1
|
Breusing C, Xiao Y, Russell SL, Corbett-Detig RB, Li S, Sun J, Chen C, Lan Y, Qian PY, Beinart RA. Ecological differences among hydrothermal vent symbioses may drive contrasting patterns of symbiont population differentiation. mSystems 2023; 8:e0028423. [PMID: 37493648 PMCID: PMC10469979 DOI: 10.1128/msystems.00284-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/13/2023] [Indexed: 07/27/2023] Open
Abstract
The intra-host composition of horizontally transmitted microbial symbionts can vary across host populations due to interactive effects of host genetics, environmental, and geographic factors. While adaptation to local habitat conditions can drive geographic subdivision of symbiont strains, it is unknown how differences in ecological characteristics among host-symbiont associations influence the genomic structure of symbiont populations. To address this question, we sequenced metagenomes of different populations of the deep-sea mussel Bathymodiolus septemdierum, which are common at Western Pacific deep-sea hydrothermal vents and show characteristic patterns of niche partitioning with sympatric gastropod symbioses. Bathymodiolus septemdierum lives in close symbiotic relationship with sulfur-oxidizing chemosynthetic bacteria but supplements its symbiotrophic diet through filter-feeding, enabling it to occupy ecological niches with little exposure to geochemical reductants. Our analyses indicate that symbiont populations associated with B. septemdierum show structuring by geographic location, but that the dominant symbiont strain is uncorrelated with vent site. These patterns are in contrast to co-occurring Alviniconcha and Ifremeria gastropod symbioses that exhibit greater symbiont nutritional dependence and occupy habitats with higher spatial variability in environmental conditions. Our results suggest that relative habitat homogeneity combined with sufficient symbiont dispersal and genomic mixing might promote persistence of similar symbiont strains across geographic locations, while mixotrophy might decrease selective pressures on the host to affiliate with locally adapted symbiont strains. Overall, these data contribute to our understanding of the potential mechanisms influencing symbiont population structure across a spectrum of marine microbial symbioses that occupy contrasting ecological niches. IMPORTANCE Beneficial relationships between animals and microbial organisms (symbionts) are ubiquitous in nature. In the ocean, microbial symbionts are typically acquired from the environment and their composition across geographic locations is often shaped by adaptation to local habitat conditions. However, it is currently unknown how generalizable these patterns are across symbiotic systems that have contrasting ecological characteristics. To address this question, we compared symbiont population structure between deep-sea hydrothermal vent mussels and co-occurring but ecologically distinct snail species. Our analyses show that mussel symbiont populations are less partitioned by geography and do not demonstrate evidence for environmental adaptation. We posit that the mussel's mixotrophic feeding mode may lower its need to affiliate with locally adapted symbiont strains, while microhabitat stability and symbiont genomic mixing likely favors persistence of symbiont strains across geographic locations. Altogether, these findings further our understanding of the mechanisms shaping symbiont population structure in marine environmentally transmitted symbioses.
Collapse
Affiliation(s)
- Corinna Breusing
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| | - Yao Xiao
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- The Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha, Guangzhou, China
| | - Shelbi L. Russell
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Russell B. Corbett-Detig
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Sixuan Li
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| | - Jin Sun
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Chong Chen
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Yi Lan
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- The Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha, Guangzhou, China
| | - Pei-Yuan Qian
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- The Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha, Guangzhou, China
| | - Roxanne A. Beinart
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| |
Collapse
|
2
|
A regulatory hydrogenase gene cluster observed in the thioautotrophic symbiont of Bathymodiolus mussel in the East Pacific Rise. Sci Rep 2022; 12:22232. [PMID: 36564432 PMCID: PMC9789115 DOI: 10.1038/s41598-022-26669-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The mytilid mussel Bathymodiolus thermophilus lives in the deep-sea hydrothermal vent regions due to its relationship with chemosynthetic symbiotic bacteria. It is well established that symbionts reside in the gill bacteriocytes of the mussel and can utilize hydrogen sulfide, methane, and hydrogen from the surrounding environment. However, it is observed that some mussel symbionts either possess or lack genes for hydrogen metabolism within the single-ribotype population and host mussel species level. Here, we found a hydrogenase cluster consisting of additional H2-sensing hydrogenase subunits in a complete genome of B. thermophilus symbiont sampled from an individual mussel from the East Pacific Rise (EPR9N). Also, we found methylated regions sparsely distributed throughout the EPR9N genome, mainly in the transposase regions and densely present in the rRNA gene regions. CRISPR diversity analysis confirmed that this genome originated from a single symbiont strain. Furthermore, from the comparative analysis, we observed variation in genome size, gene content, and genome re-arrangements across individual hosts suggesting multiple symbiont strains can associate with B. thermophilus. The ability to acquire locally adaptive various symbiotic strains may serve as an effective mechanism for successfully colonizing different chemosynthetic environments across the global oceans by host mussels.
Collapse
|
3
|
De Oliveira AL, Srivastava A, Espada‐Hinojosa S, Bright M. The complete and closed genome of the facultative generalist Candidatus Endoriftia persephone from deep-sea hydrothermal vents. Mol Ecol Resour 2022; 22:3106-3123. [PMID: 35699368 PMCID: PMC9796809 DOI: 10.1111/1755-0998.13668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/20/2022] [Accepted: 06/09/2022] [Indexed: 01/07/2023]
Abstract
The mutualistic interactions between Riftia pachyptila and its endosymbiont Candidatus Endoriftia persephone (short Endoriftia) have been extensively researched. However, the closed Endoriftia genome is still lacking. Here, by employing single-molecule real-time sequencing we present the closed chromosomal sequence of Endoriftia. In contrast to theoretical predictions of enlarged and mobile genetic element-rich genomes related to facultative endosymbionts, the closed Endoriftia genome is streamlined with fewer than expected coding sequence regions, insertion-, prophage-sequences and transposase-coding sequences. Automated and manually curated functional analyses indicated that Endoriftia is more versatile regarding sulphur metabolism than previously reported. We identified the presence of two identical rRNA operons and two long CRISPR regions in the closed genome. Additionally, pangenome analyses revealed the presence of three types of secretion systems (II, IV and VI) in the different Endoriftia populations indicating lineage-specific adaptations. The in depth mobilome characterization identified the presence of shared genomic islands in the different Endoriftia drafts and in the closed genome, suggesting that the acquisition of foreign DNA predates the geographical dispersal of the different endosymbiont populations. Finally, we found no evidence of epigenetic regulation in Endoriftia, as revealed by gene screenings and absence of methylated modified base motifs in the genome. As a matter of fact, the restriction-modification system seems to be dysfunctional in Endoriftia, pointing to a higher importance of molecular memory-based immunity against phages via spacer incorporation into CRISPR system. The Endoriftia genome is the first closed tubeworm endosymbiont to date and will be valuable for future gene oriented and evolutionary comparative studies.
Collapse
Affiliation(s)
| | - Abhishek Srivastava
- Department of Functional and Evolutionary EcologyUniversity of ViennaViennaAustria
| | | | - Monika Bright
- Department of Functional and Evolutionary EcologyUniversity of ViennaViennaAustria
| |
Collapse
|