1
|
Goig GA, Windels EM, Loiseau C, Stritt C, Biru L, Borrell S, Brites D, Gagneux S. Ecology, global diversity and evolutionary mechanisms in the Mycobacterium tuberculosis complex. Nat Rev Microbiol 2025:10.1038/s41579-025-01159-w. [PMID: 40133503 DOI: 10.1038/s41579-025-01159-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2025] [Indexed: 03/27/2025]
Abstract
With the COVID-19 pandemic receding, tuberculosis (TB) is again the number one cause of human death to a single infectious agent. TB is caused by bacteria that belong to the Mycobacterium tuberculosis complex (MTBC). Recent advances in genome sequencing have provided new insights into the ecology and evolution of the MTBC. This includes the discovery of new phylogenetic lineages within the MTBC, a deeper understanding of the host tropism among the various animal-adapted lineages, enhanced knowledge on the evolutionary dynamics of antimicrobial resistance and transmission, as well as a better grasp of the within-host MTBC diversity. Moreover, advances in long-read sequencing are increasingly highlighting the relevance of structural genomic variation in the MTBC. These findings not only shed new light on the biology and epidemiology of TB, but also give rise to new questions and research avenues. The purpose of this Review is to summarize these new insights and discuss their implications for global TB control.
Collapse
Affiliation(s)
- Galo A Goig
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Etthel M Windels
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Swiss Institute for Bioinformatics, Lausanne, Switzerland
| | - Chloé Loiseau
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Christoph Stritt
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Loza Biru
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Sonia Borrell
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Daniela Brites
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Sebastien Gagneux
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
2
|
Moens C, Bogaerts B, Lorente-Leal V, Vanneste K, De Keersmaecker SCJ, Roosens NHC, Mostin L, Fretin D, Marché S. Genomic comparison between Mycobacterium bovis and Mycobacterium microti and in silico analysis of peptide-based biomarkers for serodiagnosis. Front Vet Sci 2024; 11:1446930. [PMID: 39372902 PMCID: PMC11449866 DOI: 10.3389/fvets.2024.1446930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/28/2024] [Indexed: 10/08/2024] Open
Abstract
In recent years, there has been an increase in the number of reported cases of Mycobacterium microti infection in various animals, which can interfere with the ante-mortem diagnosis of animal tuberculosis caused by Mycobacterium bovis. In this study, whole genome sequencing (WGS) was used to search for protein-coding genes to distinguish M. microti from M. bovis. In addition, the population structure of the available M. microti genomic WGS datasets is described, including three novel Belgian isolates from infections in alpacas. Candidate genes were identified by examining the presence of the regions of difference and by a pan-genome analysis of the available WGS data. A total of 80 genes showed presence-absence variation between the two species, including genes encoding Proline-Glutamate (PE), Proline-Proline-Glutamate (PPE), and Polymorphic GC-Rich Sequence (PE-PGRS) proteins involved in virulence and host interaction. Filtering based on predicted subcellular localization, sequence homology and predicted antigenicity resulted in 28 proteins out of 80 that were predicted to be potential antigens. As synthetic peptides are less costly and variable than recombinant proteins, an in silico approach was performed to identify linear and discontinuous B-cell epitopes in the selected proteins. From the 28 proteins, 157 B-cell epitope-based peptides were identified that discriminated between M. bovis and M. microti species. Although confirmation by in vitro testing is still required, these candidate synthetic peptides containing B-cell epitopes could potentially be used in serological tests to differentiate cases of M. bovis from M. microti infection, thus reducing misdiagnosis in animal tuberculosis surveillance.
