1
|
Yu J, Yuasa H, Hirono I, Koiwai K, Mori T. Dielectrophoresis for Isolating Low-Abundance Bacteria Obscured by Impurities in Environmental Samples. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2025; 27:64. [PMID: 40085294 PMCID: PMC11909046 DOI: 10.1007/s10126-025-10441-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 02/28/2025] [Indexed: 03/16/2025]
Abstract
Bacterial communities associated with living organisms play critical roles in maintaining health and ecological balance. While dominant bacteria have been widely studied, understanding the role of low-abundance bacteria has become increasingly important due to their unique roles, such as regulating bacterial community dynamics and supporting host-specific functions. However, detecting these bacteria remains challenging, as impurities in environmental samples mask signals and compromise the accuracy of analyses. This study explored the use of dielectrophoresis (DEP) as a practical approach to isolate low-abundance bacteria obscured by impurities, comparing its utility to conventional centrifugation methods. Using two shrimp species, Neocaridina denticulata and Penaeus japonicus, DEP effectively isolated bacterial fractions while reducing impurities, enabling the detection of bacteria undetected in centrifuged samples. These newly detected bacteria were potentially linked to diverse ecological and host-specific functions, such as nutrient cycling and immune modulation, highlighting DEP as a highly potential approach to support the study of host-microbial interactions. Overall, we believe that DEP offers a practical solution for detecting overlooked bacteria in conventional methods and exploring their diversity and functional roles, with potential contributions to aquaculture and environmental biotechnology.
Collapse
Affiliation(s)
- Jaeyoung Yu
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei-Shi, Tokyo, 184-8588, Japan.
| | - Hajime Yuasa
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-Ku, Tokyo, 108-8477, Japan
| | - Ikuo Hirono
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-Ku, Tokyo, 108-8477, Japan
| | - Keiichiro Koiwai
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-Ku, Tokyo, 108-8477, Japan
| | - Tetsushi Mori
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei-Shi, Tokyo, 184-8588, Japan.
| |
Collapse
|
2
|
Sawada H, Shinohara H, Takashima Y, Naito K, Satou M. Acidovorax sacchari sp. nov., a pathogen causing red stripe of sugarcane in Japan. Int J Syst Evol Microbiol 2025; 75:006575. [PMID: 39907557 PMCID: PMC11797039 DOI: 10.1099/ijsem.0.006575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/21/2024] [Indexed: 02/06/2025] Open
Abstract
Phytopathogenic bacteria (MAFF 311311T and MAFF 311313) were isolated from sugarcane plants exhibiting leaf stripe symptoms associated with red stripe disease in Okinawa Prefecture, Japan. The strains were Gram-reaction-negative, aerobic, motile with one polar flagellum, rod-shaped and non-spore-forming. The genomic DNA G+C content was 69.0 mol%, and the major cellular fatty acids (>10 % of the total fatty acids) included summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), C16 : 0 and summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c). Phylogenomic analyses using whole-genome sequences consistently placed these strains within the genus Acidovorax. However, their phylogenetic positions did not correspond to any known species within this genus. Comparative analyses, including average nucleotide identity and digital DNA-DNA hybridization with closely related species, yielded values below the thresholds for prokaryotic species delineation (95-96 and 70 %, respectively), with the highest values observed for Acidovorax oryzae ATCC 19882T (93.98 and 54.3 %, respectively). Phenotypic characteristics, cellular fatty acid composition and a repertoire of secretion systems and their effectors can differentiate these strains from their closest relatives. The phenotypic, chemotaxonomic and genotypic data obtained in this study indicate that MAFF 311311T and MAFF 311313 constitute a novel species within the genus Acidovorax, for which we propose the name Acidovorax sacchari sp. nov., with MAFF 311311T (=ICMP 25276T) designated as the type strain.
