Central Hospital of Shenzhen, Shenzhen 518116, China
| |
Collapse
|
12
|
Wang Y, Cui M, Li L, Gao C, Feng Z, Cai Y, Yang Z, Shen L. Unexpected decrease in necrotizing enterocolitis morbidity during the COVID-19 pandemic-A single-centre retrospective study. Front Pediatr 2024; 12:1346478. [PMID: 38863524 PMCID: PMC11165084 DOI: 10.3389/fped.2024.1346478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/15/2024] [Indexed: 06/13/2024] Open
Abstract
Background The impact of the coronavirus disease 2019 (COVID-19) pandemic on neonatal necrotizing enterocolitis (NEC) is not well characterised. This cross-sectional study evaluated the potential effects of pandemic-related measures on NEC morbidity in premature infants in a neonatal ward during the COVID-19 pandemic. Methods This was a retrospective study conducted in a tertiary neonatal ward in eastern and central China over 6 consecutive years (2017, 2018, 2019, 2020, 2021 and 2022). The medical records of 189 premature infants with stage II or III NEC were reviewed for clinical manifestations and aetiologies. The data were analysed and compared between the prepandemic period (2017, 2018, and 2019) and the pandemic period (2020, 2021 and 2022). Results A total of 9,903 infants with gestational age (GA) < 37 weeks were enrolled, including 5,382 in the prepandemic period and 4,521 in the pandemic period. A reduction in stage II or III NEC morbidity was observed in infants with GA < 37 weeks, with an average annual morbidity of 2.29% (123/5,382) (95% CI, 1.89%-2.68%) in the prepandemic period and 1.46% (66/4,521) (95% CI, 1.11%-1.81%) in the pandemic period. NEC morbidity showed resurgent characteristics in 2021. When prepandemic coinfections were excluded, most cases of NEC with bloodstream infections in the prepandemic period were attributable to Gram-negative bacteria (27/32, 84.38%), mainly Klebsiella pneumoniae, while in the pandemic period they were attributable to Gram-positive bacteria (10/18, 55.56%), mainly Staphylococcus aureus. Antimicrobial susceptibility testing revealed that Klebsiella pneumoniae was 100% sensitive to meropenem, imipenem, ciprofloxacin and levofloxacin and 100% resistant to ampicillin. Staphylococcus capitis was 100% sensitive to vancomycin, linezolid, tetracycline, cotrimoxazole and cefoxitin and 100% resistant to penicillin and benzathine. Conclusions COVID-19 pandemic-related interventions can reduce the morbidity of NEC and change the pathogen spectrum in patients with bloodstream infections. We need to understand the exact factors leading to these changes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lirong Shen
- Department of Neonatology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| |
Collapse
|
13
|
Younge N. Influence of infant microbiome on health and development. Clin Exp Pediatr 2024; 67:224-231. [PMID: 37605538 PMCID: PMC11065641 DOI: 10.3345/cep.2023.00598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/08/2023] [Accepted: 07/19/2023] [Indexed: 08/23/2023] Open
Abstract
The microbiome is a complex ecosystem comprising microbes, their genomes, and the surrounding environment. The microbiome plays a critical role in early human development, including maturation of the host immune system and gastrointestinal tract. Multiple factors, including diet, anti-biotic use, and other environmental exposures, influence the establishment of the microbiome during infancy. Numerous studies have identified associations between the microbiome and neonatal diseases, including necrotizing enterocolitis, sepsis, and malnutrition. Furthermore, there is compelling evidence that perturbation of the microbiome in early life can have lasting developmental effects that increase an individual's risk for immune and metabolic diseases in later life. Supplementation of the microbiome with probiotics reduces the risk of necrotizing enterocolitis and sepsis in at-risk infants. This review focuses on the structure and function of the infant microbiome, the environmental and clinical factors that influence its assembly, and its impact on infant health and development.
Collapse
|
14
|
Zechner EL, Kienesberger S. Microbiota-derived small molecule genotoxins: host interactions and ecological impact in the gut ecosystem. Gut Microbes 2024; 16:2430423. [PMID: 39558480 PMCID: PMC11581169 DOI: 10.1080/19490976.2024.2430423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/08/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024] Open
Abstract
The human intestinal tract is densely colonized by a microbial community that is subject to intense competition. Bacteria in this complex habitat seek to outcompete their neighbors for nutrients and eliminate competitors with antibacterial toxins. Antagonism can be mediated by diverse effectors including toxic proteins and small molecule inhibitors that are released extracellularly or delivered by specialized secretion systems to targeted cells. Two prototypical microbiota-derived enterotoxins, colibactin and tilimycin, and the newly discovered family of indolimines represent an expanding group of non-proteinaceous small molecules which specifically target DNA. In addition to cell killing, they generate mutations and genome instability in intoxicated microbes and host cells alike. They have been studied in detail because of their direct toxicity to human cells and important etiological roles in intestinal pathologies. Increasing evidence, however, reveals that these commensal genotoxins are also mediators of interbacterial antagonism, which impacts gut microbial ecology. In this review, we illustrate the functional versatility of commensal genotoxins in the gut ecosystem.
Collapse
Affiliation(s)
- Ellen L. Zechner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Sabine Kienesberger
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| |
Collapse
|
15
|
Luo X, Dong F, Dai P, Xu M, Yu L, Hu D, Feng J, Zhang J, Jing Y. Coexistence of blaKPC-2 and blaNDM-1 in one IncHI5 plasmid confers transferable carbapenem resistance from a clinical isolate of Klebsiella michiganensis in China. J Glob Antimicrob Resist 2023; 35:104-109. [PMID: 37714378 DOI: 10.1016/j.jgar.2023.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/23/2023] [Accepted: 09/03/2023] [Indexed: 09/17/2023] Open
Abstract
OBJECTIVES This study firstly identified an IncHI5 plasmid pK254-KPC_NDM co-carrying two different class carbapenemase genes blaKPC-2 and blaNDM-1 in Klebsiella michiganensis K254. METHODS The strain K254 was sequenced by high-throughput genome sequencing. A detailed genomic and phenotypic characterization of pK254-KPC_NDM was performed. RESULTS pK254-KPC_NDM displayed the conserve IncHI5 backbone and carried a resistant accessory region: Tn1696-related transposon Tn7414 containing blaKPC-2 and blaNDM-1. A sequence comparison was applied to a collection of four Tn1696-related transposons (Tn7414-Tn7417) harbouring carbapenemase genes. For all these four transposons, the blaNDM-1 was carried by Tn125 derivatives within three different mobile genetic elements. Tn7414 further acquired another carbapenemase gene, blaKPC-2, because of the integration of the local blaKPC-2 genetic environment from Tn6296, resulting in the high-level carbapenem resistance of K. michiganensis K254. The conjugal transfer and plasmid stability experiments confirmed that pK254-KPC_NDM could be transferred intercellularly and keep the stable vertical inheritance in different bacteria, which would contribute to the further dissemination of multiple carbapenemase genes and enhance the adaption and survival of K. michiganensis under complex and diverse antimicrobial selection pressures. CONCLUSION This study was the first to report the K. michiganensis isolate coharbouring blaKPC-2 and blaNDM-1 in the Tn1696-related transposon in IncHI5 plasmid. The emergence of novel transposons simultaneously carrying multiple carbapenemase genes might contribute to the further dissemination of high-level carbapenem resistance in the isolates of the hospital settings and pose new challenges for the treatment of nosocomial infection.