Collapse
Affiliation(s)
- Charlotte Moens
- Laboratory of Veterinary Bacteriology, Department of Animal Infectious Diseases, Sciensano, Brussels, Belgium
- Laboratory of Biochemistry and Genetics of Microorganisms, Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Bert Bogaerts
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Victor Lorente-Leal
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
| | - Kevin Vanneste
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | | | | | - Laurent Mostin
- Experimental Center Machelen, Sciensano, Machelen, Belgium
| | - David Fretin
- Laboratory of Veterinary Bacteriology, Department of Animal Infectious Diseases, Sciensano, Brussels, Belgium
| | - Sylvie Marché
- Laboratory of Veterinary Bacteriology, Department of Animal Infectious Diseases, Sciensano, Brussels, Belgium
| |
Collapse
|
3
|
Tzfadia O, Gijsbers A, Vujkovic A, Snobre J, Vargas R, Dewaele K, Meehan CJ, Farhat M, Hakke S, Peters PJ, de Jong BC, Siroy A, Ravelli RBG. Single nucleotide variation catalog from clinical isolates mapped on tertiary and quaternary structures of ESX-1-related proteins reveals critical regions as putative Mtb therapeutic targets. Microbiol Spectr 2024; 12:e0381623. [PMID: 38874407 PMCID: PMC11302016 DOI: 10.1128/spectrum.03816-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/02/2024] [Indexed: 06/15/2024] Open
Abstract
Proteins encoded by the ESX-1 genes of interest are essential for full virulence in all Mycobacterium tuberculosis complex (Mtbc) lineages, the pathogens causing the highest mortality worldwide. Identifying critical regions in these ESX-1-related proteins could provide preventive or therapeutic targets for Mtb infection, the game changer needed for tuberculosis control. We analyzed a compendium of whole genome sequences of clinical Mtb isolates from all lineages from >32,000 patients and identified single nucleotide polymorphisms. When mutations corresponding to all non-synonymous single nucleotide polymorphisms were mapped on structural models of the ESX-1 proteins, fully conserved regions emerged. Some could be assigned to known quaternary structures, whereas others could be predicted to be involved in yet-to-be-discovered interactions. Some mutants had clonally expanded (found in >1% of the isolates); these mutants were mostly located at the surface of globular domains, remote from known intra- and inter-molecular protein-protein interactions. Fully conserved intrinsically disordered regions of proteins were found, suggesting that these regions are crucial for the pathogenicity of the Mtbc. Altogether, our findings highlight fully conserved regions of proteins as attractive vaccine antigens and drug targets to control Mtb virulence. Extending this approach to the whole Mtb genome as well as other microorganisms will enhance vaccine development for various pathogens. IMPORTANCE We mapped all non-synonymous single nucleotide polymorphisms onto each of the experimental and predicted ESX-1 proteins' structural models and inspected their placement. Varying sizes of conserved regions were found. Next, we analyzed predicted intrinsically disordered regions within our set of proteins, finding two putative long stretches that are fully conserved, and discussed their potential essential role in immunological recognition. Combined, our findings highlight new targets for interfering with Mycobacterium tuberculosis complex virulence.
Collapse
Affiliation(s)
- Oren Tzfadia
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Abril Gijsbers
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alexandra Vujkovic
- Clinical Virology Unit, Institute of Tropical Medicine, Antwerp, Belgium
- ADReM Data Lab, University of Antwerp, Antwerp, Belgium
| | - Jihad Snobre
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Roger Vargas
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | - Klaas Dewaele
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Conor J. Meehan
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biosciences, Nottingham Trent University, Nottingham, United Kingdom
| | - Maha Farhat
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | - Sneha Hakke
- Division of Nanoscopy, Maastricht Multimodal Imaging Institute (M4i), Maastricht University, Maastricht, the Netherlands
| | - Peter J. Peters
- Division of Nanoscopy, Maastricht Multimodal Imaging Institute (M4i), Maastricht University, Maastricht, the Netherlands
| | - Bouke C. de Jong
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Axel Siroy
- Unité de soutien à l'Institut Européen de Chimie et Biologie (IECB), CNRS, INSERM, IECB, US1, Université de Bordeaux, Pessac, France
| | - Raimond B. G. Ravelli
- Division of Nanoscopy, Maastricht Multimodal Imaging Institute (M4i), Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
4
|
Sabin S, Morales-Arce AY, Pfeifer SP, Jensen JD. The impact of frequently neglected model violations on bacterial recombination rate estimation: a case study in Mycobacterium canettii and Mycobacterium tuberculosis. G3 (BETHESDA, MD.) 2022; 12:jkac055. [PMID: 35253851 PMCID: PMC9073693 DOI: 10.1093/g3journal/jkac055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/28/2022] [Indexed: 12/04/2022]
Abstract
Mycobacterium canettii is a causative agent of tuberculosis in humans, along with the members of the Mycobacterium tuberculosis complex. Frequently used as an outgroup to the M. tuberculosis complex in phylogenetic analyses, M. canettii is thought to offer the best proxy for the progenitor species that gave rise to the complex. Here, we leverage whole-genome sequencing data and biologically relevant population genomic models to compare the evolutionary dynamics driving variation in the recombining M. canettii with that in the nonrecombining M. tuberculosis complex, and discuss differences in observed genomic diversity in the light of expected levels of Hill-Robertson interference. In doing so, we highlight the methodological challenges of estimating recombination rates through traditional population genetic approaches using sequences called from populations of microorganisms and evaluate the likely mis-inference that arises owing to a neglect of common model violations including purifying selection, background selection, progeny skew, and population size change. In addition, we compare performance when full within-host polymorphism data are utilized, versus the more common approach of basing analyses on within-host consensus sequences.