Collapse
Affiliation(s)
- Hiroyuki Sawada
- Research Center of Genetic Resources, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Hirosuke Shinohara
- Graduate School of Agriculture, Tokyo University of Agriculture, 1737 Funako, Atsugi, Kanagawa 243-0034, Japan
| | - Yusuke Takashima
- Research Center of Genetic Resources, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Ken Naito
- Research Center of Genetic Resources, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Mamoru Satou
- Research Center of Genetic Resources, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| |
Collapse
|
3
|
Liao J, Yuan Z, Wang X, Chen T, Qian K, Cui Y, Rong A, Zheng C, Liu Y, Wang D, Pan L. Magnesium oxide nanoparticles reduce clubroot by regulating plant defense response and rhizosphere microbial community of tumorous stem mustard ( Brassica juncea var. tumida). Front Microbiol 2024; 15:1370427. [PMID: 38572228 PMCID: PMC10989686 DOI: 10.3389/fmicb.2024.1370427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/06/2024] [Indexed: 04/05/2024] Open
Abstract
Clubroot, caused by Plasmodiophora brassicae, is a major disease that significantly impairs the yield of cruciferous crops and causes significant economic losses across the globe. The prevention of clubroot, especially in tumorous stem mustard (without resistant varieties), are is limited and primarily relies on fungicides. Engineered nanoparticles have opened up new avenues for the management of plant diseases, but there is no report on their application in the prevention of clubroot. The results showed that the control efficacy of 500 mg/L MgO NPs against clubroot was 54.92%. However, when the concentration was increased to 1,500 and 2,500 mg/L, there was no significant change in the control effect. Compared with CK, the average fresh and dry weight of the aerial part of plants treated with MgO NPs increased by 392.83 and 240.81%, respectively. Compared with the F1000 treatment, increases were observed in the content of soil available phosphorus (+16.72%), potassium (+9.82%), exchangeable magnesium (+24.20%), and water-soluble magnesium (+20.64%) in the 1,500 mg/L MgO NPs treatment. The enzyme-linked immune sorbent assay (ELISA) results showed that the application of MgO NPs significantly increased soil peroxidase (POD, +52.69%), alkaline protease (AP, +41.21%), alkaline phosphatase (ALP, +79.26%), urease (+52.69%), and sucrase (+56.88%) activities; And also increased plant L-phenylalanine ammonla-lyase (PAL, +70.49%), polyphenol oxidase (PPO, +36.77%), POD (+38.30%), guaiacol peroxidase (POX, +55.46%) activities and salicylic acid (SA, +59.86%) content. However, soil and plant catalase (CAT, -27.22 and - 19.89%, respectively), and plant super oxidase dismutase (SOD, -36.33%) activities were significantly decreased after the application of MgO NPs. The metagenomic sequencing analysis showed that the MgO NPs treatments significantly improved the α-diversity of the rhizosphere soil microbial community. The relative abundance of beneficial bacteria genera in the rhizosphere soil, including Pseudomonas, Sphingopyxis, Acidovorax, Variovorax, and Bosea, was significantly increased. Soil metabolic functions, such as oxidative phosphorylation (ko00190), carbon fixation pathways in prokaryotes (ko00720), indole alkaloid biosynthesis (ko00901), and biosynthesis of various antibiotics (ko00998) were significantly enriched. These results suggested that MgO NPs might control clubroot by promoting the transformation and utilization of soil nutrients, stimulating plant defense responses, and enriching soil beneficial bacteria.
Collapse
Affiliation(s)
- Jingjing Liao
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, China
| | - Zitong Yuan
- College of Plant Protection, Southwest University, Chongqing, China
| | - Xiangmei Wang
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, China
| | - Tingting Chen
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, China
| | - Kun Qian
- College of Plant Protection, Southwest University, Chongqing, China
| | - Yuanyuan Cui
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, China
| | - Anping Rong
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, China
| | - Chunyang Zheng
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, China
| | - Yuanxiu Liu
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, China
| | - Diandong Wang
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, China
| | - Limei Pan
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, China
| |
Collapse
|
4
|
Yue J, Yang F, Xiao Y, Lin S, He Z, Wang S, Zhao J, Yuan J, Li L, Liu L. Comamonas endophytica sp. nov., a novel indole acetic acid producing endophyte isolated from bamboo in China. Int J Syst Evol Microbiol 2024; 74. [PMID: 38190243 DOI: 10.1099/ijsem.0.006217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024] Open
Abstract
Two novel indole acetic acid-producing strains, 5MLIRT and D4N7, were isolated from Indosasa shibataeoides in Yongzhou, Hunan province, and Phyllostachys edulis in Hangzhou, Zhejiang province, respectively. Based on their 16S rRNA sequences, strains 5MLIRT and D4N7 were closely related to Comamonas antarcticus 16-35-5T (98.4 % sequence similarity), and the results of 92-core gene phylogenetic trees showed that strains 5MLIRT and D4N7 formed a phylogenetic lineage within the clade comprising Comamonas species. The complete genome size of strain 5MLIRT was 4.49 Mb including two plasmids, and the DNA G+C content was 66.5 mol%. The draft genome of strain D4N7 was 4.26 Mb with 66.7 mol% G+C content. The average nucleotide identity and digital DNA-DNA hybridization values among strain 5MLIRT and species in the genus Comamonas were all below the species delineation threshold. The colonies of strain 5MLIRT and D4N7 were circular with regular margins, convex, pale yellow and 1.0-2.0 mm in diameter when incubated at 30 °C for 3 days. Strains 5MLIRT and D4N7 grew optimally at 30 °C, pH 7.0 and 1.0 % NaCl. The respiratory isoprenoid quinone was ubiquinone-8. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. Polyphasic analyses indicated that strains 5MLIRT and D4N7 could be distinguished from related validly named Comamonas species and represent a novel species of the genus Comamonas, for which the name Comamonas endophytica sp. nov. is proposed. The type strain is 5MLIRT (=ACCC 62069T=GDMCC 1.2958T=JCM 35331T).