Collapse
Affiliation(s)
- Xinhua Luo
- Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital Affiliated with Taizhou University, Taizhou, China
| | - Fang Dong
- Department of Clinical Laboratory Center, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Piaopiao Dai
- Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital Affiliated with Taizhou University, Taizhou, China
| | - Mengqiao Xu
- Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital Affiliated with Taizhou University, Taizhou, China
| | - Lianhua Yu
- Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital Affiliated with Taizhou University, Taizhou, China
| | - Dakang Hu
- Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital Affiliated with Taizhou University, Taizhou, China
| | - Jiao Feng
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Jin Zhang
- Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital Affiliated with Taizhou University, Taizhou, China
| | - Ying Jing
- Department of Clinical Laboratory Center, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China.
| |
Collapse
|
16
|
Negus D, Foster G, Hoyles L. Lelliottia amnigena recovered from the lung of a harbour porpoise, and comparative analyses with Lelliottia spp. Access Microbiol 2023; 5:000694.v3. [PMID: 38074105 PMCID: PMC10702373 DOI: 10.1099/acmi.0.000694.v3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/20/2023] [Indexed: 01/13/2025] Open
Abstract
Strain M1325/93/1 (herein referred to by our laboratory identifier, GFKo1) of Lelliottia amnigena was isolated from the lung of a harbour porpoise in 1993. The genome sequence and antimicrobial resistance profile (genomic, phenotypic) of the strain were generated, with the genomic data compared with those from closely related bacteria. We demonstrate that the recently described chromosomally encoded AmpC β-lactamase bla LAQ is a core gene of L. amnigena , and suggest that new variants of this class of lactamase are encoded by other members of the genus Lelliottia . Although presence of bla LAQ is ubiquitous across the currently sequenced members of L. amnigena , we highlight that strain GFKo1 is sensitive to ampicillin and cephalosporins. These data suggest that bla LAQ may act as a useful genetic marker for identification of L. amnigena strains, but its presence may not correlate with expected phenotypic resistances. Further studies are required to determine the regulatory mechanisms of bla LAQ in L. amnigena .
Collapse
Affiliation(s)
- David Negus
- Department of Biosciences, Nottingham Trent University, Nottingham, UK
| | | | - Lesley Hoyles
- Department of Biosciences, Nottingham Trent University, Nottingham, UK
| |
Collapse
|
17
|
Wan W, Yang X, Yu H, Wang M, Jia W, Huang B, Qu F, Shan B, Tang YW, Chen L, Du H. Genomic characterization of carbapenem-resistant Klebsiella oxytoca complex in China: a multi-center study. Front Microbiol 2023; 14:1153781. [PMID: 37465019 PMCID: PMC10350504 DOI: 10.3389/fmicb.2023.1153781] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/14/2023] [Indexed: 07/20/2023] Open
Abstract
Carbapenem-resistant (CR) Klebsiella oxytoca complex can be associated with high mortality, emerging as a new threat to the public health. K. oxytoca complex is phylogenetically close to K. pneumoniae, one of most common species associated with multidrug resistance in Enterobacterale. The latest research showed that K. oxytoca is a complex of six species. Currently, the epidemiological and genomic characteristics of CR K. oxytoca complex in China are still unclear. Here, we conducted a multi-center study on 25 CR K. oxytoca complex collected from five representative regions in China. These isolates were, respectively, recovered from respiratory tract (12 cases, 48.0%), abdominal cavity (5 cases, 20.0%), blood (4 cases, 16.0%), urine tract (3 cases, 12.0%) and skin or soft tissue (1 cases, 4.0%). Among them, 32.0% (8/25) of patients infected with K. oxytoca complex had a poor prognosis. In this study, three K. oxytoca complex species were detected, namely K. michiganensis, K. oxytoca and K. pasteurii, among which K. michiganensis was the most common. Three carbapenemase genes were identified, including blaNDM-1 (10, 38.5%), blaKPC-2 (9, 34.6%) and blaIMP (6 blaIMP-4 and 1 blaIMP-8; 7, 26.9%). Subsequent multilocus sequence typing identified various sequence types (STs), among which ST43, ST92 and ST145 were relatively common. Different from the clonal dissemination of high-risk carbapenem-resistant K. pneumoniae strains, our research revealed a polyclonal dissemination characteristic of CR K. oxytoca complex in China. S1-nuclease PFGE and Southern blot experiment showed that carbapenemase genes were encoded in plasmids of different sizes. Two blaNDM-harboring plasmids were subsequently sequenced, and were characterized to be IncX3 and IncC incompatibility groups, respectively. This is the first multi-center study of CR K. oxytoca complex in China, which improved our understanding of the prevalence and antimicrobial resistance characteristics of CR K. oxytoca complex in China.