Collapse
Affiliation(s)
- Susanna Sabin
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Ana Y Morales-Arce
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Susanne P Pfeifer
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Jeffrey D Jensen
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
5
|
Multiple genetic paths including massive gene amplification allow Mycobacterium tuberculosis to overcome loss of ESX-3 secretion system substrates. Proc Natl Acad Sci U S A 2022; 119:2112608119. [PMID: 35193958 PMCID: PMC8872769 DOI: 10.1073/pnas.2112608119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2021] [Indexed: 01/18/2023] Open
Abstract
The Mycobacterium tuberculosis (Mtb) ESX-3 type VII secretion system plays a critical role in iron acquisition. Infection of mice with highly attenuated Mtb deletion mutants lacking esxG or esxH, genes encoding key ESX-3 substrates, unexpectedly yielded suppressor mutants with restored capacity to grow in vivo and in vitro in the absence of iron supplementation. Whole-genome sequencing identified two mechanisms of suppression, the disruption of a transcriptional repressor that regulates expression of an ESX-3 paralogous region encoding EsxR and EsxS, and a massive 38- to 60-fold gene amplification of this same region. These data are significant because they reveal a previously unrecognized iron acquisition regulon and inform mechanisms of Mtb chromosome evolution. Mycobacterium tuberculosis (Mtb) possesses five type VII secretion systems (T7SS), virulence determinants that include the secretion apparatus and associated secretion substrates. Mtb strains deleted for the genes encoding substrates of the ESX-3 T7SS, esxG or esxH, require iron supplementation for in vitro growth and are highly attenuated in vivo. In a subset of infected mice, suppressor mutants of esxG or esxH deletions were isolated, which enabled growth to high titers or restored virulence. Suppression was conferred by mechanisms that cause overexpression of an ESX-3 paralogous region that lacks genes for the secretion apparatus but encodes EsxR and EsxS, apparent ESX-3 orphan substrates that functionally compensate for the lack of EsxG or EsxH. The mechanisms include the disruption of a transcriptional repressor and a massive 38- to 60-fold gene amplification. These data identify an iron acquisition regulon, provide insight into T7SS, and reveal a mechanism of Mtb chromosome evolution involving “accordion-type” amplification.
Collapse
|
6
|
Osei-Wusu S, Otchere ID, Morgan P, Musah AB, Siam IM, Asandem D, Afum T, Asare P, Asante-Poku A, Kusi KA, Gagneux S, Yeboah-Manu D. Genotypic and phenotypic diversity of Mycobacterium tuberculosis complex genotypes prevalent in West Africa. PLoS One 2021; 16:e0255433. [PMID: 34437584 PMCID: PMC8389432 DOI: 10.1371/journal.pone.0255433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/15/2021] [Indexed: 12/13/2022] Open
Abstract
Findings from previous comparative genomics studies of the Mycobacterium tuberculosis complex (MTBC) suggest genomic variation among the genotypes may have phenotypic implications. We investigated the diversity in the phenotypic profiles of the main prevalent MTBC genotypes in West Africa. Thirty-six whole genome sequenced drug susceptible MTBC isolates belonging to lineages 4, 5 and 6 were included in this study. The isolates were phenotypically characterized for urease activity, tween hydrolysis, Thiophen-2-Carboxylic Acid Hydrazide (TCH) susceptibility, nitric oxide production, and growth rate in both liquid (7H9) and solid media (7H11 and Löwenstein-Jensen (L-J)). Lineage 4 isolates showed the highest growth rate in both liquid (p = 0.0003) and on solid (L-J) media supplemented with glycerol (p<0.001) or pyruvate (p = 0.005). L6 isolates optimally utilized pyruvate compared to glycerol (p<0.001), whereas L5 isolates grew similarly on both media (p = 0.05). Lineage 4 isolates showed the lowest average time to positivity (TTP) (p = 0.01; Average TTP: L4 = 15days, L5 = 16.7days, L6 = 29.7days) and the highest logCFU/mL (p = 0.04; average logCFU/mL L4 = 5.9, L5 = 5.0, L6 = 4.4) on 7H11 supplemented with glycerol, but there was no significant difference in growth on 7H11 supplemented with pyruvate (p = 0.23). The highest release of nitrite was recorded for L5 isolates, followed by L4 and L6 isolates. However, the reverse was observed in the urease activity for the lineages. All isolates tested were resistant to TCH except for one L6 isolate. Comparative genomic analyses revealed several mutations that might explain the diverse phenotypic profiles of these isolates. Our findings showed significant phenotypic diversity among the MTBC lineages used for this study.
