1
|
Paudel S, Franco Y, Zhao M, Dutta B, Kvitko BH. Distinct Virulence Mechanisms of Burkholderia gladioli in Onion Foliar and Bulb Scale Tissues. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2025:MPMI10240129R. [PMID: 39792040 DOI: 10.1094/mpmi-10-24-0129-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Slippery skin of onion caused by Burkholderia gladioli pv. alliicola (Bga) is a common bacterial disease reported from onion-growing regions around the world. Despite the increasing attention in recent years, our understanding of the virulence mechanisms of this pathogen remains limited. In this study, we characterized the predicted genetic determinants of virulence in Bga strain 20GA0385 using a reverse genetics approach. Using the closely related rice pathogen B. glumae as a reference, comparative genomics analysis was performed to identify Bga candidate virulence factors and regulators. Marked and unmarked deletion mutants were generated using allelic exchange, and the mutants were functionally validated using in vitro and in vivo assays. The role of mutants in pathogenic phenotypes was analyzed using onion foliar/seedling necrosis assays, the red scale necrosis assay, and in planta bacterial population counts. The phytotoxin toxoflavin was a major contributor to foliar necrosis and bacterial populations, whereas the type II and type III secretion systems (T2SS/T3SS) were dispensable for foliar symptoms. In onion scale tissue, the T2SS single mutant gspC and its double and triple mutant derivatives all contributed to scale lesion area. Neither the lipocyclopeptide icosalide, toxoflavin, nor T3SS was required for scale symptoms. Our results suggest that the quorum sensing tofIMR system in Bga regulates toxoflavin, T2SS, and T3SS, contributing to onion symptom production. We show that different virulence factors contribute to onion tissue-specific virulence patterns in Bga and that decreases in scale symptoms often do not result in decreased Bga populations in onion tissue. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Sujan Paudel
- Department of Plant Pathology, University of Georgia, Athens, GA, U.S.A
| | - Yaritza Franco
- Department of Microbiology, University of Georgia, Athens, GA, U.S.A
| | - Mei Zhao
- Department of Plant Pathology, University of Georgia, Tifton, GA, U.S.A
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Bhabesh Dutta
- Department of Plant Pathology, University of Georgia, Tifton, GA, U.S.A
| | - Brian H Kvitko
- Department of Plant Pathology, University of Georgia, Athens, GA, U.S.A
| |
Collapse
|
2
|
Lauman P, Dennis JJ. Prophylactic phage biocontrol prevents Burkholderia gladioli infection in a quantitative ex planta model of bacterial virulence. Appl Environ Microbiol 2024; 90:e0131724. [PMID: 39240081 PMCID: PMC11497830 DOI: 10.1128/aem.01317-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/09/2024] [Indexed: 09/07/2024] Open
Abstract
Agricultural crop yield losses and food destruction due to infections by phytopathogenic bacteria such as Burkholderia gladioli, which causes devastating diseases in onion, mushroom, corn, and rice crops, pose major threats to worldwide food security and cause enormous damage to the global economy. Biocontrol using bacteriophages has emerged as a promising strategy against a number of phytopathogenic species but has never been attempted against B. gladioli due to a lack of quantitative infection models and a scarcity of phages targeting this specific pathogen. In this study, we present a novel, procedurally straightforward, and highly generalizable fully quantitative ex planta maceration model and an accompanying quantitative metric, the ex planta maceration index (xPMI). In utilizing this model to test the ex planta virulence of a panel of 12 strains of B. gladioli in Allium cepa and Agaricus bisporus, we uncover substantial temperature-, host-, and strain-dependent diversity in the virulence of this fascinating pathogenic species. Crucially, we demonstrate that Burkholderia phages KS12 and AH2, respectively, prevent and reduce infection-associated onion tissue destruction, measured through significant (P < 0.0001) reductions in xPMI, by phytopathogenic strains of B. gladioli, thereby demonstrating the potential of agricultural phage biocontrol targeting this problematic microorganism.IMPORTANCEAgricultural crop destruction is increasing due to infections caused by bacteria such as Burkholderia gladioli, which causes plant tissue diseases in onion, mushroom, corn, and rice crops. These bacteria pose a major threat to worldwide food production, which, in turn, damages the global economy. One potential solution being investigated to prevent bacterial infections of plants is "biocontrol" using bacteriophages (or phages), which are bacterial viruses that readily infect and destroy bacterial cells. In this article, we demonstrate that Burkholderia phages KS12 and AH2 prevent or reduce infection-associated plant tissue destruction caused by strains of B. gladioli, thereby demonstrating the inherent potential of agricultural phage biocontrol.