Collapse
Affiliation(s)
- Weimin Wan
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Xiaochun Yang
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Hua Yu
- Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Min Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wei Jia
- Center of Medical Laboratory, The General Hospital of Ningxia Medical University, Yinchuan, China
| | - Bin Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Fen Qu
- Laboratory Medicine Center, Aviation General Hospital, Beijing, China
| | - Bin Shan
- Department of Laboratory Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yi-Wei Tang
- Department of Medical Affairs, Danaher Diagnostic Platform/Cepheid (People's Republic of China), New York, NY, United States
| | - Liang Chen
- Center for Discovery and Innovation, Hackensack-Meridian Health, Nutley, NJ, United States
- Hackensack Meridian School of Medicine, Seton Hall University, Nutley, NJ, United States
| | - Hong Du
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
18
|
Elek CKA, Brown TL, Le Viet T, Evans R, Baker DJ, Telatin A, Tiwari SK, Al-Khanaq H, Thilliez G, Kingsley RA, Hall LJ, Webber MA, Adriaenssens EM. A hybrid and poly-polish workflow for the complete and accurate assembly of phage genomes: a case study of ten przondoviruses. Microb Genom 2023; 9:mgen001065. [PMID: 37463032 PMCID: PMC10438801 DOI: 10.1099/mgen.0.001065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/17/2023] [Indexed: 07/21/2023] Open
Abstract
Bacteriophages (phages) within the genus Przondovirus are T7-like podoviruses belonging to the subfamily Studiervirinae, within the family Autographiviridae, and have a highly conserved genome organisation. The genomes of these phages range from 37 to 42 kb in size, encode 50-60 genes and are characterised by the presence of direct terminal repeats (DTRs) flanking the linear chromosome. These DTRs are often deleted during short-read-only and hybrid assemblies. Moreover, long-read-only assemblies are often littered with sequencing and/or assembly errors and require additional curation. Here, we present the isolation and characterisation of ten novel przondoviruses targeting Klebsiella spp. We describe HYPPA, a HYbrid and Poly-polish Phage Assembly workflow, which utilises long-read assemblies in combination with short-read sequencing to resolve phage DTRs and correcting errors, negating the need for laborious primer walking and Sanger sequencing validation. Our assembly workflow utilised Oxford Nanopore Technologies for long-read sequencing for its accessibility, making it the more relevant long-read sequencing technology at this time, and Illumina DNA Prep for short-read sequencing, representing the most commonly used technologies globally. Our data demonstrate the importance of careful curation of phage assemblies before publication, and prior to using them for comparative genomics.
Collapse
Affiliation(s)
- Claire K. A. Elek
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
- University of East Anglia, Norwich Research Park, Norwich, UK
| | - Teagan L. Brown
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
| | - Thanh Le Viet
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
| | - Rhiannon Evans
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
| | - David J. Baker
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
| | - Andrea Telatin
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
| | - Sumeet K. Tiwari
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
| | - Haider Al-Khanaq
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
| | - Gaëtan Thilliez
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
| | - Robert A. Kingsley
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
- University of East Anglia, Norwich Research Park, Norwich, UK
| | - Lindsay J. Hall
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
- University of East Anglia, Norwich Research Park, Norwich, UK
- Chair of Intestinal Microbiome, ZIEL—Institute for Food and Health, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Mark A. Webber
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
- University of East Anglia, Norwich Research Park, Norwich, UK
| | | |
Collapse
|
19
|
Cha T, Kim HH, Keum J, Kwak MJ, Park JY, Hoh JK, Kim CR, Jeon BH, Park HK. Gut microbiome profiling of neonates using Nanopore MinION and Illumina MiSeq sequencing. Front Microbiol 2023; 14:1148466. [PMID: 37256051 PMCID: PMC10225602 DOI: 10.3389/fmicb.2023.1148466] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/17/2023] [Indexed: 06/01/2023] Open
Abstract
This study aimed to evaluate the difference in gut microbiomes between preterm and term infants using third-generation long-read sequencing (Oxford Nanopore Technologies, ONT) compared with an established gold standard, Illumina (second-generation short-read sequencing). A total of 69 fecal samples from 51 term (T) and preterm (P) infants were collected at 7 and 28 days of life. Gut colonization profiling was performed by 16S rRNA gene sequencing using ONT. We used Illumina to validate and compare the patterns in 13 neonates. Using bioinformatic analysis, we identified features that differed between P and T. Both T1 and P1 microbiomes were dominated by Firmicutes (Staphylococcus and Enterococcus), whereas sequentially showed dominant transitions to Lactobacillus (p < 0.001) and Streptococcus in T2 (p = 0.001), and pathogenic bacteria (Klebsiella) in P2 (p = 0.001). The abundance of beneficial bacteria (Bifidobacterium and Lactobacillus) increased in T2 (p = 0.026 and p < 0.001, respectively). These assignments were correlated with the abundance at the species-level. Bacterial α-diversity increased in T (p = 0.005) but not in P (p = 0.156), and P2 showed distinct β-diversity clustering than T2 (p = 0.001). The ONT reliably identified pathogenic bacteria at the genus level, and taxonomic profiles were comparable to those identified by Illumina at the genus level. This study shows that ONT and Illumina are highly correlated. P and T had different microbiome profiles, and the α- and β-diversity varied. ONT sequencing has potential for pathogen detection in neonates in clinical settings.
Collapse
Affiliation(s)
- Teahyen Cha
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Hoo Hugo Kim
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| | - Jihyun Keum
- Department of Obstetrics and Gynecology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Min-Jin Kwak
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jae Yong Park
- Division of Microbiome, Int-Gen Company, Seoul, Republic of Korea
| | - Jeong Kyu Hoh
- Department of Obstetrics and Gynecology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Chang-Ryul Kim
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| | - Hyun-Kyung Park
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
20
|
Complete Genome Sequence of Klebsiella oxytoca Strain AHC-6, Isolated from a Patient during Acute Antibiotic-Associated Hemorrhagic Colitis. Microbiol Resour Announc 2023; 12:e0135022. [PMID: 36926996 PMCID: PMC10112055 DOI: 10.1128/mra.01350-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Klebsiella oxytoca is a ubiquitous bacterium that is increasingly associated with inflammatory diseases. Here, we report the hybrid assembled genome for cytotoxic K. oxytoca strain AHC-6. The genome comprises a total of 5.7 Mbp, with a GC content of 55.2% and 5,258 coding sequences after assembly and annotation.
Collapse
|
21
|
Neves LL, Hair AB, Preidis GA. A systematic review of associations between gut microbiota composition and growth failure in preterm neonates. Gut Microbes 2023; 15:2190301. [PMID: 36927287 PMCID: PMC10026866 DOI: 10.1080/19490976.2023.2190301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Growth failure is among the most prevalent and devastating consequences of prematurity. Up to half of all extremely preterm neonates struggle to grow despite modern nutrition practices. Although elegant preclinical models suggest causal roles for the gut microbiome, these insights have not yet translated into biomarkers that identify at-risk neonates or therapies that prevent or treat growth failure. This systematic review aims to identify features of the neonatal gut microbiota that are positively or negatively associated with early postnatal growth. We identified 860 articles, of which 14 were eligible for inclusion. No two studies used the same definitions of growth, ages at stool collection, and statistical methods linking microbiota to metadata. In all, 58 different taxa were associated with growth, with little consensus among studies. Two or more studies reported positive associations with Enterobacteriaceae, Bacteroides, Bifidobacterium, Enterococcus, and Veillonella, and negative associations with Citrobacter, Klebsiella, and Staphylococcus. Streptococcus was positively associated with growth in five studies and negatively associated with growth in three studies. To gain insight into how the various definitions of growth could impact results, we performed an exploratory secondary analysis of 245 longitudinally sampled preterm infant stools, linking microbiota composition to multiple clinically relevant definitions of neonatal growth. Within this cohort, every definition of growth was associated with a different combination of microbiota features. Together, these results suggest that the lack of consensus in defining neonatal growth may limit our capacity to detect consistent, meaningful clinical associations that could be leveraged into improved care for preterm neonates.