Collapse
Affiliation(s)
- Stephen Osei-Wusu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
| | - Isaac Darko Otchere
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
| | - Portia Morgan
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
| | - Abdul Basit Musah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Ishaque Mintah Siam
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Diana Asandem
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
| | - Theophilus Afum
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Prince Asare
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
| | - Adwoa Asante-Poku
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Kwadwo Asamoah Kusi
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Dorothy Yeboah-Manu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
| |
Collapse
|
7
|
Heijmenberg I, Husain A, Sathkumara HD, Muruganandah V, Seifert J, Miranda-Hernandez S, Kashyap RS, Field MA, Krishnamoorthy G, Kupz A. ESX-5-targeted export of ESAT-6 in BCG combines enhanced immunogenicity & efficacy against murine tuberculosis with low virulence and reduced persistence. Vaccine 2021; 39:7265-7276. [PMID: 34420788 DOI: 10.1016/j.vaccine.2021.08.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/08/2021] [Accepted: 08/06/2021] [Indexed: 11/16/2022]
Abstract
Tuberculosis (TB) is the leading infectious cause of death globally. The only licensed TB vaccine, Bacille Calmette-Guérin (BCG), has low efficacy against TB in adults and is not recommended in people with impaired immunity. The incorporation of the Mycobacterium tuberculosis (Mtb) secretion system ESX-1 into BCG improves immunogenicity and protection against TB in animal models, which is associated with the secretion of the ESX-1-dependent protein ESAT-6. However, the resulting strain, BCG::ESX1Mtb, has been deemed unsafe as a human vaccine, due to prolonged persistence and increased virulence in immunocompromised mice. In this study, we describe a new recombinant BCG strain that uncouples the beneficial aspects of ESAT-6 secretion from the detrimental ESX-1effects on virulence and persistence. The strain was constructed by fusing the ESAT-6-encoding gene esxA to the general secretion signal for the mycobacterial type VII secretion pathway protein PE25. This new strain, BCG::ESAT6-PE25SS, secretes full-length ESAT-6 via the ESX-5 secretion system, which in contrast to ESX-1 is also present in BCG. In vivo testing revealed that ESX-5-targeted ESAT-6 export, induces cytosolic contact, generates ESAT-6-specific T cells and enhances the protective efficacy against TB disease, but is associated with low virulence and reduced persistence in immunocompetent and immunocompromised mice. Additionally, compared to BCG::ESX1Mtb and parental BCG, mucosal administration of BCG::ESAT6-PE25SS is associated with more rapid clearance from the lung. These results warrant further studies to evaluate BCG::ESAT6-PE25SS as a potential live attenuated vaccine candidate for TB.
Collapse
Affiliation(s)
- Isis Heijmenberg
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4878 & Townsville 4811, Queensland, Australia; Leiden University, Leiden 2311, the Netherlands
| | - Aliabbas Husain
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4878 & Townsville 4811, Queensland, Australia; Central India Institute of Medical Sciences, 88/2, Bajaj Nagar, Nagpur 10, India
| | - Harindra D Sathkumara
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4878 & Townsville 4811, Queensland, Australia
| | - Visai Muruganandah
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4878 & Townsville 4811, Queensland, Australia
| | - Julia Seifert
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4878 & Townsville 4811, Queensland, Australia
| | - Socorro Miranda-Hernandez
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4878 & Townsville 4811, Queensland, Australia
| | - Rajpal Singh Kashyap
- Central India Institute of Medical Sciences, 88/2, Bajaj Nagar, Nagpur 10, India
| | - Matt A Field
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4878 & Townsville 4811, Queensland, Australia; Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns 4878, Queensland, Australia; John Curtin School of Medical Research, Australian National University, Canberra 2601, ACT, Australia
| | | | - Andreas Kupz
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4878 & Townsville 4811, Queensland, Australia.