Collapse
Affiliation(s)
- Philip Lauman
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Jonathan J. Dennis
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
3
|
Mukherjee S, Verma A, Kong L, Rengan AK, Cahill DM. Advancements in Green Nanoparticle Technology: Focusing on the Treatment of Clinical Phytopathogens. Biomolecules 2024; 14:1082. [PMID: 39334849 PMCID: PMC11430415 DOI: 10.3390/biom14091082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Opportunistic pathogenic microbial infections pose a significant danger to human health, which forces people to use riskier, more expensive, and less effective drugs compared to traditional treatments. These may be attributed to several factors, such as overusing antibiotics in medicine and lack of sanitization in hospital settings. In this context, researchers are looking for new options to combat this worrying condition and find a solution. Nanoparticles are currently being utilized in the pharmaceutical sector; however, there is a persistent worry regarding their potential danger to human health due to the usage of toxic chemicals, which makes the utilization of nanoparticles highly hazardous to eukaryotic cells. Multiple nanoparticle-based techniques are now being developed, offering essential understanding regarding the synthesis of components that play a crucial role in producing anti-microbial nanotherapeutic pharmaceuticals. In this regard, green nanoparticles are considered less hazardous than other forms, providing potential options for avoiding the extensive harm to the human microbiome that is prevalent with existing procedures. This review article aims to comprehensively assess the current state of knowledge on green nanoparticles related to antibiotic activity as well as their potential to assist antibiotics in treating opportunistic clinical phytopathogenic illnesses.
Collapse
Affiliation(s)
- Sunny Mukherjee
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Anamika Verma
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Lingxue Kong
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - David Miles Cahill
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3216, Australia
| |
Collapse
|
4
|
Gonzales M, Jacquet P, Gaucher F, Chabrière É, Plener L, Daudé D. AHL-Based Quorum Sensing Regulates the Biosynthesis of a Variety of Bioactive Molecules in Bacteria. JOURNAL OF NATURAL PRODUCTS 2024; 87:1268-1284. [PMID: 38390739 DOI: 10.1021/acs.jnatprod.3c00672] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Bacteria are social microorganisms that use communication systems known as quorum sensing (QS) to regulate diverse cellular behaviors including the production of various secreted molecules. Bacterial secondary metabolites are widely studied for their bioactivities including antibiotic, antifungal, antiparasitic, and cytotoxic compounds. Besides playing a crucial role in natural bacterial niches and intermicrobial competition by targeting neighboring organisms and conferring survival advantages to the producer, these bioactive molecules may be of prime interest to develop new antimicrobials or anticancer therapies. This review focuses on bioactive compounds produced under acyl homoserine lactone-based QS regulation by Gram-negative bacteria that are pathogenic to humans and animals, including the Burkholderia, Serratia, Pseudomonas, Chromobacterium, and Pseudoalteromonas genera. The synthesis, regulation, chemical nature, biocidal effects, and potential applications of these identified toxic molecules are presented and discussed in light of their role in microbial interactions.
Collapse
Affiliation(s)
- Mélanie Gonzales
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille 13288, France
- Gene&GreenTK, Marseille 13005, France
| | | | | | - Éric Chabrière
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille 13288, France
| | | | | |
Collapse
|
5
|
Hamidizade M, Taghavi SM, Soleimani A, Bouazar M, Abachi H, Portier P, Osdaghi E. Wild mushrooms as potential reservoirs of plant pathogenic bacteria: a case study on Burkholderia gladioli. Microbiol Spectr 2024; 12:e0339523. [PMID: 38380912 PMCID: PMC10986547 DOI: 10.1128/spectrum.03395-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/18/2024] [Indexed: 02/22/2024] Open
Abstract
Fruit bodies (sporocarps) of wild mushrooms growing in natural environments play a substantial role in the preservation of microbial communities, for example, clinical and food-poisoning bacteria. However, the role of wild mushrooms as natural reservoirs of plant pathogenic bacteria remains almost entirely unknown. Furthermore, bacterial transmission from a mushroom species to agricultural plants has rarely been recorded in the literature. In September 2021, a creamy-white Gram-negative bacterial strain was isolated from the sporocarp of Suillus luteus (slippery jack) growing in Bermuda grass (Cynodon dactylon) lawn in Southern Iran. A similar strain was isolated from the same fungus in the same area in September 2022. Both strains were identified as Burkholderia gladioli based on phenotypic features as well as phylogeny of 16S rRNA and three housekeeping genes. The strains were not only pathogenic on white button mushrooms (Agaricus bisporus) but also induced hypersensitive reaction (HR) on tobacco and common bean leaves and caused soft rot on a set of diverse plant species, that is, chili pepper, common bean pod, cucumber, eggplant, garlic, gladiolus, narcissus, onion, potato, spring onion, okra, kohlrabi, mango, and watermelon. Isolation of plant pathogenic B. gladioli strains from sporocarp of S. luteus in two consecutive years in the same area could be indicative of the role of this fungus in the preservation of the bacterium in the natural environment. B. gladioli associated with naturally growing S. luteus could potentially invade neighboring agricultural crops, for example, vegetables and ornamentals. The potential role of wild mushrooms as natural reservoirs of phytopathogenic bacteria is further discussed.IMPORTANCEThe bacterial genus Burkholderia contains biologically heterogeneous strains that can be isolated from diverse habitats, that is, soil, water, diseased plant material, and clinical specimens. In this study, two Gram-negative pectinolytic bacterial strains were isolated from the sporocarps of Suillus luteus in September 2021 and 2022. Molecular phylogenetic analyses revealed that both strains belonged to the complex species Burkholderia gladioli, while the pathovar status of the strains remained undetermined. Biological investigations accomplished with pathogenicity and host range assays showed that B. gladioli strains isolated from S. luteus in two consecutive years were pathogenic on a set of diverse plant species ranging from ornamentals to both monocotyledonous and dicotyledonous vegetables. Thus, B. gladioli could be considered an infectious pathogen capable of being transmitted from wild mushrooms to annual crops. Our results raise a hypothesis that wild mushrooms could be considered as potential reservoirs for phytopathogenic B. gladioli.