Collapse
Affiliation(s)
- Larissa L. Neves
- Division of Gastroenterology, Hepatology, & Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, USA
| | - Amy B. Hair
- Division of Neonatology, Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, USA
| | - Geoffrey A. Preidis
- Division of Gastroenterology, Hepatology, & Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, USA
| |
Collapse
|
22
|
Yin H, Luo B, Wang Q, Hong Z, Chen H, Shen L, Shen B, Hu B. Differences in Gut Microbiota between Healthy Individuals and Patients with Perianal Abscess before and after Surgery. Mediators Inflamm 2023; 2023:1165916. [PMID: 37091905 PMCID: PMC10115528 DOI: 10.1155/2023/1165916] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 03/13/2023] [Accepted: 03/29/2023] [Indexed: 04/25/2023] Open
Abstract
Surgery is the most important treatment for perianal abscesses. However, the gut microbiota of patients with perianal abscess and the effects of perianal abscess on the gut microbiota after surgery are unknown. In this study, significant changes in interleukin 6 and tumor necrosis factor-α in the blood of healthy subjects, patients with perianal abscesses, and patients after perianal abscess surgery were identified. 16S rRNA gene sequencing technology was used to detect the changes in the gut microbiota among 30 healthy individuals and 30 patients with perianal abscess before and after surgery. Venn diagrams and alpha diversity analyses indicated differences in the abundance and uniformity of gut microbiota between the healthy individuals and patients with perianal abscesses before and after surgery. Beta diversity analysis indicated that the grouping effects among the control, abscess, and surgery groups were good. The classification and compositional analysis showed significant differences in the gut microbiota between healthy individuals and patients with perianal abscesses before and after surgery. LEfSe analysis, random forest analysis, and ROC curve analysis showed that Klebsiella (AUC = 0.7467) and Bilophila (AUC = 0.72) could be potential biomarkers for the diagnosis of perianal abscess. The functional prediction results showed that the differential microbiota is significantly enriched in the pathways related to nutrition and drug metabolism. This study may have important implications for the clinical management and prognostic assessment of patients with perianal abscesses.
Collapse
Affiliation(s)
- Hezhai Yin
- Department of Surgery, Jiaxing Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Jiaxing, 314001 Zhejiang, China
| | - Bairu Luo
- Department of Clinical Pathology, Jiaxing University Master Degree Cultivation Base, Jiaxing Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Jiaxing, 314001 Zhejiang, China
| | - Qi Wang
- Department of Surgery, Jiaxing Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Jiaxing, 314001 Zhejiang, China
| | - Zhonghua Hong
- Department of Surgery, Jiaxing Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Jiaxing, 314001 Zhejiang, China
| | - Huilin Chen
- Department of Surgery, Jiaxing Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Jiaxing, 314001 Zhejiang, China
| | - Lidong Shen
- Department of Surgery, Jiaxing Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Jiaxing, 314001 Zhejiang, China
| | - Bin Shen
- Department of Surgery, Jiaxing Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Jiaxing, 314001 Zhejiang, China
| | - Bo Hu
- Department of Surgery, Jiaxing Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Jiaxing, 314001 Zhejiang, China
| |
Collapse
|
23
|
Peters SL, Morowitz MJ, Hettich RL. Antibiotic resistance and host immune system-induced metal bactericidal control are key factors for microbial persistence in the developing human preterm infant gut microbiome. Front Microbiol 2022; 13:958638. [PMID: 36478853 PMCID: PMC9720133 DOI: 10.3389/fmicb.2022.958638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/02/2022] [Indexed: 09/10/2024] Open
Abstract
The human gut microbiome, which develops and stabilizes during the early stages of infant life, plays an essential role in host health through the production of metabolic resources and the stimulation and training of the immune system. To study colonization and community functional dynamics of the microbiota based on responses to host immune processes during the normal and dysbiotic establishment of the gut, metaproteomics was conducted on 91 fecal samples collected over the first 90 days of life from 17 hospitalized premature infants. Microbial responses to antibiotic administration and host-imposed metal bactericidal control correlated with community assembly and resiliency of microbes in the developing preterm gut. Specifically, proteins related to antibiotic resistance and metal homeostasis mechanisms were predominant in persisting members in the infant gut environment over the first several weeks of life. Overall, this metaproteomics study provides a unique approach to examine the temporal expansion and resilience of microbial colonization, as it allows simultaneous examination of both host and microbial metabolic activities. Understanding the interplay between host and microbes may elucidate the microbiome's potential immunomodulatory roles relevant to necrotizing enterocolitis and other dysbiotic conditions in preterm infants.
Collapse
Affiliation(s)
- Samantha L. Peters
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, TN, United States
| | - Michael J. Morowitz
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Robert L. Hettich
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| |
Collapse
|
24
|
Jara J, Jurado R, Almendro-Vedia VG, López-Montero I, Fernández L, Rodríguez JM, Orgaz B. Interspecies relationships between nosocomial pathogens associated to preterm infants and lactic acid bacteria in dual-species biofilms. Front Cell Infect Microbiol 2022; 12:1038253. [PMID: 36325465 PMCID: PMC9618709 DOI: 10.3389/fcimb.2022.1038253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/26/2022] [Indexed: 12/08/2023] Open
Abstract
The nasogastric enteral feeding tubes (NEFTs) used to feed preterm infants are commonly colonized by bacteria with the ability to form complex biofilms in their inner surfaces. Among them, staphylococci (mainly Staphylococcus epidermidis and Staphylococcus aureus) and some species belonging to the Family Enterobacteriaceae are of special concern since they can cause nosocomial infections in this population. NETF-associated biofilms can also include lactic acid bacteria (LAB), with the ability to compete with pathogenic species for nutrients and space. Ecological interactions among the main colonizers of these devices have not been explored yet; however, such approach could guide future strategies involving the pre-coating of the inner surfaces of NEFTs with well adapted LAB strains in order to reduce the rates of nosocomial infections in neonatal intensive care units (NICUs). In this context, this work implied the formation of dual-species biofilms involving one LAB strain (either Ligilactobacillus salivarius 20SNG2 or Limosilactobacillus reuteri 7SNG3) and one nosocomial strain (either Klebsiella pneumoniae 9SNG3, Serratia marcescens 10SNG3, Staphylococcus aureus 45SNG3 or Staphylococcus epidermidis 46SNG3). The six strains used in this study had been isolated from the inner surface of NEFTs. Changes in adhesion ability of the pathogens were characterized using a culturomic approach. Species interactions and structural changes of the resulting biofilms were analyzed using scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). No aggregation was observed in dual-species biofilms between any of the two LAB strains and either K. pneumoniae 9SNG3 or S. marcescens 10SNG3. In addition, biofilm thickness and volume were reduced, suggesting that both LAB strains can control the capacity to form biofilms of these enterobacteria. In contrast, a positive ecological relationship was observed in the combination L. reuteri 7SNG3-S. aureus 45SNG3. This relationship was accompanied by a stimulation of S. aureus matrix production when compared with its respective monospecies biofilm. The knowledge provided by this study may guide the selection of potentially probiotic strains that share the same niche with nosocomial pathogens, enabling the establishment of a healthier microbial community inside NEFTs.