| |
Collapse
|
8
|
Ghielmetti G, Kupca AM, Hanczaruk M, Friedel U, Weinberger H, Revilla-Fernández S, Hofer E, Riehm JM, Stephan R, Glawischnig W. Mycobacterium microti Infections in Free-Ranging Red Deer ( Cervus elaphus). Emerg Infect Dis 2021. [DOI: 10.3201/eid27.210634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
9
|
Ghielmetti G, Kupca AM, Hanczaruk M, Friedel U, Weinberger H, Revilla-Fernández S, Hofer E, Riehm JM, Stephan R, Glawischnig W. Mycobacterium microti Infections in Free-Ranging Red Deer (Cervus elaphus). Emerg Infect Dis 2021; 27:2025-2032. [PMID: 34286688 PMCID: PMC8314804 DOI: 10.3201/eid2708.210634] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Infections with Mycobacterium microti, a member of the M. tuberculosis complex, have been increasingly reported in humans and in domestic and free-ranging wild animals. At postmortem examination, infected animals may display histopathologic lesions indistinguishable from those caused by M. bovis or M. caprae, potentially leading to misidentification of bovine tuberculosis. We report 3 cases of M. microti infections in free-ranging red deer (Cervus elaphus) from western Austria and southern Germany. One diseased animal displayed severe pyogranulomatous pleuropneumonia and multifocal granulomas on the surface of the pericardium. Two other animals showed alterations of the lungs and associated lymph nodes compatible with parasitic infestation. Results of the phylogenetic analysis including multiple animal strains from the study area showed independent infection events, but no host-adapted genotype. Personnel involved in bovine tuberculosis–monitoring programs should be aware of the fastidious nature of M. microti, its pathogenicity in wildlife, and zoonotic potential.
Collapse
|
10
|
Abstract
Mycobacterium tuberculosis complex (MTBC) species are classic examples of genetically monomorphic microorganisms due to their low genetic variability. Whole-genome sequencing made it possible to describe both the main species within the complex and M. tuberculosis lineages and sublineages. This differentiation is based on single nucleotide polymorphisms (SNPs) and large sequence polymorphisms in the so-called regions of difference (RDs). Although a number of studies have been performed to elucidate RD localizations, their distribution among MTBC species, and their role in the bacterial life cycle, there are some inconsistencies and ambiguities in the localization of RDs in different members of the complex. To address this issue, we conducted a thorough search for all possible deletions in the WGS data collection comprising 721 samples representing the full MTBC diversity. Discovered deletions were compared with a list of all previously described RDs. As with the SNP-based analysis, we confirmed the specificities of 79 regions at the species, lineage, or sublineage level, 17 of which are described for the first time. We also present RDscan (https://github.com/dbespiatykh/RDscan), an open-source workflow, which detects deletions from short-read sequencing data and correlates the results with high-specificity RDs, curated in this study. Testing of the workflow on a collection comprising ∼7,000 samples showed a high specificity of the found RDs. This study provides novel details that can contribute to a better understanding of the species differentiation within the MTBC and can help to determine how individual clusters evolve within various MTBC species. IMPORTANCE Reductive genome evolution is one of the most important and intriguing adaptation strategies of different living organisms to their environment. Mycobacterium offers several notorious examples of either naturally reduced (Mycobacterium leprae) or laboratory-reduced (Mycobacterium bovis BCG) genomes. Mycobacterium tuberculosis complex has its phylogeny unambiguously framed by large sequence polymorphisms that present unidirectional unique event changes. In the present study, we curated all known regions of difference and analyzed both Mycobacterium tuberculosis and animal-adapted MTBC species. For 79 loci, we have shown a relationship with phylogenetic units, which can serve as a marker for diagnosing or studying biological effects. Moreover, intersections were found for some loci, which may indicate the nonrandomness of these processes and the involvement of these regions in the adaptation of bacteria to external conditions.