Collapse
Affiliation(s)
- Mozhde Hamidizade
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, Iran
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran
| | - S. Mohsen Taghavi
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Ardavan Soleimani
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran
| | - Mohammad Bouazar
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Hamid Abachi
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran
| | - Perrine Portier
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, CIRM-CFBP, Angers, France
| | - Ebrahim Osdaghi
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran
- Center for International Scientific Studies and Collaborations (CISSC) of Iran, Tehran, Iran
| |
Collapse
|
6
|
Webster G, Mullins AJ, Petrova YD, Mahenthiralingam E. Polyyne-producing Burkholderia suppress Globisporangium ultimum damping-off disease of Pisum sativum (pea). Front Microbiol 2023; 14:1240206. [PMID: 37692405 PMCID: PMC10485841 DOI: 10.3389/fmicb.2023.1240206] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Extensive crop losses are caused by oomycete and fungal damping-off diseases. Agriculture relies heavily on chemical pesticides to control disease, but due to safety concerns multiple agents have been withdrawn. Burkholderia were successfully used as commercial biopesticides because of their fungicidal activity and plant protective traits. However, their potential for opportunistic pathogenicity led to a moratorium on their registration as biopesticides. Subsequently, Burkholderia were shown to produce multiple specialised metabolites including potent antimicrobial polyynes. Cepacin A, a polyyne produced by Burkholderia ambifaria biopesticide strains was shown to be an important metabolite for the protection of germinating peas against Globisporangium ultimum (formerly Pythium) damping-off disease. Recently, there has been an expansion in bacterial polyyne discovery, with the metabolites and their biosynthetic gene pathways found in several bacterial genera including Burkholderia, Collimonas, Trinickia, and Pseudomonas. To define the efficacy of these bacterial polyyne producers as biopesticidal agents, we systematically evaluated metabolite production, in vitro microbial antagonism, and G. ultimum biocontrol across a panel of 30 strains representing four bacterial genera. In vitro polyyne production and antimicrobial activity was demonstrated for most strains, but only Burkholderia polyyne producers were protective within the in vivo G. ultimum damping-off pea protection model. B. ambifaria was the most effective cepacin-expressing biopesticide, and despite their known potential for plant pathogenicity Burkholderia gladioli and Burkholderia plantarii were uniquely shown to be protective as caryoynencin-producing biopesticides. In summary, Burkholderia are effective biopesticides due to their suite of antimicrobials, but the ability to deploy polyyne metabolites, caryoynencin and cepacin, is strain and species dependent. Graphical Abstract.
Collapse
|
7
|
Parfitt KM, Green AE, Connor TR, Neill DR, Mahenthiralingam E. Identification of two distinct phylogenomic lineages and model strains for the understudied cystic fibrosis lung pathogen Burkholderia multivorans. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001366. [PMID: 37526960 PMCID: PMC10482378 DOI: 10.1099/mic.0.001366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 07/11/2023] [Indexed: 08/02/2023]
Abstract
Burkholderia multivorans is the dominant Burkholderia pathogen recovered from lung infection in people with cystic fibrosis. However, as an understudied pathogen there are knowledge gaps in relation to its population biology, phenotypic traits and useful model strains. A phylogenomic study of B. multivorans was undertaken using a total of 283 genomes, of which 73 were sequenced and 49 phenotypically characterized as part of this study. Average nucleotide identity analysis (ANI) and phylogenetic alignment of core genes demonstrated that the B. multivorans population separated into two distinct evolutionary clades, defined as lineage 1 (n=58 genomes) and lineage 2 (n=221 genomes). To examine the population biology of B. multivorans, a representative subgroup of 77 B. multivorans genomes (28 from the reference databases and the 49 novel short-read genome sequences) were selected based on multilocus sequence typing (MLST), isolation source and phylogenetic placement criteria. Comparative genomics was used to identify B. multivorans lineage-specific genes - ghrB_1 in lineage 1 and glnM_2 in lineage 2 - and diagnostic PCRs targeting them were successfully developed. Phenotypic analysis of 49 representative B. multivorans strains showed considerable inter-strain variance, but the majority of the isolates tested were motile and capable of biofilm formation. A striking absence of B. multivorans protease activity in vitro was observed, but no lineage-specific phenotypic differences were demonstrated. Using phylogenomic and phenotypic criteria, three model B. multivorans CF strains were identified, BCC0084 (lineage 1), BCC1272 (lineage 2a) and BCC0033 lineage 2b, and their complete genome sequences determined. B. multivorans CF strains BCC0033 and BCC0084, and the environmental reference strain, ATCC 17616, were all capable of short-term survival within a murine lung infection model. By mapping the population biology, identifying lineage-specific PCRs and model strains, we provide much needed baseline resources for future studies of B. multivorans.