Collapse
Affiliation(s)
- Josué Jara
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Rubén Jurado
- Departamento de Farmacia Galénica y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Víctor G. Almendro-Vedia
- Departamento de Farmacia Galénica y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Iván López-Montero
- Departamento de Química Física, Facultad de Químicas, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12), Madrid, Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
| | - Leonides Fernández
- Departamento de Farmacia Galénica y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Juan Miguel Rodríguez
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Belén Orgaz
- Departamento de Farmacia Galénica y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
25
|
Zheng M, Zheng Y, Zhang Y, Zhu Y, Yang Y, Oda T, Ni H, Jiang Z. In vitro fermentation of Bangia fusco-purpurea polysaccharide by human gut microbiota and the protective effects of the resultant products on Caco-2 cells from lipopolysaccharide-induced injury. Int J Biol Macromol 2022; 222:818-829. [PMID: 36174866 DOI: 10.1016/j.ijbiomac.2022.09.217] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/19/2022] [Accepted: 09/24/2022] [Indexed: 11/17/2022]
Abstract
Polysaccharide extracted from red seaweed Bangia fusco-purpurea (BFP) is a novel sulfated galactan, differed from agarans and carrageenans in fine structure. In this study, in vitro fermentation characteristics of BFP by human gut microbiota and its protective effect on lipopolysaccharide (LPS)-induced injury in Caco-2 cells were investigated. Our results showed that BFP was mainly degraded at transverse colon for 18 h fermentation by gut microbiota with reduced molecular weight. Meanwhile, BFP fermentation was associated with increased short-chain fatty acids (SCFAs) as compared to control group, especially acetic acid was increased to 129.53 ± 0.24 from 82.14 ± 0.23 mmol/L, and butyric acid was up to 1.56 ± 0.004 from 0.62 ± 0.01 mmol/L. Furthermore, BFP promoted abundances of Bacteroidetes and Firmicutes, while decreased numbers of Proteobacteria. The up-regrated beneficial differential metabolites were SCFAs, L-proline, arginine, folic acid, pyridoxamine, thiamine, etc. (p < 0.05), and their related metabolic pathways mainly included mTOR, arginine biosynthesis, and vitamin metabolism. Notably, BFP fermentation products at transverse colon significantly restored cell viability of LPS-treated Caco-2 cells from 73.79 ± 0.48 % to 93.79-99.64 %, which might be caused by increased beneficial differential metabolites (e.g., SCFAs). Our findings suggest that BFP has prebiotic potential and can enhance gut health.
Collapse
Affiliation(s)
- Mingjing Zheng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning 116034, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China
| | - Yajun Zheng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Yifei Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Yanbing Zhu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning 116034, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China
| | - Yuanfan Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning 116034, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China
| | - Tatsuya Oda
- Graduate School of Fisheries Science & Environmental Studies, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Hui Ni
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning 116034, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China; Xiamen Ocean Vocational College, Xiamen, Fujian 361102, China
| | - Zedong Jiang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning 116034, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China.
| |
Collapse
|
26
|
Smith-Zaitlik T, Shibu P, McCartney AL, Foster G, Hoyles L, Negus D. Extended genomic analyses of the broad-host-range phages vB_KmiM-2Di and vB_KmiM-4Dii reveal slopekviruses have highly conserved genomes. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36156193 DOI: 10.1099/mic.0.001247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
High levels of antimicrobial resistance among members of the Klebsiella oxytoca complex (KoC) have led to renewed interest in the use of bacteriophage (phage) therapy to tackle infections caused by these bacteria. In this study we characterized two lytic phages, vB_KmiM-2Di and vB_KmiM-4Dii, that were isolated from sewage water against two GES-5-positive Klebsiella michiganensis strains (PS_Koxy2 and PS_Koxy4, respectively). ViPTree analysis showed both phages belonged to the genus Slopekvirus. rpoB gene-based sequence analysis of 108 presumptive K. oxytoca isolates (n=59 clinical, n=49 veterinary) found K. michiganensis to be more prevalent (46 % clinical and 43 % veterinary, respectively) than K. oxytoca (40 % clinical and 6 % veterinary, respectively). Host range analysis against these 108 isolates found both vB_KmiM-2Di and vB_KmiM-4Dii showed broad lytic activity against KoC species. Several hypothetical homing endonuclease genes were encoded within the genomes of both phages, which may contribute to their broad host range. Differences in the tail fibre protein may explain the non-identical host range of the two phages. Pangenome analysis of 24 slopekviruses found that genomes within this genus are highly conserved, with more than 50 % of all predicted coding sequences representing core genes at ≥95 % identity and ≥70 % coverage. Given their broad host ranges, our results suggest vB_KmiM-2Di and vB_KmiM-4Dii represent attractive potential therapeutics. In addition, current recommendations for phage-based pangenome analyses may require revision.