Collapse
|
11
|
Gallant J, Heunis T, Beltran C, Schildermans K, Bruijns S, Mertens I, Bitter W, Sampson SL. PPE38-Secretion-Dependent Proteins of M. tuberculosis Alter NF-kB Signalling and Inflammatory Responses in Macrophages. Front Immunol 2021; 12:702359. [PMID: 34276695 PMCID: PMC8284050 DOI: 10.3389/fimmu.2021.702359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/07/2021] [Indexed: 11/17/2022] Open
Abstract
It was previously shown that secretion of PE-PGRS and PPE-MPTR proteins is abolished in clinical M. tuberculosis isolates with a deletion in the ppe38-71 operon, which is associated with increased virulence. Here we investigate the proteins dependent on PPE38 for their secretion and their role in the innate immune response using temporal proteomics and protein turnover analysis in a macrophage infection model. A decreased pro-inflammatory response was observed in macrophages infected with PPE38-deficient M. tuberculosis CDC1551 as compared to wild type bacteria. We could show that dampening of the pro-inflammatory response is associated with activation of a RelB/p50 pathway, while the canonical inflammatory pathway is active during infection with wild type M. tuberculosis CDC1551. These results indicate a molecular mechanism by which M. tuberculosis PE/PPE proteins controlled by PPE38 have an effect on modulating macrophage responses through NF-kB signalling.
Collapse
Affiliation(s)
- James Gallant
- Department of Science and Technology/National Research Foundation Centre of Excellence in Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Section Molecular Microbiology, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Tiaan Heunis
- Department of Science and Technology/National Research Foundation Centre of Excellence in Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Caroline Beltran
- Department of Science and Technology/National Research Foundation Centre of Excellence in Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | | | - Sven Bruijns
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | | | - Wilbert Bitter
- Section Molecular Microbiology, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Medical Microbiology and Infection Control, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Samantha L. Sampson
- Department of Science and Technology/National Research Foundation Centre of Excellence in Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
12
|
Abstract
Current models of horizontal gene transfer (HGT) in mycobacteria are based on “distributive conjugal transfer” (DCT), an HGT type described in the fast-growing, saprophytic model organism Mycobacterium smegmatis, which creates genome mosaicism in resulting strains and depends on an ESX-1 type VII secretion system. In contrast, only few data on interstrain DNA transfer are available for tuberculosis-causing mycobacteria, for which chromosomal DNA transfer between two Mycobacterium canettii strains was reported, a process which, however, was not observed for Mycobacterium tuberculosis strains. Here, we have studied a wide range of human- and animal-adapted members of the Mycobacterium tuberculosis complex (MTBC) using an optimized filter-based mating assay together with three selected strains of M. canettii that acted as DNA recipients. Unlike in previous approaches, we obtained a high yield of thousands of recombinants containing transferred chromosomal DNA fragments from various MTBC donor strains, as confirmed by whole-genome sequence analysis of 38 randomly selected clones. While the genome organizations of the obtained recombinants showed mosaicisms of donor DNA fragments randomly integrated into a recipient genome backbone, reminiscent of those described as being the result of ESX-1-mediated DCT in M. smegmatis, we observed similar transfer efficiencies when ESX-1-deficient donor and/or recipient mutants were used, arguing that in tubercle bacilli, HGT is an ESX-1-independent process. These findings provide new insights into the genetic events driving the pathoevolution of M. tuberculosis and radically change our perception of HGT in mycobacteria, particularly for those species that show recombinogenic population structures despite the natural absence of ESX-1 secretion systems.
Collapse
|
13
|
Simeone R, Sayes F, Lawarée E, Brosch R. Breaching the phagosome, the case of the tuberculosis agent. Cell Microbiol 2021; 23:e13344. [PMID: 33860624 DOI: 10.1111/cmi.13344] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/14/2022]
Abstract
The interactions between microbes and their hosts are among the most complex biological phenomena known today. The interaction may reach from overall beneficial interaction, as observed for most microbiome/microbiota related interactions to interaction with virulent pathogens, against which host cells have evolved sophisticated defence strategies. Among the latter, the confinement of invading pathogens in a phagosome plays a key role, which often results in the destruction of the invader, whereas some pathogens may counteract phagosomal arrest and survive by gaining access to the cytosol of the host cell. In the current review, we will discuss recent insights into this dynamic process of host-pathogen interaction, using Mycobacterium tuberculosis and related pathogenic mycobacteria as main examples.
Collapse
Affiliation(s)
- Roxane Simeone
- Unit for Integrated Mycobacterial Pathogenomics, Institut Pasteur, CNRS UMR 3525, Paris, France
| | - Fadel Sayes
- Unit for Integrated Mycobacterial Pathogenomics, Institut Pasteur, CNRS UMR 3525, Paris, France
| | - Emeline Lawarée
- Unit for Integrated Mycobacterial Pathogenomics, Institut Pasteur, CNRS UMR 3525, Paris, France
| | - Roland Brosch
- Unit for Integrated Mycobacterial Pathogenomics, Institut Pasteur, CNRS UMR 3525, Paris, France
| |
Collapse
|