Collapse
Affiliation(s)
- Kasia M. Parfitt
- Cardiff University, Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, CF10 3AX, UK
- Present address: Department of Biology, Big Data Institute, Nuffield Department of Population Health, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, University of Oxford, Oxford OX3 7LF, UK
| | - Angharad E. Green
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK
| | - Thomas R. Connor
- Cardiff University, Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, CF10 3AX, UK
| | - Daniel R. Neill
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK
- Present address: Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH UK, UK
| | - Eshwar Mahenthiralingam
- Cardiff University, Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, CF10 3AX, UK
| |
Collapse
|
8
|
Yang C, Wang Z, Wan J, Qi T, Zou L. Burkholderia gladioli strain KJ-34 exhibits broad-spectrum antifungal activity. FRONTIERS IN PLANT SCIENCE 2023; 14:1097044. [PMID: 36938063 PMCID: PMC10020716 DOI: 10.3389/fpls.2023.1097044] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Plant pathogens are one of the major constraints on worldwide food production. The antibiotic properties of microbes identified as effective in managing plant pathogens are well documented. METHODS Here, we used antagonism experiments and untargeted metabolomics to isolate the potentially antifungal molecules produced by KJ-34. RESULTS KJ-34 is a potential biocontrol bacterium isolated from the rhizosphere soil of rice and can fight multiple fungal pathogens (i.e. Ustilaginoidea virens, Alternaria solani, Fusarium oxysporum, Phytophthora capsica, Corynespora cassiicola). The favoured fermentation conditions are determined and the fermentation broth treatment can significantly inhibit the infection of Magnaporthe oryzae and Botryis cinerea. The fermentation broth suppression ratio is 75% and 82%, respectively. Fermentation broth treatment disrupted the spore germination and led to malformation of hyphae. Additionally, we found that the molecular weight of antifungal products were less than 1000 Da through semipermeable membranes on solid medium assay. To search the potentially antifungal molecules that produce by KJ-34, we used comparative and bioinformatics analyses of fermentation broth before and after optimization by mass spectrometry. Untargeted metabolomics analyses are presumed to have a library of antifungal agents including benzoylstaurosporine, morellin and scopolamine. DISCUSSION These results suggest that KJ-34 produced various biological control agents to suppress multiple phytopathogenic fungi and showed a strong potential in the ecological technologies of prevention and protection.
Collapse
Affiliation(s)
- Chunnan Yang
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, China
- Kaijiang County Plant Protection and Quarantine Station, Kaijiang County Agricultural and Rural Bureau, Dazhou, Sichuan, China
| | - Zhihui Wang
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, China
- Kaijiang County Plant Protection and Quarantine Station, Kaijiang County Agricultural and Rural Bureau, Dazhou, Sichuan, China
| | - Jiangxue Wan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Tuo Qi
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Lijuan Zou
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, China
| |
Collapse
|
9
|
Incorporation of clove essential oil nanoemulsion in chitosan coating to control Burkholderia gladioli and improve postharvest quality of fresh Tremella fuciformis. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Park J, Jung H, Mannaa M, Lee SY, Lee HH, Kim N, Han G, Park DS, Lee SW, Lee SW, Seo YS. Genome-guided comparative in planta transcriptome analyses for identifying cross-species common virulence factors in bacterial phytopathogens. FRONTIERS IN PLANT SCIENCE 2022; 13:1030720. [PMID: 36466249 PMCID: PMC9709210 DOI: 10.3389/fpls.2022.1030720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Abstract
Plant bacterial disease is a complex outcome achieved through a combination of virulence factors that are activated during infection. However, the common virulence factors across diverse plant pathogens are largely uncharacterized. Here, we established a pan-genome shared across the following plant pathogens: Burkholderia glumae, Ralstonia solanacearum, and Xanthomonas oryzae pv. oryzae. By overlaying in planta transcriptomes onto the pan-genome, we investigated the expression profiles of common genes during infection. We found over 70% of identical patterns for genes commonly expressed by the pathogens in different plant hosts or infection sites. Co-expression patterns revealed the activation of a signal transduction cascade to recognize and respond to external changes within hosts. Using mutagenesis, we uncovered a relationship between bacterial virulence and functions highly conserved and shared in the studied genomes of the bacterial phytopathogens, including flagellar biosynthesis protein, C4-dicarboxylate ABC transporter, 2-methylisocitrate lyase, and protocatechuate 3,4-dioxygenase (PCD). In particular, the disruption of PCD gene led to attenuated virulence in all pathogens and significantly affected phytotoxin production in B. glumae. This PCD gene was ubiquitously distributed in most plant pathogens with high homology. In conclusion, our results provide cross-species in planta models for identifying common virulence factors, which can be useful for the protection of crops against diverse pathogens.