Collapse
Affiliation(s)
| | - Preetha Shibu
- Life Sciences, University of Westminster, London, UK.,Present address: Berkshire and Surrey Pathology Services, Frimley Health NHS Trust, Wexham Park Hospital, Slough, UK
| | - Anne L McCartney
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | | | - Lesley Hoyles
- Department of Biosciences, Nottingham Trent University, Nottingham NG1 4FQ, UK
| | - David Negus
- Department of Biosciences, Nottingham Trent University, Nottingham NG1 4FQ, UK
| |
Collapse
|
27
|
Subramanian S, Geng H, Du C, Chou PM, Bu HF, Wang X, Swaminathan S, Tan SC, Ridlon JM, De Plaen IG, Tan XD. Feeding mode influences dynamic gut microbiota signatures and affects susceptibility to anti-CD3 mAb-induced intestinal injury in neonatal mice. Am J Physiol Gastrointest Liver Physiol 2022; 323:G205-G218. [PMID: 35819158 PMCID: PMC9394775 DOI: 10.1152/ajpgi.00337.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 01/31/2023]
Abstract
Feeding modes influence the gut microbiome, immune system, and intestinal barrier homeostasis in neonates; how feeding modes impact susceptibility to neonatal gastrointestinal (GI) diseases is still uncertain. Here, we investigated the impact of dam feeding (DF) and formula feeding (FF) on features of the gut microbiome and physiological inflammation during the first 2 days of postnatal development and on the susceptibility to intestinal injury related to the inflammatory state in neonatal mouse pups. 16S rRNA sequencing data revealed microbiome changes, lower α-diversity, and a distinct pattern of β-diversity including expansion of f_Enterobacteriaceae and f_Enterococcaceae in the ileum of FF pups compared with DF pups by postnatal day (P)2. Together with gut dysbiosis, the FF cohort also had greater ileal mucosa physiological inflammatory activity compared with DF pups by P2 but maintained normal histological features. Interestingly, FF but not DF mouse pups developed necrotizing enterocolitis (NEC)-like intestinal injury within 24 h after anti-CD3 mAb treatment, suggesting that FF influences the susceptibility to intestinal injury in neonates. We further found that NEC-like incidence in anti-CD3 mAb-treated FF neonatal pups was attenuated by antibiotic treatment. Collectively, our data suggest that FF predisposes mouse pups to anti-CD3 mAb-induced intestinal injury due to abnormal f_Enterobacteriaceae and f_Enterococcaceae colonization. These findings advance our understanding of FF-associated microbial colonization and intestinal inflammation, which may help inform the development of new therapeutic approaches to GI diseases like NEC in infants.NEW & NOTEWORTHY This report shows that a feeding mode profoundly affects gut colonization in neonatal mice. Furthermore, our results demonstrate that formula feeding predisposes mouse pups to anti-CD3 mAb-induced necrotizing enterocolitis (NEC)-like intestinal injury upon inadequate microbial colonization. The study suggests the role of the combined presence of formula feeding-associated dysbiosis and mucosal inflammation in the pathogenesis of NEC and provides a new mouse model to study this disease.
Collapse
Affiliation(s)
- Saravanan Subramanian
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Center for Intestinal and Liver Inflammation Research, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Hua Geng
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Center for Intestinal and Liver Inflammation Research, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Chao Du
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Center for Intestinal and Liver Inflammation Research, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Pauline M Chou
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Heng-Fu Bu
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Center for Intestinal and Liver Inflammation Research, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Xiao Wang
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Center for Intestinal and Liver Inflammation Research, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Suchitra Swaminathan
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Stephanie C Tan
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Center for Intestinal and Liver Inflammation Research, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Jason M Ridlon
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Isabelle G De Plaen
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Division of Neonatology, Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Xiao-Di Tan
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Center for Intestinal and Liver Inflammation Research, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Department of Research and Development, Jesse Brown Department of Veterans Affairs Medical Center, Chicago, Illinois
| |
Collapse
|
28
|
Jia Q, Yu X, Chang Y, You Y, Chen Z, Wang Y, Liu B, Chen L, Ma D, Xing Y, Tong X. Dynamic Changes of the Gut Microbiota in Preterm Infants With Different Gestational Age. Front Microbiol 2022; 13:923273. [PMID: 35847070 PMCID: PMC9279133 DOI: 10.3389/fmicb.2022.923273] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
The gut microbiota plays a key role in the pathogenesis of diseases affecting preterm infants and gestational age is one of the important factors which affect the gut microbiota of infants. To determine the characteristics of the gut microbiota in preterm infants of different gestational ages from birth to 1 year after birth, we collected 622 fecal samples from neonates of different gestational ages at different time points after birth. According to the gestational ages, the samples were divided into four groups, extremely preterm, very preterm, moderate to late preterm, and term group. Meconium and fecal samples at day 14, 28, 120, and 365 after birth were collected. 16S rRNA sequencing was performed and the composition and structure of the gut microbiota in preterm infants of different gestational age was compared with that of term infants. In our study, alpha diversity of meconium in extremely preterm group was higher than very preterm group, moderate to late preterm group and term group and alpha diversity of meconium in preterm group was decreased with increasing of gestational age. At day 14 to day 120 after birth, alpha diversity of term and moderate to late preterm group were significantly higher than other two preterm groups. However, moderate to late preterm group owned the highest alpha diversity which was higher than term group at day 365 after birth. Besides, the results shown the duration of opportunistic pathogen such as Klebsiella and Enterococcus which dominant colonization was different in different gestational age groups. As well as the probiotics, such as Bifidobacterium, which abundance enriched at different time point in different gestational age groups. We profiled the features of dynamic changes of gut microbiome from different gestational ages infants. The results of our research provide new insights for individualized interventions of specific microbes of preterm infants with different gestational ages at different time points after birth.
Collapse
Affiliation(s)
- Qiong Jia
- Department of Pediatrics, Peking University Third Hospital, Beijing, China
| | - Xue Yu
- School of Public Health, Peking University Health Science Center, Beijing, China
| | - Yanmei Chang
- Department of Pediatrics, Peking University Third Hospital, Beijing, China
| | - Yanxia You
- Department of Pediatrics, Peking University Third Hospital, Beijing, China
| | - Zekun Chen
- School of Public Health, Peking University Health Science Center, Beijing, China
| | - Ying Wang
- School of Public Health, Peking University Health Science Center, Beijing, China
| | - Bin Liu
- National Engineering Center of Dairy for Maternal and Child Health, Beijing Sanyuan Foods Co., Ltd., Beijing, China
| | - Lijun Chen
- National Engineering Center of Dairy for Maternal and Child Health, Beijing Sanyuan Foods Co., Ltd., Beijing, China
| | - Defu Ma
- School of Public Health, Peking University Health Science Center, Beijing, China
| | - Yan Xing
- Department of Pediatrics, Peking University Third Hospital, Beijing, China
| | - Xiaomei Tong
- Department of Pediatrics, Peking University Third Hospital, Beijing, China
| |
Collapse
|
29
|
Abstract
Gastrointestinal microbes respond to biochemical metabolites that coordinate their behaviors. Here, we demonstrate that bacterial indole functions as a multifactorial mitigator of Klebsiella grimontii and Klebsiella oxytoca pathogenicity. These closely related microbes produce the enterotoxins tilimycin and tilivalline; cytotoxin-producing strains are the causative agent of antibiotic-associated hemorrhagic colitis and have been associated with necrotizing enterocolitis of premature infants. We demonstrate that carbohydrates induce cytotoxin synthesis while concurrently repressing indole biosynthesis. Conversely, indole represses cytotoxin production. In both cases, the alterations stemmed from differential transcription of npsA and npsB, key genes involved in tilimycin biosynthesis. Indole also enhances conversion of tilimycin to tilivalline, an indole analog with reduced cytotoxicity. In this context, we established that tilivalline, but not tilimycin, is a strong agonist of pregnane X receptor (PXR), a master regulator of xenobiotic detoxification and intestinal inflammation. Tilivalline binding upregulated PXR-responsive detoxifying genes and inhibited tubulin-directed toxicity. Bacterial indole, therefore, acts in a multifunctional manner to mitigate cytotoxicity by Klebsiella spp.: suppression of toxin production, enhanced conversion of tilimycin to tilivalline, and activation of PXR. IMPORTANCE The human gut harbors a complex community of microbes, including several species and strains that could be commensals or pathogens depending on context. The specific environmental conditions under which a resident microbe changes its relationship with a host and adopts pathogenic behaviors, in many cases, remain poorly understood. Here, we describe a novel communication network involving the regulation of K. grimontii and K. oxytoca enterotoxicity. Bacterial indole was identified as a central modulator of these colitogenic microbes by suppressing bacterial toxin (tilimycin) synthesis and converting tilimycin to tilivalline while simultaneously activating a host receptor, PXR, as a means of mitigating tissue cytotoxicity. On the other hand, fermentable carbohydrates were found to inhibit indole biosynthesis and enhance toxin production. This integrated network involving microbial, host, and metabolic factors provides a contextual framework to better understand K. oxytoca complex pathogenicity.