Collapse
Affiliation(s)
- Jinjun Yue
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, PR China
| | - Fu Yang
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Youtie Xiao
- Hunan Jiuyishan National Nature Reserve Administration Bureau, Hunan 425603, PR China
| | - Seqiao Lin
- Hunan Jiuyishan National Nature Reserve Administration Bureau, Hunan 425603, PR China
| | - Zhengping He
- Hunan Jiuyishan National Nature Reserve Administration Bureau, Hunan 425603, PR China
| | - Siyu Wang
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Jiayi Zhao
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Jinling Yuan
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, PR China
| | - Lubin Li
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Lei Liu
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| |
Collapse
|
5
|
Peoples LM, Dore JE, Bilbrey EM, Vick-Majors TJ, Ranieri JR, Evans KA, Ross AM, Devlin SP, Church MJ. Oxic methane production from methylphosphonate in a large oligotrophic lake: limitation by substrate and organic carbon supply. Appl Environ Microbiol 2023; 89:e0109723. [PMID: 38032216 PMCID: PMC10734540 DOI: 10.1128/aem.01097-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
IMPORTANCE Methane is an important greenhouse gas that is typically produced under anoxic conditions. We show that methane is supersaturated in a large oligotrophic lake despite the presence of oxygen. Metagenomic sequencing indicates that diverse, widespread microorganisms may contribute to the oxic production of methane through the cleavage of methylphosphonate. We experimentally demonstrate that these organisms, especially members of the genus Acidovorax, can produce methane through this process. However, appreciable rates of methane production only occurred when both methylphosphonate and labile sources of carbon were added, indicating that this process may be limited to specific niches and may not be completely responsible for methane concentrations in Flathead Lake. This work adds to our understanding of methane dynamics by describing the organisms and the rates at which they can produce methane through an oxic pathway in a representative oligotrophic lake.
Collapse
Affiliation(s)
- Logan M. Peoples
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - John E. Dore
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, USA
| | - Evan M. Bilbrey
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
- Department of Biological Sciences, Idaho State University, Pocatello, Idaho, USA
| | - Trista J. Vick-Majors
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, USA
| | - John R. Ranieri
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - Kate A. Evans
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - Abigail M. Ross
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - Shawn P. Devlin
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - Matthew J. Church
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| |
Collapse
|
6
|
Zhao JY, Chen J, Hu ZT, Li J, Fu HY, Rott PC, Gao SJ. Genetic and morphological variants of Acidovorax avenae subsp. avenae cause red stripe of sugarcane in China. FRONTIERS IN PLANT SCIENCE 2023; 14:1127928. [PMID: 36814761 PMCID: PMC9939834 DOI: 10.3389/fpls.2023.1127928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Sugarcane (Saccharum spp.) is an important cash crop for production of sugar and bioethanol. Red stripe caused by Acidovorax avenae subsp. avenae (Aaa) is a disease that occurs in numerous sugarcane-growing regions worldwide. In this study, 17 strains of Aaa were isolated from 13 symptomatic leaf samples in China. Nine of these strains produced white-cream colonies on nutrient agar medium while the other eight produced yellow colonies. In pairwise sequence comparisons of the 16S-23S rRNA internally transcribed spacer (ITS), the 17 strains had 98.4-100% nucleotide identity among each other and 98.2-99.5% identity with the reference strain of Aaa (ATCC 19860). Three RFLP patterns based on this ITS sequence were also found among the strains of Aaa obtained in this study. Multilocus sequence typing (MLST) based on five housekeeping genes (ugpB, pilT, lepA, trpB, and gltA) revealed that the strains of Aaa from sugarcane in China and a strain of Aaa (30179) isolated from sorghum in Brazil formed a unique evolutionary subclade. Twenty-four additional strains of Aaa from sugarcane in Argentina and from other crops worldwide were distributed in two other and separate subclades, suggesting that strains of A. avenae from sugarcane are clonal populations with local specificities. Two strains of Aaa from China (CNGX08 forming white-cream colored colonies and CNGD05 forming yellow colonies) induced severe symptoms of red stripe in sugarcane varieties LC07-150 and ZZ8 but differed based on disease incidence in two separate inoculation experiments. Infected plants also exhibited increased salicylic acid (SA) content and transcript expression of gene PR-1, indicating that the SA-mediated signal pathway is involved in the response to infection by Aaa. Consequently, red stripe of sugarcane in China is caused by genetically different strains of Aaa and at least two morphological variants. The impact of these independent variations on epidemics of red stripe remains to be investigated.
Collapse
Affiliation(s)
- Jian-Ying Zhao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Juan Chen
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhong-Ting Hu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Juan Li
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Hua-Ying Fu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Philippe C. Rott
- CIRAD, UMR PHIM, Montpellier, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - San-Ji Gao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|