Collapse
Affiliation(s)
- Jungwook Park
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, South Korea
| | - Hyejung Jung
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Mohamed Mannaa
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Seung Yeup Lee
- Department of Applied Bioscience, Dong-A University, Busan, South Korea
| | - Hyun-Hee Lee
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Namgyu Kim
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Gil Han
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Dong-Soo Park
- Paddy Crop Division, National Institute of Crop Science, Rural Development Administration, Miryang, South Korea
| | - Sang-Won Lee
- Department of Plant Molecular Systems Biotech & Crop Biotech Institute, KyungHee University, Yongin, South Korea
| | - Seon-Woo Lee
- Department of Applied Bioscience, Dong-A University, Busan, South Korea
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| |
Collapse
|
11
|
Selection of Relevant Bacterial Strains for Novel Therapeutic Testing: a Guidance Document for Priority Cystic Fibrosis Lung Pathogens. CURRENT CLINICAL MICROBIOLOGY REPORTS 2022. [DOI: 10.1007/s40588-022-00182-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Abstract
Purpose of Review
People with cystic fibrosis (CF) suffer chronic lung infections with a range of antimicrobial-resistant bacterial pathogens. There is an urgent need for researchers to develop novel anti-infectives to treat these problematic infections, but how can we select bacterial strains which are relevant for robust testing and comparative research?
Recent Findings
Pseudomonas aeruginosa, Burkholderia cepacia complex and Burkholderia gladioli, Mycobacterium abscessus complex, Staphylococcus aureus, Haemophilus influenza, and several multidrug-resistant Gram-negative species were selected as key CF infections that urgently require new therapeutics. Reference isolates and strain panels were identified, and a summary of the known genotypic diversity of each pathogen was provided.
Summary
Here, we summarise the current strain resources available for priority CF bacterial pathogens and highlight systematic selection criteria that researchers can use to select strains for use in therapeutic testing.
Collapse
|
12
|
Petrova YD, Mahenthiralingam E. Discovery, mode of action and secretion of Burkholderia sensu lato key antimicrobial specialised metabolites. Cell Surf 2022; 8:100081. [PMID: 36277081 PMCID: PMC9579380 DOI: 10.1016/j.tcsw.2022.100081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
Burkholderia sensu lato bacteria have genomes rich in biosynthetic gene clusters (BGCs) encoding for multiple bioactive specialised metabolites. Diverse classes of antimicrobial natural products have been isolated from Burkholderia, including polyynes, shikimate pathway derivatives, polyketides, non-ribosomal peptides and hybrid polyketide non-ribosomal peptides. We highlight examples of Burkholderia metabolites, overviewing their biosynthesis, bioactivity, mechanisms of action and secretion.
Collapse
|
13
|
Petrova YD, Zhao J, Webster G, Mullins AJ, Williams K, Alswat AS, Challis GL, Bailey AM, Mahenthiralingam E. Cloning and expression of Burkholderia polyyne biosynthetic gene clusters in Paraburkholderia hosts provides a strategy for biopesticide development. Microb Biotechnol 2022; 15:2547-2561. [PMID: 35829647 PMCID: PMC9518984 DOI: 10.1111/1751-7915.14106] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/27/2022] [Accepted: 06/09/2022] [Indexed: 11/29/2022] Open
Abstract
Burkholderia have potential as biocontrol agents because they encode diverse biosynthetic gene clusters (BGCs) for a range of antimicrobial metabolites. Given the opportunistic pathogenicity associated with Burkholderia species, heterologous BGC expression within non-pathogenic hosts is a strategy to construct safe biocontrol strains. We constructed a yeast-adapted Burkholderia-Escherichia shuttle vector (pMLBAD_yeast) with a yeast replication origin 2 μ and URA3 selection marker and optimised it for cloning BGCs using the in vivo recombination ability of Saccharomyces cerevisiae. Two Burkholderia polyyne BGCs, cepacin (13 kb) and caryoynencin (11 kb), were PCR-amplified as three overlapping fragments, cloned downstream of the pBAD arabinose promoter in pMLBAD_yeast and mobilised into Burkholderia and Paraburkholderia heterologous hosts. Paraburkholderia phytofirmans carrying the heterologous polyyne constructs displayed in vitro bioactivity against a variety of fungal and bacterial plant pathogens similar to the native polyyne producers. Thirteen Paraburkholderia strains with preferential growth at 30°C compared with 37°C were also identified, and four of these were amenable to genetic manipulation and heterologous expression of the caryoynencin construct. The cloning and successful heterologous expression of Burkholderia biosynthetic gene clusters within Paraburkholderia with restricted growth at 37°C opens avenues for engineering non-pathogenic biocontrol strains.