Collapse
|
30
|
Healy DB, Ryan CA, Ross RP, Stanton C, Dempsey EM. Clinical implications of preterm infant gut microbiome development. Nat Microbiol 2022; 7:22-33. [PMID: 34949830 DOI: 10.1038/s41564-021-01025-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022]
Abstract
Perturbations to the infant gut microbiome during the first weeks to months of life affect growth, development and health. In particular, assembly of an altered intestinal microbiota during infant development results in an increased risk of immune and metabolic diseases that can persist into childhood and potentially into adulthood. Most research into gut microbiome development has focused on full-term babies, but health-related outcomes are also important for preterm babies. The systemic physiological immaturity of very preterm gestation babies (born earlier than 32 weeks gestation) results in numerous other microbiome-organ interactions, the mechanisms of which have yet to be fully elucidated or in some cases even considered. In this Perspective, we compare assembly of the intestinal microbiome in preterm and term infants. We focus in particular on the clinical implications of preterm infant gut microbiome composition and discuss the prospects for microbiome diagnostics and interventions to improve the health of preterm babies.
Collapse
Affiliation(s)
- David B Healy
- APC Microbiome Ireland, University College Cork, Cork, Ireland. .,Department of Paediatrics and Child Health, University College Cork, Cork, Ireland.
| | - C Anthony Ryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | - Eugene M Dempsey
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Paediatrics and Child Health, University College Cork, Cork, Ireland.,INFANT Research Centre, Cork University Hospital, Cork, Ireland
| |
Collapse
|
31
|
Klebsiella oxytoca Complex: Update on Taxonomy, Antimicrobial Resistance, and Virulence. Clin Microbiol Rev 2021; 35:e0000621. [PMID: 34851134 DOI: 10.1128/cmr.00006-21] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Klebsiella oxytoca is actually a complex of nine species-Klebsiella grimontii, Klebsiella huaxiensis, Klebsiella michiganensis, K. oxytoca, Klebsiella pasteurii, Klebsiella spallanzanii, and three unnamed novel species. Phenotypic tests can assign isolates to the complex, but precise species identification requires genome-based analysis. The K. oxytoca complex is a human commensal but also an opportunistic pathogen causing various infections, such as antibiotic-associated hemorrhagic colitis (AAHC), urinary tract infection, and bacteremia, and has caused outbreaks. Production of the cytotoxins tilivalline and tilimycin lead to AAHC, while many virulence factors seen in Klebsiella pneumoniae, such as capsular polysaccharides and fimbriae, have been found in the complex; however, their association with pathogenicity remains unclear. Among the 5,724 K. oxytoca clinical isolates in the SENTRY surveillance system, the rates of nonsusceptibility to carbapenems, ceftriaxone, ciprofloxacin, colistin, and tigecycline were 1.8%, 12.5%, 7.1%, 0.8%, and 0.1%, respectively. Resistance to carbapenems is increasing alarmingly. In addition to the intrinsic blaOXY, many genes encoding β-lactamases with varying spectra of hydrolysis, including extended-spectrum β-lactamases, such as a few CTX-M variants and several TEM and SHV variants, have been found. blaKPC-2 is the most common carbapenemase gene found in the complex and is mainly seen on IncN or IncF plasmids. Due to the ability to acquire antimicrobial resistance and the carriage of multiple virulence genes, the K. oxytoca complex has the potential to become a major threat to human health.
Collapse
|
32
|
Gómez M, Valverde A, del Campo R, Rodríguez JM, Maldonado-Barragán A. Phenotypic and Molecular Characterization of Commensal, Community-Acquired and Nosocomial Klebsiella spp. Microorganisms 2021; 9:2344. [PMID: 34835469 PMCID: PMC8625991 DOI: 10.3390/microorganisms9112344] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Abstract
Klebsiella spp. is a relevant pathogen that can present acquired resistance to almost all available antibiotics, thus representing a serious threat for public health. While most studies have been focused on isolates causing community-acquired and nosocomial infections, little is known about the commensal isolates colonizing healthy subjects. We describe the molecular identification and the phenotypic characterization of commensal Klebsiella spp. from breast milk of healthy women and faeces from healthy breast-fed infants, which were compared with isolates from community-acquired infections and from a nosocomial NICU outbreak. The phylogenetic analysis of a 454-bp sequence of the rpoB gene was useful for species identification (K. pneumoniae, K. variicola, K. quasipneumoniae, K. oxytoca, K. grimontii, K. michiganensis, Raoultella planticola and R. ornithinolytica), previously misidentified as K. pneumoniae or K. oxytoca by biochemical methods. Globally, we report that commensal strains present virulence traits (virulence genes, siderophores and biofilms) comparable to community-acquired and NICU-infective isolates, thus suggesting that the human microbiota could constitute a reservoir for infection. Isolates causing NICU outbreak were multi-drug resistant (MDR) and ESBLs producers, although an imipenem-resistant commensal MDR K. quasipneumoniae isolate was also found. A commensal K. pneumoniae strain showed a potent bacteriocin-like inhibitory activity against MDR Klebsiella isolates, thus highlighting the potential role of commensal Klebsiella spp. in health and disease.
Collapse
Affiliation(s)
- Marta Gómez
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain; (M.G.); (J.M.R.)
| | - Arancha Valverde
- Department of Microbiology, Hospital Universitario Ramón y Cajal IRYCIS, 28034 Madrid, Spain; (A.V.); (R.d.C.)
| | - Rosa del Campo
- Department of Microbiology, Hospital Universitario Ramón y Cajal IRYCIS, 28034 Madrid, Spain; (A.V.); (R.d.C.)
| | - Juan Miguel Rodríguez
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain; (M.G.); (J.M.R.)
| | - Antonio Maldonado-Barragán
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain; (M.G.); (J.M.R.)