Collapse
Affiliation(s)
| | - Jinlian Zhao
- Department of Chemistry, University of Warwick, Coventry, UK
| | | | | | | | - Amal S Alswat
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Gregory L Challis
- Department of Chemistry, University of Warwick, Coventry, UK.,Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, UK.,Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria, Australia
| | - Andy M Bailey
- School of Biological Sciences, University of Bristol, Bristol, UK
| | | |
Collapse
|
14
|
Development of Droplet Digital PCR Assay for Detection of Seed-Borne Burkholderia glumae and B. gladioli Causing Bacterial Panicle Blight Disease of Rice. Microorganisms 2022; 10:microorganisms10061223. [PMID: 35744741 PMCID: PMC9227566 DOI: 10.3390/microorganisms10061223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Bacterial panicle blight of rice or bacterial grain rot of rice is a worldwide rice disease. Burkholderia glumae and B. gladioli are the causal agents. The early and accurate detection of seed-borne B. glumae and B. gladioli is critical for domestic and international quarantine and effective control of the disease. Here, genomic analyses revealed that B. gladioli contains five phylogroups and the BG1 primer pair designed to target the 3’-end sequence of a gene encoding a Rhs family protein is specific to B. glumae and two phylogroups within B. gladioli. Using the BG1 primer pair, a 138-bp DNA fragment was amplified only from the tested panicle blight pathogens B. glumae and B. gladioli. An EvaGreen droplet digital PCR (dPCR) assay on detection and quantification of the two pathogens was developed from a SYBR Green real-time quantitative PCR (qPCR). The detection limits of the EvaGreen droplet dPCR on the two pathogens were identical at 2 × 103 colony forming units (CFU)∙mL−1 from bacterial suspensions and 2 × 102 CFU∙seed−1 from rice seeds. The EvaGreen droplet dPCR assay showed 10-fold detection sensitivity of the SYBR Green qPCR and could detect a single copy of the target gene in a 20-μL assay. Together, the SYBR Green qPCR assay allows for routine high-throughput detection of the panicle blight pathogens and the EvaGreen droplet dPCR assay provides a high-sensitive and high-accurate diagnostic method for quarantine of the pathogens.
Collapse
|
15
|
Meirelles LA, Newman DK. Phenazines and toxoflavin act as interspecies modulators of resilience to diverse antibiotics. Mol Microbiol 2022; 117:1384-1404. [PMID: 35510686 DOI: 10.1111/mmi.14915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 12/01/2022]
Abstract
Bacterial opportunistic pathogens make diverse secondary metabolites both in the natural environment and when causing infections, yet how these molecules mediate microbial interactions and their consequences for antibiotic treatment are still poorly understood. Here, we explore the role of three redox-active secondary metabolites, pyocyanin, phenazine-1-carboxylic acid and toxoflavin, as interspecies modulators of antibiotic resilience. We find that these molecules dramatically change susceptibility levels of diverse bacteria to clinical antibiotics. Pyocyanin and phenazine-1-carboxylic acid are made by Pseudomonas aeruginosa, while toxoflavin is made by Burkholderia gladioli, organisms that infect cystic fibrosis and other immunocompromised patients. All molecules alter the susceptibility profile of pathogenic species within the "Burkholderia cepacia complex" to different antibiotics, either antagonizing or potentiating their effects, depending on the drug's class. Defense responses regulated by the redox-sensitive transcription factor SoxR potentiate the antagonistic effects these metabolites have against fluoroquinolones, and the presence of genes encoding SoxR and the efflux systems it regulates can be used to predict how these metabolites will affect antibiotic susceptibility of different bacteria. Finally, we demonstrate that inclusion of secondary metabolites in standard protocols used to assess antibiotic resistance can dramatically alter the results, motivating the development of new tests for more accurate clinical assessment.
Collapse
Affiliation(s)
- Lucas A Meirelles
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, 91125, USA
| | - Dianne K Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, 91125, USA.,Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, 91125, USA
| |
Collapse
|
16
|
Morales-Ruíz LM, Rodríguez-Cisneros M, Kerber-Díaz JC, Rojas-Rojas FU, Ibarra JA, Estrada-de Los Santos P. Burkholderia orbicola sp. nov., a novel species within the Burkholderia cepacia complex. Arch Microbiol 2022; 204:178. [PMID: 35174425 DOI: 10.1007/s00203-022-02778-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 11/30/2022]
Abstract
Genome analysis of strains placed in the NCBI genome database as Burkholderia cenocepacia defined nine genomic species groups. The largest group (259 strains) corresponds to B. cenocepacia and the second largest group (58 strains) was identified as "Burkholderia servocepacia", a Burkholderia species classification which has not been validly published. The publication of "B. servocepacia" did not comply with Rule 27 and Recommendation 30 from the International Code of Nomenclature of Prokaryotes (ICNP) and have errors in the type strain name and the protologue describing the novel species. Here, we correct the position of this species by showing essential information that meets the criteria defined by ICNP. After additional analysis complying with taxonomic criteria, we propose that the invalid "B. servocepacia" be renamed as Burkholderia orbicola sp. nov. The original study proposing "B. servocepacia" was misleading, because this name derives from the Latin "servo" meaning "to protect/watch over", and the authors proposed this based on the beneficial biocontrol properties of several strains within the group. However, it is clear that "B. servocepacia" isolates are capable of opportunistic infection, and the proposed name Burkholderia orbicola sp. nov. takes into account these diverse phenotypic traits. The type strain is TAtl-371 T (= LMG 30279 T = CM-CNRG 715 T).
Collapse
Affiliation(s)
- Leslie-Mariana Morales-Ruíz
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. Plan de Ayala s/n, Col. Santo Tomás, Alcaldía Miguel Hidalgo, C.P. 11340, Mexico City, México
| | - Mariana Rodríguez-Cisneros
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. Plan de Ayala s/n, Col. Santo Tomás, Alcaldía Miguel Hidalgo, C.P. 11340, Mexico City, México
| | - Jeniffer-Chris Kerber-Díaz
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. Plan de Ayala s/n, Col. Santo Tomás, Alcaldía Miguel Hidalgo, C.P. 11340, Mexico City, México
| | - Fernando-Uriel Rojas-Rojas
- Laboratorio de Ciencias AgroGenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES-León UNAM), Blvd. UNAM 2011, 37684, León, Guanajuato, México.,Laboratorio Nacional PlanTECC, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES-León), Blvd. UNAM 2011, 37684, León, Guanajuato, México
| | - J Antonio Ibarra
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. Plan de Ayala s/n, Col. Santo Tomás, Alcaldía Miguel Hidalgo, C.P. 11340, Mexico City, México
| | - Paulina Estrada-de Los Santos
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. Plan de Ayala s/n, Col. Santo Tomás, Alcaldía Miguel Hidalgo, C.P. 11340, Mexico City, México.
| |
Collapse
|
17
|
Wierz JC, Gaube P, Klebsch D, Kaltenpoth M, Flórez LV. Transmission of Bacterial Symbionts With and Without Genome Erosion Between a Beetle Host and the Plant Environment. Front Microbiol 2021; 12:715601. [PMID: 34630349 PMCID: PMC8493222 DOI: 10.3389/fmicb.2021.715601] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/23/2021] [Indexed: 12/21/2022] Open
Abstract
Many phytophagous insects harbor symbiotic bacteria that can be transmitted vertically from parents to offspring, or acquired horizontally from unrelated hosts or the environment. In the latter case, plants are a potential route for symbiont transfer and can thus foster a tripartite interaction between microbe, insect, and plant. Here, we focus on two bacterial symbionts of the darkling beetle Lagria villosa that belong to the genus Burkholderia; the culturable strain B. gladioli Lv-StA and the reduced-genome strain Burkholderia Lv-StB. The strains can be transmitted vertically and confer protection to the beetle’s eggs, but Lv-StA can also proliferate in plants, and both symbiont strains have presumably evolved from plant pathogens. Notably, little is known about the role of the environment for the transmission dynamics and the maintenance of the symbionts. Through manipulative assays, we demonstrate the transfer of the symbionts from the beetle to wheat, rice and soybean plants, as well as leaf litter. In addition, we confirm that aposymbiotic larvae can pick up Lv-StA from dry leaves and the symbiont can successfully establish in the beetle’s symbiotic organs. Also, we show that the presence of plants and soil in the environment improves symbiont maintenance. These results indicate that the symbionts of L. villosa beetles are still capable of interacting with plants despite signatures of genome erosion and suggest that a mixed-mode of bacterial transmission is likely key for the persistence of the symbiosis.
Collapse
Affiliation(s)
- Jürgen C Wierz
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Paul Gaube
- Molecular Biodiversity Research Group, Center for Computational and Theoretical Biology, Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Dagmar Klebsch
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Martin Kaltenpoth
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany.,Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Laura V Flórez
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany.,Department of Plant and Environmental Sciences, Section for Organismal Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Mullins AJ, Mahenthiralingam E. The Hidden Genomic Diversity, Specialized Metabolite Capacity, and Revised Taxonomy of Burkholderia Sensu Lato. Front Microbiol 2021; 12:726847. [PMID: 34650530 PMCID: PMC8506256 DOI: 10.3389/fmicb.2021.726847] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
Burkholderia sensu lato is a collection of closely related genera within the family Burkholderiaceae that includes species of environmental, industrial, biotechnological, and clinical importance. Multiple species within the complex are the source of diverse specialized metabolites, many of which have been identified through genome mining of their biosynthetic gene clusters (BGCs). However, the full, true genomic diversity of these species and genera, and their biosynthetic capacity have not been investigated. This study sought to cluster and classify over 4000 Burkholderia sensu lato genome assemblies into distinct genomic taxa representing named and uncharacterized species. We delineated 235 species groups by average nucleotide identity analyses that formed seven distinct phylogenomic clades, representing the genera of Burkholderia sensu lato: Burkholderia, Paraburkholderia, Trinickia, Caballeronia, Mycetohabitans, Robbsia, and Pararobbisa. A total of 137 genomic taxa aligned with named species possessing a sequenced type strain, while 93 uncharacterized species groups were demarcated. The 95% ANI threshold proved capable of delineating most genomic species and was only increased to resolve several closely related species. These analyses enabled the assessment of species classifications of over 4000 genomes, and the correction of over 400 genome taxonomic assignments in public databases into existing and uncharacterized genomic species groups. These species groups were genome mined for BGCs, their specialized metabolite capacity calculated per species and genus, and the number of distinct BGCs per species estimated through kmer-based de-replication. Mycetohabitans species dedicated a larger proportion of their relatively small genomes to specialized metabolite biosynthesis, while Burkholderia species harbored more BGCs on average per genome and possessed the most distinct BGCs per species compared to the remaining genera. Exploring the hidden genomic diversity of this important multi-genus complex contributes to our understanding of their taxonomy and evolutionary relationships, and supports future efforts toward natural product discovery.