- Infection and Global Health Research Division, School of Medicine, University of St. Andrews, North Haugh, St Andrews KY16 9TF, UK
| |
Collapse
|
33
|
Ku H, Kabwe M, Chan HT, Stanton C, Petrovski S, Batinovic S, Tucci J. Novel Drexlerviridae bacteriophage KMI8 with specific lytic activity against Klebsiella michiganensis and its biofilms. PLoS One 2021; 16:e0257102. [PMID: 34492081 PMCID: PMC8423285 DOI: 10.1371/journal.pone.0257102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/23/2021] [Indexed: 11/25/2022] Open
Abstract
The bacterial genus Klebsiella includes the closely related species K. michiganensis, K. oxytoca and K. pneumoniae, which are capable of causing severe disease in humans. In this report we describe the isolation, genomic and functional characterisation of the lytic bacteriophage KMI8 specific for K. michiganensis. KMI8 belongs to the family Drexlerviridae, and has a novel genome which shares very little homology (71.89% identity over a query cover of only 8%) with that of its closest related bacteriophages (Klebsiella bacteriophage LF20 (MW417503.1); Klebsiella bacteriophage 066039 (MW042802.1). KMI8, which possess a putative endosialidase (depolymerase) enzyme, was shown to be capable of degrading mono-biofilms of a strain of K. michiganensis that carried the polysaccharide capsule KL70 locus. This is the first report of a lytic bacteriophage for K. michiganensis, which is capable of breaking down a biofilm of this species.
Collapse
Affiliation(s)
- Heng Ku
- Department of Pharmacy and Biomedical Science, La Trobe Institute for Molecular Science, La Trobe University, Victoria, Australia
| | - Mwila Kabwe
- Department of Pharmacy and Biomedical Science, La Trobe Institute for Molecular Science, La Trobe University, Victoria, Australia
| | - Hiu Tat Chan
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Victoria, Australia
- Department of Microbiology, Royal Melbourne Hospital, Victoria, Australia
| | - Cassandra Stanton
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Victoria, Australia
| | - Steve Petrovski
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Victoria, Australia
| | - Steven Batinovic
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Victoria, Australia
| | - Joseph Tucci
- Department of Pharmacy and Biomedical Science, La Trobe Institute for Molecular Science, La Trobe University, Victoria, Australia
- * E-mail:
| |
Collapse
|
34
|
Lam MMC, Wick RR, Watts SC, Cerdeira LT, Wyres KL, Holt KE. A genomic surveillance framework and genotyping tool for Klebsiella pneumoniae and its related species complex. Nat Commun 2021; 12:4188. [PMID: 34234121 PMCID: PMC8263825 DOI: 10.1038/s41467-021-24448-3] [Citation(s) in RCA: 503] [Impact Index Per Article: 125.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022] Open
Abstract
Klebsiella pneumoniae is a leading cause of antimicrobial-resistant (AMR) healthcare-associated infections, neonatal sepsis and community-acquired liver abscess, and is associated with chronic intestinal diseases. Its diversity and complex population structure pose challenges for analysis and interpretation of K. pneumoniae genome data. Here we introduce Kleborate, a tool for analysing genomes of K. pneumoniae and its associated species complex, which consolidates interrogation of key features of proven clinical importance. Kleborate provides a framework to support genomic surveillance and epidemiology in research, clinical and public health settings. To demonstrate its utility we apply Kleborate to analyse publicly available Klebsiella genomes, including clinical isolates from a pan-European study of carbapenemase-producing Klebsiella, highlighting global trends in AMR and virulence as examples of what could be achieved by applying this genomic framework within more systematic genomic surveillance efforts. We also demonstrate the application of Kleborate to detect and type K. pneumoniae from gut metagenomes.
Collapse
Affiliation(s)
- Margaret M C Lam
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia.
| | - Ryan R Wick
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Stephen C Watts
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Louise T Cerdeira
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Kelly L Wyres
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Kathryn E Holt
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
- London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
35
|
Cosic A, Leitner E, Petternel C, Galler H, Reinthaler FF, Herzog-Obereder KA, Tatscher E, Raffl S, Feierl G, Högenauer C, Zechner EL, Kienesberger S. Variation in Accessory Genes Within the Klebsiella oxytoca Species Complex Delineates Monophyletic Members and Simplifies Coherent Genotyping. Front Microbiol 2021; 12:692453. [PMID: 34276625 PMCID: PMC8283571 DOI: 10.3389/fmicb.2021.692453] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/28/2021] [Indexed: 02/03/2023] Open
Abstract
Members of the Klebsiella oxytoca species complex (KoSC) are emerging human pathogens causing infections of increasing significance especially in healthcare settings. KoSC strains are affiliated with distinct phylogroups based on genetic variation at the beta-lactamase gene (bla OXY) and it has been proposed that each major phylogroup represents a unique species. However, since the typing methods applied in clinical settings cannot differentiate every species within the complex, existing clinical, epidemiological and DNA sequence data is frequently misclassified. Here we systematically examined the phylogenetic relationship of KoSC strains to evaluate robustness of existing typing methods and to provide a simple typing strategy for KoSC members that cannot be differentiated biochemically. Initial analysis of a collection of K. oxytoca, K. michiganensis, K. pasteurii, and K. grimontii strains of environmental origin showed robust correlation of core phylogeny and blaOXY grouping. Moreover, we identified species-specific accessory gene loci for these strains. Extension of species correlation using database entries initially failed. However, assessment of average nucleotide identities (ANI) and phylogenetic validations showed that nearly one third of isolates in public databases have been misidentified. Reclassification resulted in a robust reference strain set for reliable species identification of new isolates or for retyping of strains previously analyzed by multi-locus sequence typing (MLST). Finally, we show convergence of ANI, core gene phylogeny, and accessory gene content for available KoSC genomes. We conclude that also the monophyletic members K. oxytoca, K. michiganensis, K. pasteurii and K. grimontii can be simply differentiated by a PCR strategy targeting bla OXY and accessory genes defined here.
Collapse
Affiliation(s)
- Amar Cosic
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Eva Leitner
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Christian Petternel
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Herbert Galler
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Franz F. Reinthaler
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Kathrin A. Herzog-Obereder
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Elisabeth Tatscher
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Sandra Raffl
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Gebhard Feierl
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Christoph Högenauer
- BioTechMed-Graz, Graz, Austria
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Ellen L. Zechner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Sabine Kienesberger
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| |
Collapse
|