Collapse
|
19
|
Conservation of Resistance-Nodulation-Cell Division Efflux Pump-Mediated Antibiotic Resistance in Burkholderia cepacia Complex and Burkholderia pseudomallei Complex Species. Antimicrob Agents Chemother 2021; 65:e0092021. [PMID: 34181473 DOI: 10.1128/aac.00920-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Burkholderia cepacia complex (Bcc) and Burkholderia pseudomallei complex (Bpc) species include pathogens that are typically multidrug resistant. Dominant intrinsic and acquired multidrug resistance mechanisms are efflux mediated by pumps of the resistance-nodulation-cell division (RND) family. From comparative bioinformatic and, in many instances, functional studies, we infer that RND pump-based resistance mechanisms are conserved in Burkholderia. We propose to use these findings as a foundation for adoption of a uniform RND efflux pump nomenclature.
Collapse
|
20
|
Lee HH, Park J, Jung H, Seo YS. Pan-Genome Analysis Reveals Host-Specific Functional Divergences in Burkholderia gladioli. Microorganisms 2021; 9:1123. [PMID: 34067383 PMCID: PMC8224644 DOI: 10.3390/microorganisms9061123] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022] Open
Abstract
Burkholderia gladioli has high versatility and adaptability to various ecological niches. Here, we constructed a pan-genome using 14 genome sequences of B. gladioli, which originate from different niches, including gladiolus, rice, humans, and nature. Functional roles of core and niche-associated genomes were investigated by pathway enrichment analyses. Consequently, we inferred the uniquely important role of niche-associated genomes in (1) selenium availability during competition with gladiolus host; (2) aromatic compound degradation in seed-borne and crude oil-accumulated environments, and (3) stress-induced DNA repair system/recombination in the cystic fibrosis-niche. We also identified the conservation of the rhizomide biosynthetic gene cluster in all the B. gladioli strains and the concentrated distribution of this cluster in human isolates. It was confirmed the absence of complete CRISPR/Cas system in both plant and human pathogenic B. gladioli and the presence of the system in B. gladioli living in nature, possibly reflecting the inverse relationship between CRISPR/Cas system and virulence.
Collapse
Affiliation(s)
- Hyun-Hee Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (H.-H.L.); (J.P.); (H.J.)
| | - Jungwook Park
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (H.-H.L.); (J.P.); (H.J.)
- Environmental Microbiology Research Team, Nakdonggang National Institute of Biological Resources (NNIBR), Sangju 37242, Korea
| | - Hyejung Jung
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (H.-H.L.); (J.P.); (H.J.)
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (H.-H.L.); (J.P.); (H.J.)
| |
Collapse
|
21
|
Fungicidal Activity of Volatile Organic Compounds Emitted by Burkholderia gladioli Strain BBB-01. Molecules 2021; 26:molecules26030745. [PMID: 33572680 PMCID: PMC7867013 DOI: 10.3390/molecules26030745] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 02/03/2023] Open
Abstract
A Burkholderia gladioli strain, named BBB-01, was isolated from rice shoots based on the confrontation plate assay activity against several plant pathogenic fungi. The genome of this bacterial strain consists of two circular chromosomes and one plasmid with 8,201,484 base pairs in total. Pangenome analysis of 23 B. gladioli strains suggests that B. gladioli BBB-01 has the closest evolutionary relationship to B. gladioli pv. gladioli and B. gladioli pv. agaricicola. B. gladioli BBB-01 emitted dimethyl disulfide and 2,5-dimethylfuran when it was cultivated in lysogeny broth and potato dextrose broth, respectively. Dimethyl disulfide is a well-known pesticide, while the bioactivity of 2,5-dimethylfuran has not been reported. In this study, the inhibition activity of the vapor of these two compounds was examined against phytopathogenic fungi, including Magnaporthe oryzae, Gibberella fujikuroi, Sarocladium oryzae, Phellinus noxius and Colletotrichumfructicola, and human pathogen Candida albicans. In general, 2,5-dimethylfuran is more potent than dimethyl disulfide in suppressing the growth of the tested fungi, suggesting that 2,5-dimethylfuran is a potential fumigant to control plant fungal disease.
Collapse
|